

Insights from Machine Learning for Evaluating Production Function Estimators on Manufacturing Survey Data

José Luis Preciado Arreola and Andrew L. Johnson

Associate Professor, Department of Industrial and Systems Engineering Visiting Associate Professor, School of Information Science and Technology

6/14/2016

Government Data

U.S. Census Bureau Helping You Make Informed Decisions

Instituto Nacional de Estadísticas - Chile

South

Georgia

Issues Related to Census Manufacturing Data

Estimator Development

Which Estimator to Use?

If a Census is not available, how large of a survey is needed?

General Framework to Evaluate Production Functions

Analysis of Chilean data

Stochastic Frontier Model

 $y_i = f(\mathbf{x}_i) + v_i - u_i$ $i = 1, \dots, n$

$f(\cdot)$ (**Production frontier**):

Monotonic and concave (DRS).
 $\mathbb{R}^d \longrightarrow \mathbb{R}$

v_i (Noise)

- Mean zero: $E(v_i) = 0$
- u_i (Inefficiency)
 - Non-negative: $u_i \ge 0$, i = 1, ..., n

There is a large variety of methods to estimate production functions.

Functional Estimator	One Stage/ Two Stage	Noise	Parametric/ Nonparametric	Flexible <i>u_i</i> Variance	Scalability
DEA	1 S	No	NP	Yes	Large
ML SFA	1 S	Yes	Р	Possible	Large
Bayesian SFA	1 S	Yes	Р	Possible	Low 10000's
Banker-Maindiratta	1 S	Yes	SP	No	Low 100's
KPST	1 S	Yes	NP	Yes	Low 100's
MBCR-I	1 S	Yes	SP	Limited	Mid 1000's
OLS (CD, TL, CES)	2 S	Yes	Р	No	Large
CNLS	2 S	Yes	NP	No	Mid 1000's
CWB	2 S	Yes	NP	No	Mid 100's
CAP	2 S	Yes	NP	No	Low 10000's
SCKLS	2 S	Yes	NP	No	Gridded

Production Theory

- Monotonicity
 - More input should be able to generate more output
- Concavity (of output in input)
 - Decreasing marginal benefits of additional inputs
- Convex input sets
 - Substitutability between capital and labor with some optimal mix

Estimators

Estimators

Convex Nonparametric Least Squares (CNLS)

$$\min_{\alpha,\beta,\varepsilon} \left\{ \sum_{i=1}^{n} \varepsilon_{i}^{2} \middle| \begin{array}{l} y_{i} = \alpha_{i} + \beta_{i}^{\mathrm{T}} \mathbf{x}_{i} + \varepsilon_{i} \quad \text{for } i = 1, \dots, n \quad (1a) \\ \alpha_{i} + \beta_{i}^{\mathrm{T}} \mathbf{x}_{i} \le \alpha_{h} + \beta_{h}^{\mathrm{T}} \mathbf{x}_{i} \quad \text{for } i, h = 1, \dots, n \text{ and } i \neq h \quad (1b) \\ \beta_{i} \ge 0 \quad \text{for } i = 1, \dots, n, \quad (1c) \end{array} \right\}$$

- 1st constraint: linear regression
- 2nd constraint: convexity using Afriat inequalities
- 3rd constraint: monotonicity
- Computation burden
 - 2nd constraints will generate n(n-1) constraints, where n is number of observations

Convex adaptive partitioning CAP (Hannah and Dunson, 2013),

$$\hat{f}(\boldsymbol{x}_i) = \min_{k \in \{1, \dots, K\}} \beta_{0[i]} + \boldsymbol{\beta}_{-\boldsymbol{0}[i]}^T \boldsymbol{x}_i$$

$$\boldsymbol{\beta}_{-0\boldsymbol{k}} \geq \mathbf{0}, \, \forall \, k = 1, \dots K$$

Greedy Partitioning Algorithm to determine [*i*] mappings

+

Starts with simple model (K = 1 hyperplane)

