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Install GAMS

• Go to https://www.gams.com/download/

• Download appropriate version of GAMS for your operating 
systems

• During installation you will be asked for your license, please 
use the license provided by email

https://www.gams.com/download/


Parts of a GAMS Program
$ontext

$offtext

set i /i1*i40/;

$include expdata.inc

alias (j,jj);

parameters;

X(i,'constant') = 1;

X(i,'coeff1')   = data(i,'income');

equations;

variables;

dummy_eq..  dummy_var =e= b('constant');

normal(j).. sum(jj, XX(j,jj)*b(jj)) =e= Xy(j);

model ols2 /dummy_eq,normal/;

solve ols2 using lp minimizing dummy_var;

display b.l;

Assign parameter values

Assign equation names specific equations



Linear Least Squares

𝑦 = 𝛼 + 𝑿𝛽 + 𝜖

• 𝑦 is the dependent (endogenous) variable that we want to 
predict and is stored as an 𝑛 × 1 vector

• 𝑿 is an 𝑛 × 𝑘 matrix of 𝑘 independent (exogeneous) 
variables

• 𝜖 is an error term

• We assume 𝐸 𝜖′𝜖 = 𝜎2𝐼𝑛 where 𝐼𝑛 is an 𝑛 dimensional 
identity matrix with 1’s on the diagonal and 0 every where 
else. The zeros every where else imply 𝜖𝑖’s are independent.



Data

• The data describes the expenditures on food for a set of 40 
household in a week. The data also includes the household 
income.

File name: expdata.inc

• Research question:
• Do households with a higher income spend more money on food?





Solve as a Quadratic Programming Problem

• Using the file ols1.gms

• We solve a quadratic programming problem

min
𝜖

෍
𝑖=1

𝑛

𝜖𝑖
2

𝑠. 𝑡. 𝑦𝑖= 𝛼 +෍
𝑗=1

𝑘

𝛽𝑗𝑥𝑖𝑗 + 𝜖𝑖 ∀𝑖 = 1,… , 𝑛

𝑘 is the number of independent variables, in the expenditure data 
𝑘 = 1; 𝑛 is the number of observations, in the expenditure data 
𝑛 = 40



Solving via the Normal Equations

• Define the i th residual to be

𝜖𝑖 = 𝑦𝑖−σ𝑙=1
𝑘 𝛽𝑗𝑥𝑖𝑗

Then 𝑺 can be rewritten 

𝑺 = σ𝑖=1
𝑛 𝜖𝑖

2

Given that 𝑺 is convex, it is minimized when its gradient vector 
is zero (This follows by definition: if the gradient vector is not 
zero, there is a direction in which we can move to minimize it 
further) The elements of the gradient vector are the partial 
derivatives of 𝑺 with respect to the parameters: 



Solving via the Normal Equations

𝜕𝑺

𝜕𝛽𝑗
= 2σ𝑖=1

𝑛 𝜖𝑖
𝜕𝜖𝑖

𝜕𝛽𝑗
𝑗 = 1,2, … , 𝑘

The derivatives are
𝜕𝜖𝑖

𝜕𝛽𝑗
= −𝑥𝑖𝑗

Substitution of the expressions for the residuals and the 
derivatives into the gradient equations gives
𝜕𝑺

𝜕𝛽𝑗
= 2σ𝑖=1

𝑛 𝑦𝑖−σ𝑙=1
𝑘 𝛽𝑗𝑥𝑖𝑗 −𝑥𝑖𝑗 𝑗 = 1,2, … , 𝑘

Thus if መ𝛽 minimizes 𝑺, we have



Solving via the Normal Equations

2σ𝑖=1
𝑛 𝑦𝑖 − σ𝑗=1

𝑘 𝛽𝑗𝑥𝑖𝑗 −𝑥𝑖𝑗 = 0 𝑗 = 1,2, … , 𝑘

Upon rearrangement, we obtain the normal equations:

σ𝑖=1
𝑛 σ𝑙=1

𝑘 𝑥𝑖𝑗𝑥𝑖𝑙 ෡𝛽𝑗 = σ𝑖=1
𝑛 𝑥𝑖𝑗𝑦𝑖 𝑗 = 1,2, … , 𝑘

The normal equations are written in matrix notation as

𝐗T𝐗 መ𝛽 = 𝐗T𝐲 (where 𝐗T is the matrix transpose of 𝐗).

The solution of the normal equations yields the vector መ𝛽 of the 
optimal parameter values. 



Solving via the Normal Equations

• Using the file ols2.gms

• We solve the normal equations

𝐗T𝐗 መ𝛽 = 𝐗T𝐲

Since solving the normal equations does not require solving an 
optimization problem we need to create a “dummy” 
optimization problem and objective function to get GAMS to 
solve the normal equations. 



