Regression as a Special Case of Quadratic Programming

By Andrew Johnson

Install GAMS

- Go to https://www.gams.com/download/
- Download appropriate version of GAMS for your operating systems
- During installation you will be asked for your license, please use the license provided by email

Parts of a GAMS Program

```
$ontext
$offtext
set i /i1*i40/;
$include expdata.inc
alias (j,jj);
parameters;
X(i,'constant') = 1;
X(i,'coeff1') = data(i,'income');
equations;
variables;
```

```
dummy_eq.. dummy_var =e= b('constant');
normal(j).. sum(jj, XX(j,jj)*b(jj)) =e= Xy(j);
```

Assign equation names specific equations

model ols2 /dummy_eq,normal/; solve ols2 using lp minimizing dummy_var; display b.l;

Linear Least Squares

 $y = \alpha + X\beta + \epsilon$

- y is the dependent (endogenous) variable that we want to predict and is stored as an $(n \times 1)$ vector
- X is an $(n \times k)$ matrix of k independent (exogeneous) variables
- ϵ is an error term
- We assume $E(\epsilon'\epsilon) = \sigma^2 I_n$ where I_n is an *n* dimensional identity matrix with 1's on the diagonal and 0 every where else. The zeros every where else imply ϵ_i 's are independent.

Data

• The data describes the expenditures on food for a set of 40 household in a week. The data also includes the household income.

File name: expdata.inc

- Research question:
 - Do households with a higher income spend more money on food?

OLS Estimation

Solve as a Quadratic Programming Problem

- Using the file ols1.gms
- We solve a quadratic programming problem

$$\min_{\substack{\epsilon \\ k}} \sum_{i=1}^{n} \epsilon_i^2$$

s.t. $y_i = \alpha + \sum_{j=1}^{k} \beta_j x_{ij} + \epsilon_i \ \forall i = 1, ..., n$

k is the number of independent variables, in the expenditure data k = 1; n is the number of observations, in the expenditure data n = 40

• Define the *i*th residual to be

 $\epsilon_i = y_i - \sum_{l=1}^k \beta_j x_{ij}$ Then **S** can be rewritten

 $S = \sum_{i=1}^{n} \epsilon_i^2$

Given that \boldsymbol{S} is convex, it is minimized when its gradient vector is zero (This follows by definition: if the gradient vector is not zero, there is a direction in which we can move to minimize it further) The elements of the gradient vector are the partial derivatives of \boldsymbol{S} with respect to the parameters:

$$\frac{\partial S}{\partial \beta_j} = 2 \sum_{i=1}^n \epsilon_i \frac{\partial \epsilon_i}{\partial \beta_j} (j = 1, 2, ..., k)$$

The derivatives are

$$\frac{\partial \epsilon_i}{\partial \beta_j} = -x_{ij}$$

Substitution of the expressions for the residuals and the derivatives into the gradient equations gives

$$\frac{\partial s}{\partial \beta_j} = 2 \sum_{i=1}^n (y_i - \sum_{l=1}^k \beta_j x_{ij}) (-x_{ij}) (j = 1, 2, ..., k)$$

Thus if $\hat{\beta}$ minimizes \boldsymbol{S} , we have

$$2\sum_{i=1}^{n} (y_i - \sum_{j=1}^{k} \beta_j x_{ij}) (-x_{ij}) = 0 \quad (j = 1, 2, ..., k)$$

Upon rearrangement, we obtain the **normal equations**:

$$\sum_{i=1}^{n} \sum_{l=1}^{k} x_{ij} x_{il} \widehat{\beta}_{j} = \sum_{i=1}^{n} x_{ij} y_{i} (j = 1, 2, ..., k)$$

The normal equations are written in matrix notation as $(\mathbf{X}^{\mathrm{T}}\mathbf{X})\hat{\boldsymbol{\beta}} = \mathbf{X}^{\mathrm{T}}\mathbf{y}$ (where \mathbf{X}^{T} is the matrix transpose of \mathbf{X}). The solution of the normal equations yields the vector $\hat{\boldsymbol{\beta}}$ of the optimal parameter values.

