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Introduction to Time Series: State

Space Models

8.1 INTRODUCTION

Time series data is, as its name suggests, ordered by time. It commonly arises
in the fields of macroeconomics (e.g. one might have data on the unemployment
rate observed every quarter since 1960) and finance (e.g. one might have data on
the price of a particular stock every day for a year). There is a huge literature on
econometric methods for time series, and it is impossible to do it justice in just one
chapter. In this chapter we offer an introduction to one class of models referred
to as state space models which are commonly-used with time series data. We
make this choice for three reasons. First, as we shall see, state space models are
hierarchical in nature. As was stressed in the previous chapter, Bayesian methods
with hierarchical priors are particularly attractive. Secondly, Bayesian analysis
of the main alternative approach1 to time series econometrics has already been
covered in detail in a recent textbook: Bauwens, Lubrano and Richard (1999). To
avoid overlap, the present book offers a different way of looking at time series
issues. Thirdly, state space models are not so much a different class of models
than is used in Bauwens, Lubrano and Richard (1999), but rather offer a different
way of writing the same models.2 Hence, by using state space models, we can
address all the same issues as Bauwens, Lubrano and Richard (1999), but stay in
a hierarchical framework which is both familiar and computationally convenient.

We have already introduced many time series concepts in Chapter 6,
Section 6.5, which discussed the linear regression model with autocorrelated
errors. You may wish to review this material to remind yourself of basic concepts
and notation. For instance, with time series we use t and T instead of i and N , so
that yt for t D 1; : : : ; T indicates observations on the dependent variable from

1For readers with some knowledge of time series methods, note that this alternative approach
includes autoregressive moving average (ARMA) models and extensions to dynamic regression
models which allow for the discussion of issues like unit roots and cointegration.

2For instance, there is a state space representation for any ARMA model.
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182 Bayesian Econometrics

period 1 through T . Before discussing state space models, it is worth briefly
mentioning that the techniques discussed in Chapter 6 (Section 6.5) can take you
quite far in practice. For instance, the linear regression model with autocorre-
lated errors is a time series model which may be appropriate in many cases. This
model has the errors, "t , following an AR(p) process. A common univariate time
series model (i.e. a model for investigating the behavior of the single time series
y) has yt following an AR(p) process:

.1 � ²1L � Ð Ð Ð � ²p L p/yt D ut (8.1)

Computational methods for Bayesian analysis of this model are a straightforward
simplification of those presented previously. In fact, (8.1) is really just a lin-
ear regression model where the explanatory variables are lags of the dependent
variable

yt D ²1yt�1 C Ð Ð Ð C ²p yt�p C ut (8.2)

Thus, all the basic regression techniques discussed in previous chapters are rele-
vant. Equation (8.2) can even be extended to include other explanatory variables
(and their lags) while still remaining within the regression framework:

yt D ²1 yt�1 C Ð Ð Ð C ²p yt�p C þ0xt C þ1xt�1 C Ð Ð Ð C þq xt�q C ut (8.3)

However, several complications arise in this regression-based approach. Loosely
speaking, a good deal of the time series literature relates to placing restrictions
on (or otherwise transforming) the coefficients of (8.3). There are also some
important issues relating to prior elicitation which do not arise in cross-sectional
contexts.3

Even if we stay within the class of state space models, we cannot possibly
offer more than a superficial coverage of a few key issues in a single chapter.
Accordingly, we will begin with the simplest univariate state space model called
the local level model. Most of the basic issues involving prior elicitation and
computation can be discussed in the context of this model. We then proceed to
a more general state space model. For readers interested in more detail West
and Harrison (1997) is a popular Bayesian textbook reference in this field.4 Kim
and Nelson (1999) is another Bayesian book which introduces and extends state
space models.

In this chapter, we also use state space models to introduce empirical Bayes
methods. These methods are increasingly popular with hierarchical models of all
sorts. They provide a data-based method for eliciting prior hyperparameters. For
the researcher who does not wish to subjectively elicit informative priors and

3In addition to Bauwens, Lubrano and Richard (1999), the reader interested in more detail is
referred to the papers in themed issues of Econometric Theory (volume 10, August/October, 1994)
and the Journal of Applied Econometrics (volume 6, October/December, 1991).

4A few other recent journal articles on Bayesian analysis of state space models are Carlin, Polson
and Stoffer (1992), Carter and Kohn (1994), de Jong and Shephard (1995), Fruhwirth-Schnatter
(1995), Koop and van Dijk (2000) and Shively and Kohn (1997). Durbin and Koopman (2001) is a
good textbook source which has some Bayesian content.
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Introduction to Time Series 183

does not wish to use a noninformative prior (e.g. since Bayes factors are hard to
interpret with improper priors), empirical Bayesian methods offer an attractive
alternative.5

8.2 THE LOCAL LEVEL MODEL

The local level model is given by

yt D Þt C "t (8.4)

where "t is i.i.d. N .0; h�1/. The unique aspect of this model is the term Þt which
is not observed and is assumed to follow a random walk

ÞtC1 D Þt C ut (8.5)

where ut is i.i.d. N .0; �h�1/ and "t and us are independent of one another for
all s and t . In (8.4) t runs from 1 through T while in (8.5) it runs from 1 through
T � 1. Equation (8.5) does not explicitly provide an expression for Þ1, which is
referred to as an initial condition. Equation (8.4) is referred to as the observation
(or measurement) equation, while (8.5) is referred to as the state equation.

Before discussing Bayesian inference in the local level model, it is worth-
while to spend some time motivating this model. In Chapter 6, Section 6.5, we
discussed the AR(1) model, and noted that if the coefficient on the lagged depen-
dent variable, ², equalled one then the time series was nonstationary. Here it can
be seen that (8.5) implies that Þt is nonstationary. In particular, it implies that Þt
has a stochastic trend. The term stochastic trend arises from the fact that models
such as (8.5) imply that a series can wander widely (i.e. trend) over time, but
that an element of randomness enters the trend behavior. That is, in contrast to
a deterministic trend such as

Þt D Þ C þt

where the variable is an exact function of time, a stochastic trend involves a
random error, ut . The fact that (8.5) implies that Þt exhibits trend behavior can
be seen by noting that (8.5) can be written as

Þt D Þ1 C
t�1X
jD1

uj (8.6)

and, thus (ignoring the initial condition) var.Þt / D .t � 1/�h�1. In addition,
Þt and Þt�1 tend to be close to one another (i.e. E.Þt jÞt�1/ D 0). In words,
the stochastic trend term has variance which is increasing with time (and thus
can wander over an increasing wide range), but Þt changes only gradually over

5Carlin and Louis (2000) provides an excellent introduction to empirical Bayesian methods,
although it is a statistics as opposed to econometrics textbook.
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184 Bayesian Econometrics

time. This is consistent with the intuitive concept of a trend as something which
increases (or decreases) gradually over time.