Solving via the Normal Equations

equations

dummy_eq 'dummy objective equation'

normal(j)  "normal equations (X'X)b = X'y“  ;

variables

b(j)       'parameters to estimate'

dummy_var 'dummy objective variable‘   ;

dummy_eq..  dummy_var =e= b('constant');

normal(j).. sum(jj, XX(j,jj)*b(jj)) =e= Xy(j);

model ols2 /dummy_eq,normal/;

solve ols2 using lp minimizing dummy_var;





Solving via the Normal Equations

𝐗T𝐗 መ𝛽 = 𝐗T𝐲

Notice there is no intercept term in the normal equations. To 
include an intercept term in the model, the matrix 𝐗 has to be 
augmented by a vector of 1’s.  

Notice

X(i,'constant') = 1;

X(i,'coeff1')   = data(i,'income');



Least Absolute Deviation 

• For our linear model 𝑦 = 𝛼 + 𝑿𝛽 + 𝜖 we may want an 
estimator that is more robust to outliers. In this case Least 
Absolute Deviation (LAD) might be preferred

min
𝜖

෍
𝑖=1

𝑛

𝜖𝑖

𝑠. 𝑡. 𝑦𝑖= 𝛼 +෍
𝑗=1

𝑘

𝛽𝑗𝑥𝑖𝑗 + 𝜖𝑖 ∀𝑖 = 1,… , 𝑛



Least Absolute Deviation 

• Splitting technique: replace 𝜖𝑖 by 𝜖𝑖
+ − 𝜖𝑖

− and 𝜖𝑖 by 𝜖𝑖
+ + 𝜖𝑖

−

where 𝜖𝑖
+, 𝜖𝑖

− ≥ 0 are non-negative variables. We don’t need 
to add the nonlinear constraint 𝜖𝑖

+𝜖𝑖
− = 0. Why?

min
𝜖

෍
𝑖=1

𝑛

𝜖𝑖
+ + 𝜖𝑖

−

𝑠. 𝑡. 𝑦𝑖= 𝛼 +෍
𝑗=1

𝑘

𝛽𝑗𝑥𝑖𝑗 + 𝜖𝑖
+ − 𝜖𝑖

− ∀𝑖 = 1,… , 𝑛



Least Absolute Deviation 

min
𝜖

෍
𝑖=1

𝑛

𝑒𝑖

𝑠. 𝑡. 𝑦𝑖= 𝛼 +෍
𝑗=1

𝑘

𝛽𝑗𝑥𝑖𝑗 + 𝜖𝑖 ∀𝑖 = 1,… , 𝑛

𝑒𝑖 ≥ 𝜖𝑖 ∀𝑖 = 1,… , 𝑛

𝑒𝑖 ≥ −𝜖𝑖 ∀𝑖 = 1,… , 𝑛





Duality

min
𝒆,𝜷

෍
𝑖=1

𝑛

1𝑒𝑖 +෍
𝑗=1

𝑘

0𝛽𝑗

𝑠. 𝑡.

𝑒𝑖 +෍
𝑗=1

𝑘

𝛽𝑗𝑥𝑖𝑗 ≥ 𝑦𝑖 ∀𝑖 = 1,… , 𝑛

𝑒𝑖 −෍
𝑗=1

𝑘

𝛽𝑗𝑥𝑖𝑗 ≥ −𝑦𝑖 ∀𝑖 = 1,… , 𝑛

𝒆, 𝜷 free variables

max
𝒗,𝒘

෍
𝑖=1

𝑛

𝑦𝑖𝑣𝑖 +෍
𝑖=1

𝑛

𝑦𝑖𝑤𝑖

𝑠. 𝑡.

෍
𝑖=1

𝑛

𝑥𝑖𝑣𝑖 +෍
𝑖=1

𝑛

𝑥𝑖𝑤𝑖 = 0

∀𝑗 = 1,… , 𝑘

𝑣𝑖 +𝑤𝑖 = 1 ∀𝑖 = 1,… , 𝑛

𝒗,𝒘 ≥ 𝟎



Least Absolute Deviation 

max
𝒗

෍
𝑖=1

𝑛

𝑦𝑖𝑣𝑖

𝑠. 𝑡.෍
𝑖=1

𝑛

𝑥𝑖𝑣𝑖 =
1

2
෍

𝑖=1

𝑛

𝑥𝑖 ∀𝑗 = 1,… , 𝑘

0 ≤ 𝑣𝑖 ≤ 1 ∀𝑖 = 1,… , 𝑛