One-to-many hyperplane-observation mapping

Series of OLS regression problems

CAP-NLS formulation and details

 $\hat{f}_{K}(\boldsymbol{X}_{i}) = \beta_{0[i]}^{*} + \boldsymbol{\beta}_{-0[i]}^{*T} \boldsymbol{X}_{i}$ $(\beta_{0k}^{*}, \boldsymbol{\beta}_{-0k}^{*})_{i=1}^{K} = \underset{(\beta_{0k}, \boldsymbol{\beta}_{-0k})_{i=1}^{K}}{\operatorname{argmin}} \sum_{i=1}^{n} \epsilon_{i}^{2}$

s.t.
$$\epsilon_i = \beta_{0[i]} + \boldsymbol{\beta}_{-0[i]}^T \boldsymbol{X}_i - Y_i$$

$$\beta_{0[i]} + \boldsymbol{\beta}_{-0[i]}^T \boldsymbol{X}_i \leq \beta_{0k} + \boldsymbol{\beta}_{-0k}^T \boldsymbol{X}_i$$

$$\forall i = 1, \dots, k = 1, \dots, K$$

$$\boldsymbol{\beta}_{-0k} \ge \mathbf{0}, \forall k = 1, \dots K$$
+

Greedy Partitioning Algorithm to determine [*i*] mappings

Starts with simple model (K = 1 hyperplane)

One-to-many hyperplane-observation mapping

Conditionally Global optimization (QCP)

Can be formulated as series of quadratic programs

CAP-NLS is ...

	САР	CNLS	CAP-NLS
Hyperplane fitting	Local, Myopic, Refit-corrected	Global	Global
Partitioning strategy	Greedy Adaptive	"Big" Model	Greedy Adaptive
Concavity	Min. of	Afriat	Afriat
imposing	Hyperplanes	Inequalities	Inequalities

- Globally optimizes given an observation-hyperplane assignment
- Explores observation-hyperplane assignments adaptively

Application-Driven Estimator Evaluation

How are functional estimators being proposed/compared?

Application-Driven Estimator Evaluation

How are functional estimators being proposed/compared?

Application-Driven Estimator Evaluation

Bridging the gap...

How would we estimate these errors on simulated datasets?

Define

$$E(\widehat{Err}_{ISy}) = \overline{MSE}_{yIS} =$$
Test against many data sets with same input vector, but different error vectors.
$$E(\widehat{Err}_{Pf}) = \overline{MSE}_{Pf} =$$
Test against many large, unobserved datasets with different input and error vectors.
$$E(\widehat{Err}_{FS}) = \overline{MSE}_{FS} =$$
Weight in-sample and predictive errors
$$E(44/2016$$

$Y_i = X_{i1}^{0.4} X_{i2}^{0.5} + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma^2), \sigma = 0.2, X_{ij} \sim Unif(.1, 1) \forall i, j$

How about we double the number of inputs?

$Y_{i} = X_{i1}^{0.3} X_{i2}^{0.25} X_{i3}^{0.25} X_{i4}^{0.1} + \varepsilon_{i}, \quad \varepsilon_{i} \sim N(0, \sigma^{2}), \sigma = 0.2, X_{ij} \sim Unif(.1, 1) \forall i, j$

How about we double the number of inputs?

$Y_{i} = X_{i1}^{0.3} X_{i2}^{0.25} X_{i3}^{0.25} X_{i4}^{0.1} + \varepsilon_{i}, \quad \varepsilon_{i} \sim N(0, \sigma^{2}), \sigma = 0.2, X_{ij} \sim Unif(.1, 1) \forall i, j$

		С	CAP-NL	S	CAP		CNLS			
σ (noise std. dev.)	<i>nL</i> (learning set size)	100	200	300	100	200	300	100	200	300
0.2	K	7	12	13	2	2	2	63	132	192
0.2	Time (s)	4	36	79	0.45	1	2	1	9	31
0.2	K	7	12	12	2	2	2	59	122	192
0.5	Time (s)	4	36	74	0.46	1	2	1	10	32
0.4	K	7	12	12	2	2	2	57	122	186
0.4	Time (s)	4	36	75	0.48	1	2	1	10	33

CAP-NLS does best both on the "traditional" testing framework and in the census (full set)-fit, application-driven one.

Let's use the A-D evaluation framework on **real** data now.

 SFA literature has focused on illustrating performance on simulated data (after demonstrating consistency results) and extrapolating.

Using Chilean Manufacturing Survey Data (ENIA, 2010)

- Data clustered at popular scale sizes
- Data clustered at popular input ratios.
- Input-specific marginal distributions.
- Some large firms have **different** input ratios.

Can only test against y now..

We do not have the DGP anymore, thus define **different** estimators for error quantities.