To return to the local level model, we can see that (8.4) decomposes the
observed series, yt , into a trend component, Þt , and an error or irregular compo-
nent, ut .6 In general, state space models can be interpreted as decomposing an
observed time series into various parts. In the local level model, there are two
components, a trend and an error. In more complicated state space models, the
observed series can be decomposed into more components (e.g. trend, error and
seasonal components).

It is worth mentioning that the local level model has been used for measuring
the relative sizes of the trend and irregular components. This motivates the way
that we have written the variances of the two errors (i.e. error variances are
written as h�1 and �h�1). In this manner, � is directly interpreted as the size
of the random walk relative to the error variance in the measurement equation.
That is, it can be seen that if � ! 0, then the error drops out of (8.5) and
Þt D Þ1 for all t and (8.4) becomes yt D Þ1 C"t . In this case, yt exhibits random
fluctuations around a constant level, Þ1, and is not trending at all. However, as
� becomes larger (i.e. the variance of ut becomes larger), then the stochastic
trend term plays a bigger role. Examining � is, thus, a nice way of measuring
the importance of trend behavior in an economic time series. For the reader with
previous knowledge of time series econometrics, note that the test of whether
� D 0 is one way of testing for a unit root. We will not discuss unit root testing
in any detail here. Suffice it to note that, unit root testing has played an important
role in modern empirical macroeconomics, and that state space models allow for
this to be done in an intuitive and straightforward manner.

Another way of interpreting (8.4) and (8.5) is by noting that Þt is the mean
(or level) of yt . Since this mean is varying over time, the terminology local
level model is used. Interpreting Þt in this way, as a parameter, is natural in a
Bayesian setup. That is, (8.4) can be interpreted as a very simple example of a
linear regression model involving only an intercept. The innovative thing is that
the intercept varies over time. Thus, the local level model is a simple example
of a time varying parameter model. More sophisticated state space models can
allow for time varying regression coefficients or time varying error variances. If
Þ D .Þ1; : : : ; ÞT /0 is interpreted as a vector of parameters then, as Bayesians,
we must elicit a prior for it. But (8.5) provides us with such a prior. That is, (8.5)
can be interpreted as defining a hierarchical prior for Þ. Note that, with such an
interpretation, the local level model is very similar to the individual effects panel
data model of Chapter 7 (Section 7.3) with T D 1. Of course, the individual
effects model has an intercept which varies across individuals, while the local
level model has an intercept which varies across time, but the basic structure of

6For the macroeconomist, some imperfect intuition for this would be that the trend term captures
the long run trend growth of the economy (e.g. due to growth of the labor force, building up of
capital stock and gradual technical improvements), whereas the irregular component reflects the
random short term shocks hitting the economy (e.g. business cycle effects).
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Introduction to Time Series 185

the two models is the same. Thus, the basic tools developed in Chapter 7 using
an independent Normal-Gamma prior can be used here with some modifications.
For this reason, in this section we do something new. We use a natural conjugate
prior and introduce a new type of prior elicitation procedure.

That is, Bayesian methods using an independent Normal-Gamma prior are
very similar to those described in Chapter 7, so we do not repeat them here.
In particular, a Gibbs sampler with data augmentation can be developed as in
Chapter 7. In Section 8.3 we develop such an algorithm in the context of a more
general state space model. This can be used for the local level model and the
reader interested in using the independent Normal-Gamma prior is referred to
Section 8.3. In the present section, we will use a natural conjugate framework to
introduce empirical Bayesian methods.

8.2.1 The Likelihood Function and Prior

If we define y D .y1; : : : ; yT /0 and " D ."1; : : : ; "T /0, then we can write the
local level model in matrix notation as

y D IT Þ C " (8.7)

If we make the standard error assumptions, that " has a multivariate Normal
distribution with mean 0T and covariance matrix h�1 IT , then this model is sim-
ply a Normal linear regression model where the matrix of explanatory variables
is the identity matrix (i.e. X D IT ) and Þ is the T -vector of regression coeffi-
cients. Thus, the likelihood function has the standard form for the Normal linear
regression model (e.g. see Chapter 3, (3.3)).

Of course, as in any Bayesian exercise, we can use any prior we wish. How-
ever, the state equation given in (8.5) suggests a hierarchical prior. We use one
involving natural conjugate form. To draw out the similarities with results in
Chapter 3 for the Normal linear regression model with natural conjugate prior, it
is convenient to write this model in a slightly different way. To do this we begin
by defining the .T � 1/ ð T first difference matrix :

D D

2664
�1 1 0 0 Ð Ð Ð Ð Ð Ð 0

0 �1 1 0 Ð Ð Ð Ð Ð Ð 0
Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð

0 Ð Ð Ð Ð Ð Ð 0 0 �1 1

3775 (8.8)

To draw out the connections with the state space model, note that

DÞ D

0BB@
Þ2 � Þ1

Ð
Ð

ÞT � ÞT �1

1CCA
and thus the state equation given in (8.5) can be written as:

DÞ D u
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186 Bayesian Econometrics

where u D .u1; : : : ; uT �1/0. The assumption that u is Normal can thus be inter-
preted as saying that the state equation is defining a Normal hierarchical prior
for DÞ.

To specify a complete prior for all the parameters in the model, we also need
to specify a prior for h and Þ1. To do this, we first write (8.7) as

y D W� C " (8.9)

where

� D

0BBB@
Þ1

Þ2 � Þ1
Ð
Ð

ÞT � ÞT �1

1CCCA
and

W D
 

1 00
T �1

�T �1 C

!
where �T �1 is an .T � 1/-vector of ones. Direct matrix multiplication can be
used to verify that (8.9) is exactly equivalent to (8.7). Direct matrix inversion
can be used to show that C is a .T � 1/ ð .T � 1/ lower triangular matrix with
all non-zero elements equalling one (it is the inverse of D with its first column
removed). That is, C has all elements on or below the diagonal equalling 1, and
all elements above the diagonal equalling 0.

We begin by eliciting a natural conjugate prior for � and h:

�; h ¾ N G.�; V ; s�2; ¹/ (8.10)

The reader is referred to Chapter 3 for a reminder of notation and properties of
this Normal-Gamma prior.