- Using the file ols2.gms
- We solve the normal equations

$$(\mathbf{X}^{\mathrm{T}}\mathbf{X})\hat{\boldsymbol{\beta}} = \mathbf{X}^{\mathrm{T}}\mathbf{y}$$

Since solving the normal equations does not require solving an optimization problem we need to create a "dummy" optimization problem and objective function to get GAMS to solve the normal equations.

equations

dummy_eq 'dummy objective equation'
normal(j) "normal equations (X'X)b = X'y";

variables

b(j) 'parameters to estimate'
dummy_var 'dummy objective variable' ;

```
dummy_eq.. dummy_var =e= b('constant');
normal(j).. sum(jj, XX(j,jj)*b(jj)) =e= Xy(j);
```

```
model ols2 /dummy_eq,normal/;
solve ols2 using lp minimizing dummy_var;
```


OLS Estimation

 $(\mathbf{X}^{\mathrm{T}}\mathbf{X})\hat{\beta} = \mathbf{X}^{\mathrm{T}}\mathbf{y}$

Notice there is no intercept term in the normal equations. To include an intercept term in the model, the matrix ${\bf X}$ has to be augmented by a vector of ${\bf 1}$'s.

Notice

```
X(i, 'constant') = 1;
```

```
X(i, 'coeff1') = data(i, 'income');
```

• For our linear model $y = \alpha + X\beta + \epsilon$ we may want an estimator that is more robust to outliers. In this case Least Absolute Deviation (LAD) might be preferred

$$\min_{\epsilon} \sum_{i=1}^{n} |\epsilon_i|$$

s.t.
$$y_i = \alpha + \sum_{j=1}^k \beta_j x_{ij} + \epsilon_i \quad \forall i = 1, \dots, n$$

• Splitting technique: replace ϵ_i by $\epsilon_i^+ - \epsilon_i^-$ and $|\epsilon_i|$ by $\epsilon_i^+ + \epsilon_i^$ where $\epsilon_i^+, \epsilon_i^- \ge 0$ are non-negative variables. We don't need to add the nonlinear constraint $\epsilon_i^+ \epsilon_i^- = 0$. Why?

$$\min_{\epsilon} \sum_{i=1}^{n} \epsilon_i^+ + \epsilon_i^-$$

s.t.
$$y_i = \alpha + \sum_{j=1}^k \beta_j x_{ij} + \epsilon_i^+ - \epsilon_i^- \quad \forall i = 1, ..., n$$

$$\min_{\epsilon} \sum_{i=1}^{n} e_i$$

s.t.
$$y_i = \alpha + \sum_{j=1}^k \beta_j x_{ij} + \epsilon_i \quad \forall i = 1, ..., n$$

$$e_i \geq \epsilon_i \; \forall i = 1, \dots, n$$

$$e_i \geq -\epsilon_i \; \forall i=1,\ldots,n$$

OLS and LAD Estimation

Duality

$$\min_{\boldsymbol{e},\boldsymbol{\beta}} \sum_{i=1}^{n} 1e_i + \sum_{j=1}^{k} 0\beta_j$$

$$s.t.$$

$$e_i + \sum_{j=1}^k \beta_j x_{ij} \ge y_i \quad \forall i = 1, \dots, n$$

$$e_i - \sum_{j=1}^k \beta_j x_{ij} \ge -y_i \quad \forall i = 1, \dots, n$$

e, *β* free variables

$$\max_{\boldsymbol{v},\boldsymbol{w}} \sum_{i=1}^{n} y_i v_i + \sum_{i=1}^{n} y_i w_i$$

s.t.

$$\max_{v} \sum_{i=1}^{n} y_i v_i$$

s.t.
$$\sum_{i=1}^{n} x_i v_i = \frac{1}{2} \sum_{i=1}^{n} x_i \quad \forall j = 1, ..., k$$

 $0 \leq v_i \leq 1 \quad \forall i = 1, \dots, n$