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Nonparametric methods are asymptotically
consistent, so why would you want to impose
axioms and risk misspecification?



Comparison of Methods

Nonparametric methods are asymptotically
consistent, so why would you want to impose
axioms and risk misspecification?

— Improved finite sample performance

* Unrestricted nonparametric estimators converge slowly
and are typically hard to interpret

e Parametric assumptions are for
statistical/computational convenience, but often
contradict production theory
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Parametric

Common Models:

e Cobb-Douglas
*  Observed Data i TranS|Og

—— Cobb-Douglas OLS
True Function

Advantages:

 Computational Speed

Cutput

Drawbacks:

* Functional Misspecification

 Satisfies Economic Theory
Axioms

* Not very flexible

Input
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* Kernel regression
*  Observed Data

Local Linear

Local Linear * Local Maximum Likelihood

Advantages:
* Very Flexible

Drawbacks:

e Violation of Economic
Theory Axioms

Input

* Problem of Interpretability



Output

Shape constrained
Nonparametric

Input

«  Observed Data
——5CKLS

True Function

Common Models:A
e CNLS
e SCKLS

Advantages:

* Finite Sample Performance
Improvement

* Satisfies Economic Theory
Axioms

* No need of Functional
Specification

Drawbacks:

* Computational Time
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Convex Nonparametric Least
Squares
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Convex nonparametric least
squares (CNLS)

Univariate case: Hildreth (1954), Hanson & Pledger (1976);
Groeneboom et al. (2001)

Multivariate case (Kuosmanen 2008, Ectr. J.):

minY o7 mmZg

0B 4 aB.e @

3, = f(x)+¢& Vi y. = +Bx +& Vi

f monotonic increasing a; + szxz s, + ﬁbxi Vh,i

and concave 5;’ >0 Vi

Representation theorem: Optimal solution to the finite
problem on the right is always one of the optimal solutions
to the problem on the left

Unbiasedness and consistency: Seijo & Sen (2011; An. Stat.)
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Computational Issues



CNLS Computation

— Convex Nonparametric Least Squares (CNLS)

Vi =afi+[3;:rxi+£[- fori=1,..,n (1a)
mingg.{ Nie, & |% + B/X; < a,+Brx; forih=1,..,nandi#h (1b)
B; =0 fori=1,..,n, (1¢)

e 15t constraint: linear regression
« 2" constraint: convexity using Afriat inequalities
* 3" constraint: monotonicity

— Computation burden

« 2" constraints will generate n(n-1) constraints, where n
is number of observations



mputation

L
e b

10

12



CNLS Computation

* A Generic Algorithm for CNLS Model Reduction

— Dantzig et al. (1954, 1959) proposed the approach of
solving large-scale traveling-salesman problems
* Solve a relaxed model
* |teratively add the violated “complicating” constraints

e Stop when the optimal solution to the relaxed model is
feasible for the original problem

— Relaxed CNLS problem (RCNLS)

a; + Bix; < ap, + Bx; V(i,h) e@

 |dentify an initial solution (2 approaches)
* Add violated constraints iteratively (3 strategies)



Generic Algorithm

1.

fad

Let t =0 andlet V be a subset of the observation pairs.

Solve RCNLS to find an iitial solution, (cri(o), BEU)).

Do until (ati(t), Bl@) satisties all concavity constraints (equations (1b)):

3.1 Select a subset of the concavity constraints that (ai(t), Bl@) violates and let
V® be the corresponding observation pairs.

3.28et V=Vuv®,

3.3 Solve RCNLS to obtain solution (o:i(tﬂ), Bg”l)).

348et t=t+1
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CNLS Computation

 |nitial solution identification

* the number of hyperplanes to construct the function is
generally much smaller than n.

* predict the relevant concavity constraints

2) Sweet Spot Approach (Distance measure)

* The range between the 0 percentile and the 6, th
percentile is defined as the Sweet Spot.

* Include the concavity constraints corresponding to the
observations whose distance to observation i is less than
a pre-specified threshold value 6..