We consider a particular structure for � and V which embodies the prior
information contained in the state equation:

� D

0BBB@
�1
0
Ð
Ð
0

1CCCA (8.11)

V D
 

V 11 00
T �1

0T �1 �IT �1

!
(8.12)

Note that this prior implies ÞtC1 � Þt is N .0; �h�1/, which is exactly what we
assumed at the beginning of this section. The fact that this prior depends upon
the parameter � makes it hierarchical. In addition, we have provided a prior for
the initial condition, Þ1, as being N .�1; h�1V 11/.
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Introduction to Time Series 187

At this point it is worth summarizing what we have done. We have written
the local level model as a familiar Normal linear regression model with natural
conjugate prior. The fact that this is a time series problem involving a state
space model manifests itself solely through the prior we choose. In a Bayesian
paradigm, the interpretation of the state equation as being a prior is natural and
attractive. However, it is worth mentioning that the non-Bayesian econometrician
would interpret our hierarchical prior as part of a likelihood function. As stressed
in the previous chapter, in many models there is a degree of arbitrariness as to
what part of a model is labelled the ‘likelihood function’ and what part is labelled
the ‘prior’.

8.2.2 The Posterior

Using standard results for the Normal linear regression model with natural con-
jugate prior (see Chapter 3), it follows that the posterior for � and h, denoted by
p.�; hjy/ is NG(�; V ; s�2; ¹) where

� D V .V �1� C W 0y/ (8.13)

V D .V �1 C W 0W /�1 (8.14)

¹ D ¹ C T (8.15)

and

¹s2 D ¹s2 C .y � W�/0.y � W�/ C .� � �/0V �1.� � �/ (8.16)

The properties of the Normal-Gamma distribution imply that it is easy to trans-
form back from the parameterization in (8.9) to the original parameterization
given in (8.7). That is, p.� jh; y/ is Normal and we know linear combinations
of Normal are Normal (see Appendix B, Theorem B.10). Thus, if the posterior
for .�; h/ is NG(�; V ; s�2; ¹) then the posterior for .Þ; h/ is NG(Þ; V Þ; s�2; ¹)
where

Þ D W� (8.17)

and

V Þ D W V W 0 (8.18)

Since we have used a natural conjugate prior, analytical posterior results are
available and there is no need for a posterior simulator. It is also interesting
to note that the local level model is a regression model where the number of
regression coefficients is equal to the number of observations. In a regression
analysis, it is usually the case that the number of regression coefficients is much
less than the number of observations (i.e. in the notation of previous chapters
k − N ). However, the local level model shows that prior information can, in
many cases, be used to provide valid posterior inferences even in models with a
huge number of parameters. Expressed in another way, the question arises as to
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188 Bayesian Econometrics

why we don’t just obtain a degenerate posterior distribution at the point Þ D y.
After all, setting Þt D yt for all t would yield a perfectly fitting model in the
sense that "t D 0 for all t . It can be verified that the likelihood is infinite at
this point. However, the Bayesian posterior is not located at this point of infinite
likelihood because of prior information. The state equation says that ÞtC1 and Þt
are close to one another, which pulls the posterior away from the point of perfect
fit. In the state space literature, this is referred to as smoothing the state vector.

Since the model considered here is simply a Normal linear regression model
with natural conjugate prior, model comparison and prediction can be done using
methods outlined in Chapter 3.

8.2.3 Empirical Bayesian Methods

In previous chapters, we have either elicited priors subjectively or used noninfor-
mative priors. In the present context, this would mean choosing values for � , V ,
s�2, ¹ or setting them to their noninformative values (see Chapter 3, Section 3.5)
of ¹ D 0 and V �1 D 0T ðT .7 However, both of these approaches had potential
drawbacks. Subjective elicitation of priors may be difficult to do, or it may
be subject to criticism by other researchers with different priors. Noninforma-
tive priors often make it difficult to do Bayesian model comparison since the
resulting marginal likelihood may be undefined. Accordingly, some Bayesians
use so-called empirical Bayes methods which surmount these two problems.
The local level model is a convenient place to introduce empirical Bayes meth-
ods because some interesting issues arise in its application. However, empirical
Bayes methods can be used with any model and are particularly popular with
hierarchical prior models such as those of Chapter 7 and the present chapter. It
should be noted, however, that empirical Bayesian methods have been criticized
for implicitly double-counting the data. That is, the data is first used to select
prior hyperparameter values. Once these values are selected, the data are used a
second time in a standard Bayesian analysis.

Empirical Bayesian methods involve estimating prior hyperparameters from
the data, rather than subjectively choosing values for them or setting them to
noninformative values. The marginal likelihood is the preferred tool for this. In
particular, for any choice of prior hyperparameters a marginal likelihood can
be calculated. The values of the prior hyperparameters which yield the largest
marginal likelihood are those used in an empirical Bayes analysis. However,
searching over all possible prior hyperparameters can be a very difficult thing
to do. Accordingly, empirical Bayes methods are often used on one or two key
prior hyperparameters. Here we show how this might be done for the local level
model.

The prior for the local level model specified in (8.10), (8.11) and (8.12) depends
upon four hyperparameters �, �1, V 11, s�2 and ¹. Of these, � is almost invariably
the most important and seems a candidate for the empirical Bayes approach. After

7Remember that, with these noninformative choices, the values of � and s�2 are irrelevant.

Co
py
ri

gh
t 
©
 2
00
3.
 J
. 
Wi
le
y.
 A
ll
 r
ig
ht
s 
re
se
rv
ed
. 
Ma
y 
no
t 
be
 r
ep
ro
du
ce
d 
in
 a
ny
 f
or
m 
wi
th
ou
t 
pe
rm
is
si
on
 f
ro
m 
th
e 
pu
bl
is
he
r,
 e
xc
ep
t 
fa
ir
 u
se
s 
pe
rm
it
te
d 
un
de
r 
U.
S.
 o
r

ap
pl
ic

ab
le
 c
op
yr
ig
ht
 l
aw
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 7/6/2012 7:19 PM via TEXAS A&M UNIV -
COLLEGE STATION
9780470865118 ; Koop, Gary.; Bayesian Econometrics
Account: s8516548



Introduction to Time Series 189

all, it can be interpreted as relating to the size of the random walk component
in the state space model and it may be hard to elicit subjectively a value for it.
Furthermore, setting it to an apparently ‘noninformative’ limiting value, � ! 1,
makes little sense since this implies the stochastic trend term completely domi-
nates the irregular component. This is not ‘noninformative’, but rather quite infor-
mative. Accordingly, we focus on �. We will begin by assuming the researcher
is able to subjectively elicit values for �1, V 11, s�2 and ¹.

The results of Chapter 3 (see (3.34)) imply that the marginal likelihood for the
present model takes the form

p.yj�/ D c

 
jV j
jV j

! 1
2

.¹s2/� ¹
2 (8.19)

where

c D 0
�

¹
2

Ð
.¹s2/

¹
2

0
� ¹

2

Ð
³

T
2

(8.20)

The notation in (8.19) makes clear that we are treating the marginal likelihood
as a function of � (i.e. in previous chapters we used notation p.y/ or p.yjMj /

to denote the marginal likelihood, but here we make explicit the dependence
on �). The standard way of carrying out an empirical Bayes analysis would be
to choose, b�, the value of � which maximizes p.yj�/ in (8.19). b� would then
be plugged in (8.12), and posterior analysis could then be done in the standard
way using (8.13)–(8.18). In the present model, b� could be found by using grid
search methods. That is, the researcher could simply try every value for � in
some appropriate grid and choose b� as being the value which maximizes p.yj�/.

