Regression as a Special Case
of Quadratic Programming

By Andrew Johnson



Install GAMS

« Go to https://www.gams.com/download/

 Download appropriate version of GAMS for your operating
systems

* During installation you will be asked for your license, please
use the license provided by email


https://www.gams.com/download/

Parts of a GAMS Program

$ontext

$offtext

set i /il*i40/;
$include expdata.inc
alias (j,jj);
parameters;
X(i,'constant’) = 1; :
Assign parameter values
X(i,'coeffl') = data(i,'income’);

equations;

variables;

dummy_eq.. dummy var =e= b('constant’); . . . .
Assign equation names specific equations

normal(j).. sum(jj, XX(,ip*b(j)) =e= Xy(j);

model ols2 /dummy_eq,normal/;

solve ols2 using Ip minimizing dummy_var;

display b.l;



Linear Least Squares

y=a+Xp+e

- y is the dependent (endogenous) variable that we want to
predict and is stored as an (n x 1) vector

« X is an (n X k) matrix of k independent (exogeneous)
variables

e ¢ IS an error term

» We assume E(e'e) = I, where I, is an n dimensional
identity matrix with 1's on the diagonal and 0 every where
else. The zeros every where else imply €;'s are independent.



Data

 The data describes the expenditures on food for a set of 40
household in a week. The data also includes the household
Income.

File name: expdata.inc

 Research question:
Do households with a higher income spend more money on food?
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Solve as a Quadratic Programming Problem

e Using the file olsl.gms
« We solve a quadratic programming problem

n
minz €’
& i=1
S.T. yi:(X‘F ,Bjxl-j+el-‘v’i:1,...,n

J=1

k is the number of independent variables, in the expenditure data
k = 1; nis the number of observations, in the expenditure data
n =40



Solving via the Normal Equations

e Define the 7th residual to be

€ = Yi— Xie1 Bixij
Then § can be rewritten
S = Zzn=1 Eiz

Given that § is convex, it is minimized when its gradient vector
is zero (This follows by definition: if the gradient vector is not
zero, there is a direction in which we can move to minimize it
further) The elements of the gradient vector are the partial
derivatives of § with respect to the parameters:



Solving via the Normal Equations

0€; ,.
a—ﬁ] =230 16155 (=12, )
The derivatives are
9 _ _ ..
0] i)

Substitution of the expressions for the residuals and the
derivatives into the gradient equations gives

Py ZZ 1( Yi— Zl 1:B]xlj) (_xu)(f — 12 k)

6,8] -
Thus if ,8 minimizes S, we have



Solving via the Normal Equations

20 (v = X1 Bixij) (—xij) =0 (=12, k)

Upon rearrangement, we obtain the normal equations:

k N _ .
?Zl Zl=1‘X"l]'xllﬁ] — ?:1351])’1 (] — 1)2) ;k)

The normal equations are written in matrix notation as

(X™X)B =XTy  (where XT is the matrix transpose of X).

The solution of the normal equations yields the vector § of the
optimal parameter values.



Solving via the Normal Equations

« Using the file ols2.gms
 We solve the normal equations

(XTX)p = XTy

Since solving the normal equations does not require solving an
optimization problem we need to create a “"dummy”
optimization problem and objective function to get GAMS to
solve the normal equations.



Solving via the Normal Equations

equations

dummy eq '"dummy objective equation'

normal (7) "normal equations (X'X)b = X'y“
variables

b(7j) 'parameters to estimate'’

dummy var 'dummy objective variable' ;
dummy eqg.. dummy var =e= b('constant');
normal (j) .. sum(j], XX(J,J3J)*b(7373)) =e= Xy (]);

model ols2 /dummy eq,normal/;

solve o0ls2 using lp minimizing dummy var;
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Solving via the Normal Equations
(XTX)B = XTy

Notice there is no intercept term in the normal equations. To
include an intercept term in the model, the matrix X has to be
augmented by a vector of 1's.

Notice
1;

X(1,'coeffl") = data (i, "income') ;

X (1, 'constant')



| east Absolute Deviation

« For our linear model y = a + X + € we may want an
estimator that is more robust to outliers. In this case Least
Absolute Deviation (LAD) might be preferred

n
minz €]
€ i=1

k
S.t. yi=a+ ,Bjxij+ei‘v’i=1,...,n
j=1



| east Absolute Deviation

« Splitting technique: replace ¢; by €;" — ¢; and |¢;| by € + €;
where €;",e; = 0 are non-negative variables. We don’t need
to add the nonlinear constraint ¢;"¢; = 0. Why?



| east Absolute Deviation

S.T. yi=«& + ,BJXU + €; Vi = 1,

J=1
€ = €; Vi = 1, e, N

€ > —€; Vi = 1,...,7’l



OLS and LAD Estimation
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Duality
rgiﬁn ZT 1lei + zll 05;

S.t
k
e; + Bixi; = yi Vi=1,..,n
j=1
k
e; — - Bixijz-y; Vi=1,..,n
J=1
e, free variables

n n
max YiVi + YiWi
v,w i=1 i=1
S.t
n n
z X;v; + z xiw; =0
=1 =1
Vi=1,..,k
vi+w; =1 Vi=1,..,n



| east Absolute Deviation

n
maxz ViU
4 i=1
n 1 n
S. t.z XiV; = —Z x; Vj=1,..
i=1 2Lai—q

OSUiS]. Vi=1,...,7’l