Pairs of Observations

CNLS Computation

50

45 |
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Cobb-Douglas production function = X1 X5

Dlstance

Constraints corresponding to nearby observations are significantly

more likely to be relevant.
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 Add Violated Concavity Constraints
* Generate an initial solution quickly,

* Plug solution into the CNLS model and identify which
convexity constraint violated.

e |teratively add some set of the violated constraints (V)

yi=ﬂfi+[3;){i+8i Vi=1,,?’l,
ming g noef |+ BX < ap+Bx; V(G h)EV;
BIEO Vi = 1::?1;

20



Taxonomy of Methods

Parametric Nonparametric
Local averaging Axiomatic
Conditi | oLS Kernel regression Convex regression
onditiona .
M Gauss (1795), Legendre Nadaraya (1964), Watson | Hildreth (1954), Hanson and
ean
(1805) (1964) Pledger (1976)
S p tric P . N tric P . Data Envelopment Analysis
ign arametric Programmin onparametric Programmin
tg N B . Chg (1968)g P oot (2(;502) 8| Farrell (1957), Afriat (1972),
constraine igner an u ostetal.
. & Charnes et al. (1978)
Deterministic
Corrected OLS Corrected Kernel Regression Corrected CNLS
[
2-stage Winsten (1957), Greene Kneib and Simar (g1996) Kuosmanen and Johnson
i i
(1980) P (2010)
Stochastic Frontier Analysi
Eront Maximum N oc astlcl (ri);7|7e;r Mna 18 Local-Likelihood Banker and Maindiratta
igner et al. , Meeusen
rontier likelihood 8 Kumbhakar et al. (2007) (1992)
and van den Broeck (1977)
. . . . Stochastic Nonparametric
Stochastic Stochastic Frontier Analysis ) .
] Semi-nonparametric SFA Envelopment of Data
Aigner et al. (1977), Meeusen ]
Fan et al. (1996) Kuosmanen and Kortelainen
2-stage and van den Broeck (1977)

(2012)

Shape Constrained Kernel Weighted Least Squares
Du et al. (2013), Yagi et al. (2017)




Dual problem:

Ef = ming

5.1, Px. >AX
y; = )‘;Y
A>0

X is nxm matrix of inputs
Y is nxs matrix of outputs
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Stochastic Frontier

* Stochastic frontier uses regression to estimate
an average function in the first stage and then
shift the function to estimate a frontier
production function

* SF has four common efficiency score
distributions

— Exponential

— Half-normal

— Truncated Normal
— Gamma



Stochastic Frontier Step 1

* Giventhe modellny=h(lnx,(3) +¢

* Perform Ordinary Least Squares (OLS)
regression

— Results 3 (coefficients of each independent
variable) and < (error term)

— If € is not distributed normally then it may contain
efficiency information, however, if ¢ is skewed
then (3, is inconsistent
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Stochastic Frontier — Distribution
Options

* Run log-likelihood regression to determine
the values of the parameters

— If € is skewed then we assume € = v —u where v
is @ noise term distributed N(0, 5,2) and we
need an assumption about the distribution of u

— u ~N* (0, 0,2) half-normal assumption

— u ~E (N\) exponential assumption

— u ~“N* (p, 0,2) truncated normal assumption
— u ~G (o, A\) gamma assumption



Least Squares Interpretation of
DEA



Frontier (Sign Constrained)
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 Standard DEA max &

problem n
. 0y, <D A,

— Single output, b

multiple inputs L

PE TR X2 A,
— Qutput orientation h=1
— Variable returns to "
h

scale =1



* Transform to additive output efficiency
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* Dual problem

min(—¢;)

a,B.e
s.t.
Yy, =a +BX +¢

y, <o +Bx, Yh=1...n

B,>0
& <0



* Combine n LP problems to a single Iarge LP
problem
min » —¢.

n

“be

St.

y.=a +BX +& Vi=1..
y, <a +Bx, VI,h=1,...,
B.>0 Vi=1..n

g <0Vi=1..,n



Insert y, into the concavity constraint and
substitute indices h,i

min

a,p.e

=1

S.t.

y.=a +BX +&

a +Bx <a +B X Vhi=1..
B.>0 Vi=1..n

g <0Vi=1..n



epsilon

* Apply quadratic transformatmn to the

s.t.

y.=a, +BXx +¢

a +BX <a, +B.X, Vhi=1,.
B, >0

g <0Vi=1..n



* DEA as a sign-constrained least-squares
problem

n

“he o
S.t.

y.=a, +BX +¢

a +BX <a +B.X, Vhi=1.
B.>0Vi=1..n

g <0Vi=1..n



Least squares interpretation

e Relaxing the sign-constraint

n
min) &
=1

ap.e <
S.t.
Y=o, +BX +e¢
a +BX <a +B X Vhi=1..n
B.>0Vi=1..n
 The CNLS problem of Hildreth (1954) and Hanson and

Pledger (1976) in the multivariate case: Kuosmanen (2008),
Econometric Journal.



Importance of the LS interpretation

* Enhances the statistical foundation of DEA
— DEA is not so different from regression analysis

* |ntegration of tools and techniques from the
regression analysis to DEA

— Goodness of fit statistics (R?)
— Stochastic noise term

— Contextual variables

— Panel data modeling

— Etc.