A more formal way of carrying out empirical Bayesian estimation would
involve explicitly treating � as a parameter and using the laws of conditional
probability to carry out Bayesian inference. If � is treated as an unknown param-
eter, then Bayes theorem implies p.�jy/ / p.yj�/p.�/ where p.�/ is a prior
and we can write

p.�jy/ / c

 
jV j
jV j

! 1
2

.¹s2/� ¹
2 p.�/ (8.21)

This posterior can be used to make inferences about �. If interest centers on the
other parameters in the model, then we can use the fact that

p.�; h; �jy/ D p.�; hjy; �/p.�jy/

Since p.�; hjy; �/ is Normal-Gamma (i.e. conditional on a specific value for �

the posterior results in (8.13)–(8.18) hold) and p.�jy/ is one-dimensional, Monte
Carlo integration can be used to carry out posterior inference in this model. That
is, drawing from p.�jy/ / p.yj�/p.�/ and, conditional upon this draw, drawing
from p.�; hjy; �/ yields a draw from the joint posterior. As an aside, just how
one draws from p.�jy/ depends on the exact form of p.�/. However, a simple
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190 Bayesian Econometrics

way of drawing from any univariate distribution involves approximating it by a
discrete alternative. That is, evaluating p.�jy/ at B different points on a grid,
�1; : : : ; �B , will yield p.�1jy/; : : : ; p.�B jy/. Draws of � taken from the resulting
discrete distribution (i.e. the distribution defined by p.� D �i / D p.�i jy/ for i D
1; : : : ; B), will be approximately equal to draws from p.�jy/. As B increases, the
quality of the approximation will get better. In the empirical illustration below,
we use this crude but effective strategy for carrying out Bayesian inference in
the local level model.

The empirical Bayes methods for the local level model as described so far
requires the researcher to choose �1; V 11; s�2 and ¹ (and p.�/ for the second
approach outlined in the preceding paragraph). It is common to make noninfor-
mative choices for such prior hyperparameters and, for most models with hier-
archical priors (e.g. the panel data models of Chapter 7), such a strategy works
well. However, with the local level model, such a strategy does not work. It is
worthwhile to discuss in detail why this is so, as it illustrates a problem which
can occur in Bayesian inference in models with large numbers of parameters.

Consider first what happens when we set ¹ and V �1
11 to their limiting values

¹ D V �1
11 D 0. With these choices, the values of s2 and �1 are irrelevant.

For these noninformative choices, it can be directly verified that p.�; ¦ �2jy; �/

is a well-defined posterior. However, with regards to the marginal likelihood,
two problems arise. First, the integrating constant in (8.20) is indeterminate.
This is the standard problem we have discussed previously (e.g. see Chapter 2,
Section 2.5). Insofar as interest centers on �, or the marginal likelihood is used
for comparing the present model to another with the same noninformative prior
for the error variance, this first problem is not a serious one. The constant c either
does not enter or cancels out of any derivation (e.g. a Bayes factor) and can be
ignored. Secondly, the term ¹s2 goes to zero as � ! 1. To see this, note that
with all the hyperparameters set to noninformative values � D .W 0W /�1W 0y
and y � W� D 0T . We will not provide a formal proof, but it is the case
that this degeneracy is enough to imply that the marginal likelihood in (8.10)
becomes infinite as � ! 1. Hence, an empirical Bayes analysis will set b� !
1 for any data set. It can be shown that this implies E.Þjy/ D y and no
smoothing of the state vector occurs. Thus, empirical Bayes methods fail in
the local level model when we set ¹ and V �1

11 to noninformative values. This
problem (which does not arise in most models) occurs because the number of
explanatory variables in the linear regression model given in (8.7) is equal to
the number of observations and, thus, it is possible for the regression line to fit
perfectly. The general point to note here is that, in models with a large number
of parameters, the researcher must be very careful when working with improper
noninformative priors.

In the local level model, we have seen that we cannot use empirical Bayes
methods with ¹ D V �1

11 D 0. However, it can be verified that if we set either
¹ > 0 or V �1

11 > 0 (and make an appropriate choice for s2 or �1), then we can
use empirical Bayes methods. Intuitively, either of these will stop ¹s2 in (8.16)
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Introduction to Time Series 191

from going to zero as � ! 1. It is worth stressing that empirical Bayes methods
work in the present model if either ¹ > 0 or V �1

11 > 0, it is not necessary to
have an informative prior for both h and �1.

In the alternative approach which involves treating � as a parameter (see (8.21)),
a similar pathology occurs if we set ¹ D V �1

11 D 0 and use an improper
prior for �. For instance, if we set ¹ D V �1

11 D 0 and choose p.�/ to be an
improper Uniform distribution over the interval .0; 1/ then it turns out that
p.�jy/ is not a valid probability density function (i.e. it is improper). However,
if we either set ¹ > 0 or V �1

11 > 0 or choose p.�/ to be a proper p.d.f. then
p.�jy/ is a valid posterior density. Thus, if we treat � as an unknown parameter,
Bayesian inference can be carried out if prior informative about � or h or �1 is
available.

8.2.4 Empirical Illustration: The Local Level Model

To illustrate empirical Bayesian inference in the local level model, we artificially
generated data from the model given in (8.4) and (8.5) with � D 1, h D 1 and
�1 � Þ1 D 1. For a prior we use �; h ¾ NG.�; V ; s�2; ¹/ with � and V as
described in (8.11) and (8.12). We begin by considering four priors. The first
of these is weakly informative for all parameters and sets ¹ D 0:01, s�2 D 1,
�1 D 1 and V 11 D 100. Note that this prior is centered over the values used
to generate the data (i.e. s�2 D 1 and �1 D 1), but expresses extreme uncer-
tainty about these values. That is, the prior for h contains as much information
as 0:01 of an observation and the prior variance for the initial condition is 100.
The second prior is the same as the first, except that it is completely noninfor-
mative for h (i.e. ¹ D 0). The third prior is the same as the first, except that
it is completely noninformative for �1 (i.e. V �1

11 D 0). The fourth prior is com-
pletely noninformative for both parameters (i.e. ¹ D V �1

11 D 0). Of course, the
preceding discussion implies that empirical Bayesian methods should fail for this
last prior.

Figure 8.1 plots the marginal likelihoods for a grid of values of � between
0 and 10. The plots corresponding to the four priors are very similar to one
another. For the first three priors, we find empirical Bayes estimates of � beingb� D 0:828, b� D 0:828 and b� D 0:823, respectively. In fact, even the completely
noninformative case (which has b� ! 1) would yield b� D 0:829 if we limit
consideration to the interval .0; 10/. The pathology noted with the use of a
completely noninformative prior only occurs for extremely large values of �.
Equation (8.21) can be used to derive p.�jy/ and, since we have not specified
p.�/, our empirical illustration implicitly holds for the case where p.�/ is an
improper Uniform prior over the interval .0; 1/. Interpreted in this manner, our
empirical illustration shows that if we use a completely noninformative prior
for all parameters, p.�jy/ is a skewed (improper) distribution. It has a mode at
the point � D 0:829, but then gradually increases to infinity as � ! 1. Using
results solely based on Figure 8.1 is equivalent to using a Uniform prior over
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h
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Informative
Noninf. for h

Noninformative
Noninf. for theta(1)

Figure 8.1 Marginal Likelihoods for Four Different Priors

the interval .0; 10/ for �. Using such a prior for � is enough to ensure sensible
empirical Bayes results.