Using Chilean Manufacturing Survey Data (ENIA, 2010)

Industry Name and Code	n	Survey Size	R_{FS}^2	K_{nL}^{CAPNLS}	Best Method
		20%	50%	1	CAP-NLS, CDA
		30%	60%	2	CAP-NLS, CDA
Other Metal Products (2899)	144	40%	64%	2	CAP-NLS, CDA
		50%	72%	3	CAP-NLS
		100%	88%	7	CAP-NLS
	150	20%	35%	1	CDA
		30%	40%	1	CAP-NLS, CDA
Wood (2010)		40%	47%	2	CAP-NLS, CDA
		50%	52%	3	CAP-NLS, CDA
		100%	66%	6	CAP-NLS
	161	20%	77%	1	CAP-NLS, CAP
		30%	82%	2	CAP-NLS
Structural Use Metal (2811)		40%	87%	3	CAP-NLS, CAP
		50%	90%	4	CAP-NLS
		100%	95%	9	CAP-NLS, CAP

Using Chilean Manufacturing Survey Data (ENIA, 2010)

Industry Name and Code	n	Survey Size	R_{FS}^2	K_{nL}^{CAPNLS}	Best Method
		20%	54%	2	CAP-NLS, CAP, CDA
	249	30%	57%	3	CDA
Plastics (2520)		40%	57%	5	CAP-NLS, CAP, CDA
		50%	60%	7	CAP-NLS, CAP, CDA
		100%	64%	11	CAP-NLS, CAP, CDA
	250	20%	72%	3	CAP
		30%	77%	3	CAP
Bakeries (1541)		40%	78%	4	CAP, CDA
		50%	85%	4	CAP
		100%	99%	5	CAP-NLS, CAP, CDA

How well does Cobb-Douglas fit?

Industry Name and Code	n	Survey Size	R_{FS}^2	R_{CDA}^2	Ratio vs. Best Method
	144	20%	50%	49%	CDA ties for Best Method
		30%	60%	59%	CDA ties for Best Method
Other Metal Products (2899)		40%	64%	64%	CDA ties for Best Method
		50%	72%	60%	0.83 vs. CAP-NLS
		100%	88%	79%	0.90 vs. CAP-NLS
	150	20%	35%	35%	CDA ties for Best Method
		30%	40%	40%	CDA ties for Best Method
Wood (2010)		40%	47%	47%	CDA ties for Best Method
		50%	52%	51%	CDA ties for Best Method
		100%	66%	62%	0.94 vs. CAP-NLS
	161	20%	77%	69%	0.90 vs. CAP-NLS
		30%	82%	76%	0.93 vs. CAP-NLS
Structural Use Metal (2811)		40%	87%	81%	0.93 vs. CAP-NLS
		50%	90%	87%	0.97 vs. CAP-NLS
		100%	95%	91%	0.96 vs. CAP-NLS

How good/reliable is a production function from survey data?

Table 14. Coefficient of contextual variables

	Plas	stic (2520)	Wood (2010)		
2	Dummy of Share of exporting exporting in sales		Dummy of exporting	Share of exporting in sales	
Point estimate	334.5	303.7	-763.0	4,114	
95% lower bound	148.7	-334.3	-1944	2,568	
95% upper bound	520.3	941.8	417.7	5,660	
p-value	4.70×10^{-4}	0.349	0.203	5.64×10^{-7}	

Insights

- Important to acknowledge survey or census application to test production function estimators
- Demonstrated a **model-selection framework** that assesses expected census error
- Application-Driven estimator selection framework **avoids extrapolation** of conclusions from simulated data.
- Many methods do similarly as well using real data

Andrew (Andy) L. Johnson, Ph.D.

News

Plenary Talk at European Workshop on Efficiency and Productivity Analysis (EWEPA) XIV June 26th, 2015

The largest conference in the field of efficiency and productivity analysis is the European Workshop on Efficiency and Productivity Analysis (EWEPA) [...]

Informs Annual Conference - Nov 1-4 Philadelphia PA - DEA Cluster

Seminars/presentation

 November 9th – Informs Annual Conference: A Multivariate Seminonparametric Bayesian Concave Regression Method to Estimate Stochastic Frontiers

This presentation discusses a method that incorporates the latest advances in the Bayesian constrained regression literature offering an alternative to the current Least Squares-based and Kernel Regression-based Stochastic frontier constrained estimation methods, both in terms of runtime and of data capacity.

October 4 and 5: College Industry Council on

Ongoing work

 <u>Multi-variate Bayesian Convex Regression with</u> Inefficiency

This research builds in Hannah and Dunson's Multi-variate Bayesian Convex Regression to develop a method to estimate a shape constrained production functions and potential deviations from the function representing inefficiency.

 Shape Restricted Estimation of the Power Curve for a Wind Turbine

The estimation of the power curve provides an application for methods to estimate production

Questions?

Johnson Laboratory Members