Implications of Regression
Formulation

Kuosmanen and Johnson (2010) Proposition 3.1
reveals new possibilities for adapting tools and
concepts of regression analysis to the DEA
framework. For example, DEA lacks a meaningful
goodness-of-fit statistic. Given the least-squares
formulation derived in this paper, we could apply the
standard coefficient of determination

R2 _ Z;(yi '}7)2 _1. 27:1(‘91')2 1. 27:1((1-6)/')}/")2
27:1(yi 'y)z Z;(yi -}7)2 27:1(% _y)Q



Least-squares formulation of DEA
Kuosmanen & Johnson (2010) Oper. Res.

DEA can be formulated as the sign-constrained
nonparametric least squares problem

mng

a.B.e

y. =, +Bx +¢& Vi (regression equation)

a +Bx. <a +Bx, Vhi (concavity)

B, =20 V/ (monotonicity)

g <0 V;

Least squares problem solved simultaneusly for all firms.

DEA is a nonparametric, axiomatic counterpart to Aigher &
Chu (1968) parametric programming



Stochastic non-parametric envelopment of data

(StoNED)
Kuosmanen & Kortelainen (2012) JPA

Encompassing frontier model:
J=JfX)—utw

* fis a monotonic increasing and concave frontier production
function (possibly CRS)

* uis an asymmetric inefficiency term (half-normal)
* visthe random noise term (normal)

Note:
* DEA model (Banker, 1993) obtained by setting o, = 0.
* SFA model (ALS ’77) obtained by setting f(x) = X’



Stochastic non-parametric envelopment of data

(StoNED)
Kuosmanen & Kortelainen (2012) JPA

Stepwise approach (analogous to MOLS):
1) CNLS estimation:
e
gy, =a,+Bx +¢& Vi (regression equation)
a +Bx, <a, +B,x, Vhi (concavity)
B, =20 Vi (monotonicity)

2) Method of moments (ALS '77) or pseudolikelihood estimation
(Fan et al., 1996) of standard deviations 0,, o,

3) Shift the estimated curve upward by expected inefficiency.

JLMS estimator can be used for estimating the conditional
expectation E(u; | €))



Fig. 1 Graphical illustration of
the CNLS regression curve and
the StoNED frontiers. The data
generation process 1s
vi=1In(x) + 2+ v — u;,
where v; i_«;_wdf'\.r’(l.’],0.62) and

u; ~ [N(0,0.3%)|n
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StoNED vs. DEA

Similarities

Nonparametric frontier
Monotonicity and concavity
No smoothness assumptions
Math programming

Differences

Sign-constraint on residuals

Inefficient observations
matter

Relax the strong assumption
of “no noise”

Probabilistic treatment of
inefficiency and noise



Stochastic

Nonparametric
Envelopment of Data
Assume a parametric 2
form for the function

Stochastic Frontier Data Envelopment
Analysis Analysis



Texas A&M University

Andrew (Andy) L. Johnson, Ph.D.

Research Publications Teaching Laboratory About Me

= ¢ ! | LU

Regulating electricity distribution in Finland
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Plenary Talk at European
Workshop on Efficiency and
Productivity Analysis (EWEPA)
XV

June 26th, 2015

The largest conference in the field of
efficiency and productivity analysis is
the European Workshop on Efficiency
and Productivity Analysis (EWEPA)
[-]

Informs Annual Conference - Nov
1-4 Philadelphia PA - DEA Cluster
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Seminars/presentation

= November Sth — Informs Annual Conference: A

Multivariate Seminonparametric Bayesian
Concave Regression Method to Estimate
Stochastic Frontiers

This presentation discusses a method that
incorporates the latest advances in the
Bayesian constrained regression literature
offering an alternative to the current Least
Squares-based and Kemnel Regression-based
Stochastic frontier constrained estimation
methods, both in terms of runtime and of data
capacity

s October 4 and 5 College Industrv Council on

V4
Ongoing work

Multi-variate Bayesian Convex Regression with

Inefficiency

This research builds in Hannah and Dunson’s
Multi-variate Bayesian Convex Regression to
develop a method to estimate a shape
constrained production functions and potential
deviations from the function representing
inefficiency

= Shape Restricted Estimation of the Power

Curve for a Wind Turbine

The estimation of the power curve provides an
application for methods to estimate production



Further information available online at the

StoNED homepage:
http://www.nomepre.net/stoned

Johnson lab group homepage:
http://www.andyjohnson.guru