In summary, users of empirical Bayes methods are often interested in focusing
on one parameter and using noninformative priors over the rest. In the local level
model with natural conjugate prior, this amounts to setting ¹ D V �1

11 D 0 and
using empirical Bayesian methods to estimate �. In the previous subsection we
have shown that, in theory, this is not possible to do since we will always obtainb� ! 1. However, in practice, the empirical illustration shows that this pathology
is probably not an important problem. That is, only a minuscule amount of prior
information about either h or the initial condition or � is required to ensure
empirical Bayesian methods will work.

So far we have focused exclusively on �, however it is often the case that
interest centers on the state equation and, in particular, estimating the stochastic
trend in the model. To investigate how well empirical Bayes methods work in
this regard, we focus on the second prior of the previous section which uses a
minuscule amount of prior information about h (i.e. ¹ D 0:01, s�2 D 1), but
is noninformative in all other respects. The other priors yield virtually identical
results. We simulate four artificial data sets all of which have h D 1 and �1 D 1
but have � D 0, 0.1, 1 and 100, respectively.

Figures 8.2a–8.2d plot the four data sets along with E.Þjy/ obtained using
(8.17) for the value of � chosen using empirical Bayes methods. E.Þjy/ is
referred to as the ‘Fitted Trend’ in the figures. Remember that Þ can be interpreted
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Introduction to Time Series 193

as the stochastic trend in the time series, and is often of interest in a time series
analysis. Before discussing the stochastic trend it is worthwhile to discuss the
data itself. A wide variety of values for � have been chosen to show its role in
determining the properties of the data. In Figure 8.2a we see how time series
with no stochastic trend (� D 0) exhibit random fluctuations about a mean. How-
ever, as � increases, the trend behavior becomes more and more apparent. As �

becomes very large (see Figure 8.2d), the stochastic trend becomes predominant
and the series wanders smoothly over a wide range of values.

The estimates of � selected by empirical Bayes are similar to those used to
generate the artificial data and the resulting fitted trends are quite sensible. In
Figure 8.2a, where there is no trend, the fitted stochastic trend is almost non-
existent (i.e. it is close to simply being a horizontal line). In Figure 8.2d, where
the trend predominates, the fitted stochastic trend matches the data very closely
(indeed it is hard to see the difference between the two lines in Figure 8.2d).
Figures 8.2b and 8.2c present intermediate cases.

0
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0

5
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50 100

Time

Data

Fitted Trend
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Figure 8.2 (a) Data Set with � D 0; (b) Data Set with � D 0:1; (c) Data Set with
� D 1; (d) Data Set with � D 100
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194 Bayesian Econometrics

8.3 A GENERAL STATE SPACE MODEL

In this section, we discuss a more general state space model which we will simply
refer to it as the state space model and write as

yt D Xt þ C Zt Þt C "t (8.22)

and

ÞtC1 D Tt Þt C ut (8.23)

This model uses slightly different notation from the local level model, in that we
allow Þt to be a p ð 1 vector containing p state equations. We assume "t to be
i.i.d. N .0; h�1/, but ut is now a pð1 vector which is i.i.d. N .0; H�1/ and "t and
us are independent of one another for all s and t . Xt and Zt are 1 ð k and 1 ð p
vectors, respectively, containing explanatory variables and/or known constants.
Tt is a p ð p matrix of known constants. The case where Tt contains unknown
parameters can be handled in a straightforward fashion, as noted below.

This state space model is not the most general possible (see the next section
for a discussion of extensions), but it does encompass a wide variety of models.
To understand the types of behavior the state space model allows for, it is useful
to discuss several special cases. First, the local level model is a special case
of (8.22) and (8.23) if p D 1, k D 0, Tt D 1 and Zt D 1 and, thus, this
model can be used decompose a time series into a stochastic trend and irregular
component. Secondly, (8.22) can reduce to a Normal linear regression model
of the sort considered in Chapters 3 and 4 if Zt D 0. Thirdly, it can reduce to
a Normal linear regression model with time varying parameters if Zt contains
some or all of the explanatory variables. Fourthly, there are many so-called
structural time series models which can be put in the form of (8.22) and (8.23).
The reader is referred to Durbin and Koopman (2001, Chapter 3) for a discussion
of such models, including issues such as seasonality, and how commonly-used
Autoregressive Integrated Moving Average (or ARIMA) models can be put in
state space form. Here we will show how one common structural time series
model referred to as the local linear trend model can be put in state space form.
This model is similar to the local level model, but allows the trend to evolve
over time. Thus,

yt D ¼t C "t

¼tC1 D ¼t C vt C ¾t

and

vtC1 D vt C �t

where ¾t is i.i.d. N .0; ¦ 2
¾ /, �t is i.i.d. N .0; ¦ 2

� / and all the errors are independent
of one another. It can be seen that this local linear trend model can be put in the
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form of the state space model by setting

Þt D
�

¼t
vt

�
ut D

�
¾t
�t

�
Tt D

�
1 1
0 1

�
Zt D �

1 0
Ð

H D
 

¦ 2
¾ 0

0 ¦ 2
�

!
and þ D 0. In short, a wide variety of useful regression and time series models
can be written as state space models.

8.3.1 Bayesian Computation in the State Space Model

We have stressed throughout this book that an advantage of Bayesian inference
is that it is often modular in nature. Methods for posterior computation in many
complicated models can be developed by simply combining results from simpler
models. The state space model is a good example of how this can be done. Hence,
rather than go through the steps of writing out the likelihood, prior and posterior,
we jump straight to the issue of Bayesian computation, and show how we can
draw on results from earlier chapters to carry out Bayesian inference in this
model. As we shall see, a complication for posterior simulation arises since the
posterior conditional for Þ analogous to Chapter 7 (7.17) will not be independent
across time (i.e. (8.23) implies that Þt and Þt�1 will not be independent of
one another). Thus, we cannot easily draw from the Þt s one at a time and a
direct implementation of the Gibbs sampler would involve drawing from a T -
dimensional Normal distribution. In general, this can be a bit slow, but De Jong
and Shephard (1995) describe an efficient method for Gibbs sampling in this
class of models.

