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Nonparametric methods are asymptotically 
consistent, so why would you want to impose 
axioms and risk misspecification?

Comparison of Methods
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Nonparametric methods are asymptotically 
consistent, so why would you want to impose 
axioms and risk misspecification?

– Improved finite sample performance

• Unrestricted nonparametric estimators converge slowly 
and are typically hard to interpret 

• Parametric assumptions are for 
statistical/computational convenience, but often 
contradict production theory 

Comparison of Methods
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Parametric

Comparison of Methods

Common Models:
• Cobb-Douglas
• Translog

Advantages:
• Computational Speed

Drawbacks:
• Functional Misspecification
• Satisfies Economic Theory 

Axioms
• Not very flexible
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Common Models:
• Kernel regression
• Local Maximum Likelihood

Advantages:
• Very Flexible

Drawbacks:
• Violation of Economic 

Theory Axioms
• Problem of Interpretability

Non-Parametric

Comparison of Methods
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Shape constrained 
Nonparametric

Comparison of Methods

Common Models:
• CNLS
• SCKLS

Advantages:
• Finite Sample Performance 

Improvement
• Satisfies Economic Theory 

Axioms
• No need of Functional 

Specification

Drawbacks:
• Computational Time
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Parametric
(too restrictive)

Shape constrained 
Nonparametric

(balanced)

Nonparametric
(too flexible)

Comparison of Methods



Convex Nonparametric Least 
Squares



Convex nonparametric least squares 
Single-Input Single-Output
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Convex nonparametric least squares
• Simulated example
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Convex nonparametric least
squares (CNLS) 

• Univariate case: Hildreth (1954), Hanson & Pledger (1976); 
Groeneboom et al. (2001)

• Multivariate case (Kuosmanen 2008, Ectr. J.):

• Representation theorem: Optimal solution to the finite
problem on the right is always one of the optimal solutions
to the problem on the left

• Unbiasedness and consistency: Seijo & Sen (2011; An. Stat.)
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Convex nonparametric least squares
supporting hyperplanes
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Computational Issues



CNLS Computation

14

– Convex Nonparametric Least Squares (CNLS)

• 1st constraint: linear regression 

• 2nd constraint: convexity using Afriat inequalities

• 3rd constraint: monotonicity

– Computation burden
• 2nd constraints will generate n(n-1) constraints, where n 

is number of observations
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CNLS Computation
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• A Generic Algorithm for CNLS Model Reduction 
– Dantzig et al. (1954, 1959) proposed the approach of 

solving large-scale traveling-salesman problems
• Solve a relaxed model

• Iteratively add the violated “complicating” constraints

• Stop when the optimal solution to the relaxed model is 
feasible for the original problem

– Relaxed CNLS problem (RCNLS)

• Identify an initial solution  (2 approaches)

• Add violated constraints iteratively (3 strategies)



CNLS Computation
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CNLS Computation

18

• Initial solution identification
• the number of hyperplanes to construct the function is 

generally much  smaller than n. 

• predict the relevant concavity constraints

2)  Sweet Spot Approach (Distance measure)

• The range between the 0 percentile and the δi th 
percentile is defined as the Sweet Spot.

• Include the concavity constraints corresponding to the
observations whose distance to observation i is less than
a pre-specified threshold value δi.
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 Histogram of the distances between all pairs related to one particular observation that correspond to relevant

         concavity constraints

 Histogram of the distances between all pairs related to one particular observation
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Constraints corresponding to nearby observations are significantly 
more likely to be relevant.

CNLS Computation



CNLS Computation
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• Add Violated Concavity Constraints
• Generate an initial solution quickly, 

• Plug solution into the CNLS model and identify which 
convexity constraint violated. 

• Iteratively add some set of the violated constraints (V)



Taxonomy of Methods

Parametric

Local averaging Axiomatic

Conditional 

Mean

OLS

Gauss (1795), Legendre 

(1805)

Kernel regression

Nadaraya (1964), Watson 

(1964)

Convex regression

Hildreth (1954), Hanson and 

Pledger (1976)

Sign 

constrained

Parametric Programming

Aigner and Chu (1968)

Nonparametric Programming

Post et al. (2002)

Data Envelopment Analysis

Farrell (1957), Afriat (1972), 

Charnes et al. (1978)

2-stage

Corrected OLS

Winsten (1957), Greene 

(1980)

Corrected Kernel Regression

Kneip and Simar (1996)

Corrected CNLS

Kuosmanen and Johnson 

(2010)

Maximum 

likelihood

Stochastic Frontier Analysis

Aigner et al. (1977), Meeusen 

and van den Broeck (1977)

Local-Likelihood

Kumbhakar et al. (2007)

Banker and Maindiratta 

(1992)

Stochastic Frontier Analysis

Aigner et al. (1977), Meeusen 

and van den Broeck (1977)

Semi-nonparametric SFA

Fan et al. (1996)

Stochastic Nonparametric 

Envelopment of Data

Kuosmanen and Kortelainen 

(2012)

Nonparametric

Shape Constrained Kernel Weighted Least Squares

Du et al. (2013), Yagi et al. (2017)

Deterministic

2-stage

Stochastic

Frontier
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Dual problem:

X is nxm matrix of inputs

Y is nxs matrix of outputs
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Data envelopment analysis (DEA)
Charnes, Cooper & Rhodes (1978), EJOR
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Stochastic Frontier

• Stochastic frontier uses regression to estimate 
an average function in the first stage and then 
shift the function to estimate a frontier 
production function

• SF has four common efficiency score 
distributions
– Exponential
– Half-normal
– Truncated Normal
– Gamma

12



Stochastic Frontier Step 1

• Given the model ln y = h(ln x, ) + 

• Perform Ordinary Least Squares (OLS) 
regression
– Results  (coefficients of each independent 

variable) and  (error term)

– If  is not distributed normally then it may contain 
efficiency information, however, if  is skewed 
then 0 is inconsistent
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Stochastic Frontier Step 2

Decomposition under the maintained assumptions of 
half-normal inefficiency and normal noise
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Stochastic Frontier – Distribution 
Options

• Run log-likelihood regression to determine 
the values of the parameters
– If  is skewed then we assume  = v – u where v 

is a noise term distributed N(0, v
2) and we 

need an assumption about the distribution of u

– u ~N+ (0, u
2) half-normal assumption

– u ~E () exponential assumption

– u ~N+ (, u
2) truncated normal assumption

– u ~G (, ) gamma assumption



Least Squares Interpretation of 
DEA



Frontier (Sign Constrained)

7/26/2017

Parametric Programming
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Sign Constrained Convex 
Nonparametric Least Squares

parametric non-parametric

Convex Nonparametric 
Least Squares

Ordinary Least Squares
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Least squares interpretation

• Standard DEA 
problem

– Single output, 
multiple inputs

– Output orientation

– Variable returns to 
scale
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Least squares interpretation

• Transform to additive output efficiency
as



 













 











1

1

1

max

1

n

i h h

h

n

i h h

h

n

h

h

y y

λ 0

x x

 

 

 

 

* *

* *

( ) /

( 1)

i i

i

y y

y



Least squares interpretation

• Dual problem
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Least squares interpretation

• Combine n LP problems to a single large LP 
problem
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Least squares interpretation

• Insert yh into the concavity constraint and 
substitute indices h,i
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Least squares interpretation

• Apply quadratic transformation to the epsilon
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Least squares interpretation

• DEA as a sign-constrained least-squares
problem
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Least squares interpretation

• Relaxing the sign-constraint

• The CNLS problem of Hildreth (1954) and Hanson and 
Pledger (1976) in the multivariate case: Kuosmanen (2008), 
Econometric Journal. 
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Importance of the LS interpretation

• Enhances the statistical foundation of DEA
– DEA is not so different from regression analysis

• Integration of tools and techniques from the 
regression analysis to DEA
– Goodness of fit statistics (R2)

– Stochastic noise term

– Contextual variables

– Panel data modeling

– Etc.



Implications of Regression 
Formulation

Kuosmanen and Johnson (2010) Proposition 3.1 

reveals new possibilities for adapting tools and 

concepts of regression analysis to the DEA 

framework. For example, DEA lacks a meaningful 

goodness-of-fit statistic. Given the least-squares 

formulation derived in this paper, we could apply the 

standard coefficient of determination
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Least-squares formulation of DEA 
Kuosmanen & Johnson (2010) Oper. Res.

• DEA can be formulated as the sign-constrained
nonparametric least squares problem

• Least squares problem solved simultaneusly for all firms.

• DEA is a nonparametric, axiomatic counterpart to Aigner & 
Chu (1968) parametric programming
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Stochastic non-parametric envelopment of data 
(StoNED) 

Kuosmanen & Kortelainen (2012) JPA

Encompassing frontier model:

• f is a monotonic increasing and concave frontier production
function (possibly CRS)

• u is an asymmetric inefficiency term (half-normal)

• v is the random noise term (normal)

Note:

• DEA model (Banker, 1993) obtained by setting σv = 0.

• SFA model (ALS ’77) obtained by setting f(x) = x’β

  ( )y f u vx



Stepwise approach (analogous to MOLS):

1) CNLS estimation:

2) Method of moments (ALS ’77) or pseudolikelihood estimation
(Fan et al., 1996) of standard deviations σu , σv

3) Shift the estimated curve upward by expected inefficiency. 

JLMS estimator can be used for estimating the conditional
expectation E(ui | εi)
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Stochastic non-parametric envelopment of data 
(StoNED) 

Kuosmanen & Kortelainen (2012) JPA



Stochastic non-parametric envelopment of data 
(StoNED) 

Kuosmanen & Kortelainen (2012) JPA



StoNED vs. DEA

Similarities
• Nonparametric frontier

• Monotonicity and concavity

• No smoothness assumptions

• Math programming

Differences
• Sign-constraint on residuals

• Inefficient observations
matter

• Relax the strong assumption 
of ”no noise”

• Probabilistic treatment of 
inefficiency and noise



StoNED generalizes DEA and SFA

Stochastic 
Nonparametric 

Envelopment of Data

𝜎𝑣
2 = 0

Data Envelopment 
Analysis

Stochastic Frontier 
Analysis

Assume a parametric 
form for the function





Thank you for your attention

• Further information available online at the 

StoNED homepage: 
http://www.nomepre.net/stoned 

Johnson lab group homepage: 
http://www.andyjohnson.guru 