An examination of (8.22) reveals that, if Þt for t D 1; : : : ; T were known
(as opposed to being unobserved), then the state space model would reduce to a
Normal linear regression model:

yŁ
t D Xt þ C "t

where yŁ
t D yt � Zt Þt . Thus, all the results of previous chapters for the Normal

linear regression model could be used, except the dependent variable would be
yŁ

t instead of y. This suggests that a Gibbs sampler with data augmentation can
be set up for the state space model. That is, depending on the prior chosen,
p.þ; hjy; Þ1; : : : ; ÞT / will have one of the simple forms given in Chapters 3 or
4. Similarly, if Þt for t D 1; : : : ; T were known then the state equations given in
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196 Bayesian Econometrics

(8.23) are a simple variant of the Seemingly Unrelated Regression (SUR) linear
regression model discussed in Chapter 6 (Section 6.6) and p.H jy; Þ1; : : : ; ÞT /

has a familiar form.8 Thus, if we can derive a method for taking random draws
from p.Þ1; : : : ; ÞT jy; þ; h; H/ then we have completely specified a Gibbs sam-
pler with data augmentation which allows for Bayesian inference in the state
space model. In the following material, we develop such a Gibbs sampler for a
particular prior choice, but we stress that other priors can be used with minor
modifications.

Here we will use an independent Normal-Gamma prior for þ and h, a Wishart
prior for H and the prior implied by the state equation for Þ1; : : : ; ÞT . In par-
ticular, we assume a prior of the form

p.þ; h; H; Þ1; : : : ; ÞT / D p.þ/p.h/p.H/p.Þ1; : : : ; ÞT jH/

where

p.þ/ D fN .þjþ; V / (8.24)

p.h/ D fG.hjs�2; ¹/ (8.25)

and

p.H/ D fW .H j¹H ; H/ (8.26)

For the elements of the state vector we treat (8.23) as a hierarchical prior. If we
treat the time index for (8.23) as beginning at 0 (i.e. t D 0; 1; : : : ; T ) and assume
Þ0 D 0, then the state equation even provides a prior for the initial condition.
Formally, this amounts to writing this part of the prior as

p.Þ1; : : : ; ÞT jH/ D p.Þ1jH/p.Þ2jÞ1; H/ : : : p.ÞT jÞT �1; H/

where, for t D 1; : : : ; T � 1

p.ÞtC1jÞt ; H/ D fN .ÞtC1jTtÞt ; H/ (8.27)

and

p.Þ1jH/ D fN .Þ1j0; H/ (8.28)

Note that H is playing a similar role to � in the local level model. However,
H is a p ð p matrix, so it would be difficult to use empirical Bayes methods
with this high dimensional model. Furthermore, we are no longer using a natural
conjugate prior so that the analytical results of Section 8.2 no longer hold.

The reasoning above suggests that our end goal is a Gibbs sampler
with data augmentation which sequentially draws from p.þjy; Þ1; : : : ; ÞT /,
p.hjy; Þ1; : : : ; ÞT /, p.H jy; Þ1; : : : ; ÞT / and p.Þ1; : : : ; ÞT jy; þ; h; H/. The
first three of these posterior conditional distributions can be dealt with by using

8The case where Tt contains unknown parameters would involve drawing from p.H; T1; : : : ,
TT jy; Þ1; : : : ; ÞT / which can usually be done fairly easily. In the common time-invariant case
where T1 D Ð Ð Ð D TT , p.H; T1; : : : ; TT jy; Þ1; : : : ; ÞT / will have precisely the form of a SUR
model.
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results from previous chapters. In particular, from Chapter 4 (Section 4.2.2)
we find

þjy; h; Þ1; : : : ; ÞT ¾ N .þ; V / (8.29)

and

hjy; þ; Þ1; : : : ; ÞT ¾ G.s�2; ¹/ (8.30)

where

V D
 

V �1 C h
TX

tD1

X
0
t Xt

!�1

(8.31)

þ D V

 
V �1þ C h

TX
tD1

X 0
t .yt � Zt Þt /

!
(8.32)

¹ D T C ¹ (8.33)

and

s2 D

TX
tD1

.yt � Xt þ � Zt Þt /
2 C ¹s2

¹
(8.34)

Using results for the SUR model (with no explanatory variables) from
Chapter 6 (Section 6.6.3) we obtain

H jy; Þ1; : : : ; ÞT ¾ W .¹ H ; H/ (8.35)

where

¹H D T C ¹H (8.36)

and

H D
"

H�1 C
T �1X
tD0

.ÞtC1 � TtÞt /.ÞtC1 � TtÞt /
0
#�1

(8.37)

To complete our Gibbs sampler, we need to derive p.Þ1; : : : ; ÞT jy; þ; h; H/

and a means of drawing from it. Although it is not hard to write out this mul-
tivariate Normal distribution, it can be hard to draw from it in practice since it
is T -dimensional, and its elements can be highly correlated with one another.
Accordingly, there have been many statistical papers which seek to find efficient
ways of drawing from this distribution (Carter and Kohn (1994) and DeJong
and Shephard (1995) are two prominent contributions to this literature). Here we
present the method described in DeJong and Shephard (1995), which has been
found to work very well in many applications. The reader interested in proofs
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198 Bayesian Econometrics

and derivations can look at this paper. DeJong and Shephard (1995) works with
a slightly more general version of our state space model, written as

yt D Xt þ C Zt Þt C Gt vt (8.38)

and

ÞtC1 D Tt Þt C Jt vt (8.39)

for t D 1; : : : ; T in (8.38) and t D 0; : : : ; T in (8.39) and Þ0 D 0. vt is i.i.d.
N .0; h�1 IpC1/. Other variables and parameters are as defined for our state space
model. It can be see that our state space model is equivalent to the one given in
(8.38) and (8.39) if we set

vt D
�

"t
ut

�
Gt to be a .p C 1/ row vector given by

Gt D . 1 0 : : 0 /

and Jt to be a p ð .p C 1/ matrix given by

Jt [ 0p A ]

where A is a p ð p matrix implicitly defined by

H�1 D 1

h
AA0

Since the Gibbs sampler involves drawing from p.Þ1; : : : ; ÞT jy; þ; h; H/,
everything in (8.38) and (8.39) except for Þt and vt can be treated as known.
The contribution of DeJong and Shephard (1995)9 was to develop an efficient
algorithm for drawing from �t D Ftvt for various choices of Ft . Draws from
�t can then be transformed into draws from Þt . We set out their algorithm for
arbitrary Ft , but note that the usual choice is to set Ft D Jt , as this yields draws
from the state equation errors which can be directly transformed into the required
draws from Þt .

DeJong and Shephard (1995) refer to their algorithm as the simulation smoother.
The simulation smoother begins by setting a1 D 0, P1 D J0 J 0

0 and calculating for
t D 1; : : : ; T the quantities:10

et D yt � Xt þ � Zt at (8.40)

Dt D Zt Pt Z 0
t C Gt G

0
t (8.41)

Kt D .Tt Pt Z 0
t C Jt G

0
t /D0

t (8.42)

atC1 D Ttat C Kt et (8.43)

9There are other advantages of the algorithm proposed by DeJong and Shephard (1995) involving
computer storage requirements and avoiding certain degeneracies which will not be discussed here.

10For readers with some knowledge of the state space literature, these calculations are referred to
as running the Kalman filter.
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Introduction to Time Series 199

and

PtC1 D Tt Pt .Tt � Kt Zt /
0 C Jt .Jt � Kt Gt / (8.44)

and storing the quantities et ; Dt and Kt . Then a new set of quantities are cal-
culated in reverse time order (i.e. t D T; T � 1; : : : ; 1). These begin by setting
rT D 0 and UT D 0, and then calculating

Ct D Ft .I � G 0
t D�1

t Gt � [Jt � Kt Gt ]
0Ut [Jt � Kt Gt ]/F

0
t (8.45)

¾t ¾ N .0; h�1Ct / (8.46)

Vt D Ft .G0
t D�1

t Zt C [Jt � Kt Gt ]
0Ut [Tt � Kt Zt ]

0/ (8.47)

rt�1 D Z 0
t D�1

t et C .Tt � Kt Zt /
0rt � V 0

t C�1
t ¾t (8.48)

Ut�1 D Z 0
t D�1

t Zt C .Tt � Kt Zt /
0Ut .Tt � Kt Zt / C V 0

t C�1
t Vt (8.49)

and

�t D Ft .G0
t D�1

t et C [Jt � Kt Gt ]
0rt / C ¾t (8.50)

where G0 D 0. This algorithm will yield � D .�0; : : : ; �T /0, and it can be proved
that this is a random draw from p.�jy; þ; h; H/. Depending on the form for Ft ,
this can be transformed into the required random draw of Þt to t D 1; : : : ; T . For
the common choice of Ft D Jt , this algorithm provides draws from the errors in
the state equation (i.e. �t D Jt vt ) which can be transformed into draws from Þt
using (8.39) and the fact that Þ0 D 0.

These formulae may look complicated. However, the algorithm is simply a
series of a calculations involving matrices that are of low dimension plus random
draws from the Normal distribution to get ¾t . This greatly speeds up computation
since manipulating high dimensional (e.g. T ð T ) matrices is very slow indeed.
Furthermore, for most applications the matrices Ft , Gt , Jt and Tt will have simple
forms, and thus the previous equations will simplify. Thus, with a bit of care,
programming up this component of the Gibbs sampler is a straightforward task.

In summary, a Gibbs sampler with data augmentation which sequentially
draws from p.þjy; Þ1; : : : ; ÞT /, p.hjy; Þ1; : : : ; ÞT /, p.H jy; Þ1; : : : ; ÞT / and
p.Þ1; : : : ; ÞT jy; þ; h; H/ has been derived using results from previous chapters
along with an algorithm developed in DeJong and Shephard (1995). Given out-
put from such a posterior simulator, posterior inference can be carried out as
in previous chapters (see Chapter 4, Sections 4.2.3 and 4.2.4). Predictive infer-
ence in this model can be carried out using the strategy outlined in Chapter 4,
Section 4.2.6. Posterior predictive p-values or HPDIs can be calculated to shed
light on the fit and appropriateness of the model. The marginal likelihood for the
state space model can be calculated using the method of Chib (see Chapter 7,
Section 7.5). The implementation of the Chib method is similar to that described
for the individual effects model of Chapter 7 with Þ1; : : : ; ÞT being treated as
latent data.

Co
py
ri

gh
t 
©
 2
00
3.
 J
. 
Wi
le
y.
 A
ll
 r
ig
ht
s 
re
se
rv
ed
. 
Ma
y 
no
t 
be
 r
ep
ro
du
ce
d 
in
 a
ny
 f
or
m 
wi
th
ou
t 
pe
rm
is
si
on
 f
ro
m 
th
e 
pu
bl
is
he
r,
 e
xc
ep
t 
fa
ir
 u
se
s 
pe
rm
it
te
d 
un
de
r 
U.
S.
 o
r

ap
pl
ic

ab
le
 c
op
yr
ig
ht
 l
aw
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 7/6/2012 7:19 PM via TEXAS A&M UNIV -
COLLEGE STATION
9780470865118 ; Koop, Gary.; Bayesian Econometrics
Account: s8516548



200 Bayesian Econometrics

8.3.2 Empirical Illustration: The State Space Model

To illustrate Bayesian methods in the state space model, we use one of the data
sets and some of the models analyzed in Koop and Potter (2001). The data set
has been used by economic historians interested in epochs such as the industrial
revolution and the Great Depression (e.g. see Greasley and Oxley, 1994). It
consists of the annual percentage change in UK industrial production from 1701
to 1992. There are many questions of interest which can be investigated with this
data set. In this empirical illustration, we will focus on the question of whether
the basic structure of the time series model driving the growth in industrial
production is changing over time. To this end we consider an AR(p) model with
time varying coefficients:

yt D Þ0t C Þ1t yt�1 C Ð Ð Ð C Þpt yt�p C "t (8.51)

where for i D 0; : : : ; p

Þi tC1 D Þi;t C uit (8.52)

We assume "t to be i.i.d. N .0; h�1/ and uit to i.i.d. N .0; ½i h�1/ where "t , uis
and ujr are independent of one another for all s, t , r , i and j . In words, this is
an autoregressive model, but the autoregressive coefficients (and the intercept)
may be gradually evolving over time. It can be seen that this model is a special
case of the state space model in (8.22) and (8.23) if we exclude Xt , and define

Þt D

0BBB@
Þ0t
Þ1t
Ð
Ð

Þpt

1CCCA

ut D

0BBB@
u0t
u1t
Ð
Ð

upt

1CCCA
Zt D �

1 yt�1 Ð Ð yt�p
Ð

and set Tt D IpC1 and

H�1 D h�1

26664
½0 0 0 . 0
0 ½1 . . .
. 0 . . .
. . . . 0
0 . . 0 ½p

37775
We choose p D 1 to illustrate results for this model, although our previous work
with this data set indicates larger values of p should be used in a serious piece of
empirical work. To simplify issues relating to initial conditions, for our dependent
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Introduction to Time Series 201

variable we use data beginning in 1705. This means that the yt�4 term in (8.51)
will always be observed.

We use an informative prior for the parameters h and ½i for i D 0; : : : ; p.11

For h we use the Gamma prior from (8.25) with ¹ D 1 and s�2 D 1. Since the
data is measured as a percentage change, the prior for h is centered over a value
which implies over 95% of the errors are less than 2%. However it is relatively
noninformative, since the prior contains the same information as one data point
(i.e. ¹ D 1). Note that if H were not a diagonal matrix we would probably want
to use a Wishart prior for it, here we have assumed the state equations to have
errors which are uncorrelated with one another and, hence, we only need elicit
p C 1 univariate priors for the ½i s. Thus, the Wishart prior for H given in (8.36)
simplifies here to

p.½�1
i / D fG.½�1

i j½�1
i ; ¹i /

for i D 0; : : : ; p. We choose the relatively noninformative values of ¹i D 1 for
all i , but center the prior for ½i over 1 by setting ½i D 1. Since AR.p/ coefficients
tend to be quite small (e.g. in the stationary AR(1) case the coefficient is less
than one in absolute value), this prior allows for fairly substantive changes in the
coefficients over time. With this prior, the conditional posterior for H given in
(8.35) simplifies to

p.½�1
i jy; Þ1; : : : ; ÞT / D fG.½�1

i j½�1
i ; ¹i /

for i D 0; : : : ; p, where

¹i D T C ¹i

and

½i D
h

T �1X
tD0

.Þi;tC1 � Þi t /.Þi;tC1 � Þt /
0 C ¹i ½i

¹i

Table 8.1 contains posterior results for the state space model using the data
and prior discussed above. The Gibbs sampler was run for 21 000 replications,
with 1000 burn-in replications discarded and 20 000 replications retained. The
last column of Table 8.1 presents Geweke’s convergence diagnostic which indi-
cates that convergence of the posterior simulator has been achieved. Posterior
means and standard deviations for ½0 and ½1 indicate that a substantial amount
of parameter variation occurs both in the intercept and the AR(1) coefficient.
Thus, in addition to there being a stochastic trend in the growth in industrial

11Note that we are not using the natural conjugate prior and, hence, the results relating to non-
informative prior which we derived for the local level model do not apply here. The results of
Fernandez, Osiewalski and Steel (1997) are relevant, and imply that a proper prior is required for
these parameters if we are to obtain a proper posterior.
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202 Bayesian Econometrics

Table 8.1 Posterior Results for State Space Model

Mean Stand. Dev. Geweke’s CD

h 0:17 0:04 0:99
½0 0:93 0:16 0:28
½1 0:61 0:11 0:64

0.4 0.6 0.8 1 1.2 1.4 1.60.2

0.4 0.6 0.8 1 1.2

(a)

(b)

1.4 1.6 1.8 2

Figure 8.3 (a) Posterior Density for ½0; (b) Posterior Density for ½1

production, the AR process itself is changing over time. These findings are sup-
ported by an examination of Figures 8.3a and 8.3b which plot the entire posterior
densities of each of these parameters.12

8.4 EXTENSIONS

The state space model introduced in (8.22) and (8.23) covers a wide range of
interesting time series models (e.g. the local linear trend model, time varying
parameter models, models with seasonality, etc.). However, there are numerous

12We stress that this is only an illustration of Bayesian methods in the state space models and
should not necessarily be taken to imply a particular model for industrial production. A serious piece
of empirical work involving this time series would involve a consideration of other models (e.g. a
model with a structural break).
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Introduction to Time Series 203

extensions of this model that can be made in a straightforward manner. Some
of these extensions can be handled using methods outlined in this book. For
instance, we have discussed the Normal state space model, but extending this to
the Student-t state space model can be done by adding one block to the Gibbs
sampler. That is, the Gibbs sampler of Chapter 6, Section 6.4 for handling the
linear regression model with Student-t errors can be combined with the Gibbs
sampler developed in this chapter.

Other important extensions cannot be directly handled using the methods out-
lined in this book, but a small amount of additional reading or thought would
suffice to create methods for Bayesian inference in these models. Examples of
this sort include various nonlinear, regime shifting or structural break models (see
Kim and Nelson (1999), Bauwens, Lubrano and Richard (1999) or Chapter 12,
Section 12.4.1 for a discussion of some of these models). In finance, a partic-
ularly important model, known as the stochastic volatility model, is a modest
extension of that discussed in this chapter. The stochastic volatility model has
time varying error variances of the sort that seem to occur in stock returns and
many other financial time series (see Jacquier, Polson and Rossi (1994) for the
first Bayesian work on this model). It can be written as

yt D "t

where "t is i.i.d. N .0; ¦ 2
t /

log.¦ 2
t / D log.¦ 2/ C þ log.¦ 2

t�1/ C ut

where ut is i.i.d. N .0; 1/. If we define Þt � log.¦ 2
t /, then it can be seen that this

is a state space model where the state equation relates to the conditional variance
of the error as opposed to the conditional mean. A Gibbs sampler which can
be used to carry out Bayesian inference in this model is very similar to the
one we have developed in this chapter. In fact, the algorithm of DeJong and
Shephard (1995) can be directly used to draw from the posterior of the states,
Þt , conditional on the other parameters in the model. Hence, all that is required
is an algorithm to draw from the other parameters conditional on the states. But
this is relatively straightforward (see DeJong and Shephard, 1995, for details).

Perhaps the most important extension of the state space model discussed in this
chapter is to allow yt to be a vector instead of a scalar. After all, economists are
usually interested in multivariate relationships between time series. This extension
is very easy since (8.22) can be re-interpreted with yt being a q-vector containing
q different time series and very little will change in the development of the pos-
terior simulator. In fact, the DeJong and Shephard (1995) model and algorithm
in (8.38)–(8.50) has been deliberately written so as to hold in the multivariate
case. Thus, these equations can be used to draw from p.Þ1; : : : ; ÞT jy; þ; h; H/

in a posterior simulator. p.H jy; Þ1; : : : ; ÞT / will be similarly unaffected by the
move from a univariate to a multivariate state space model. A Gibbs sampler
for the multivariate model can be completed by drawing on methods for the
SUR model (see Chapter 6, Section 6.6.3) to derive p.þjy; Þ1; : : : ; ÞT / and
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204 Bayesian Econometrics

p.hjy; Þ1; : : : ; ÞT /. Thus, Bayesian inference in the multivariate state space
model involves only minor alterations of the methods of Section 8.3.

As an aside, we should mention that multivariate state space models can be
used to investigate the presence of cointegration in time series. Cointegration
is an important concept in empirical macroeconomics and relates to the number
of stochastic trends which are present in a set of time series. To motivate this
concept further, consider the following multivariate state space model:

yt D Zt Þt C "t (8.53)

and

ÞtC1 D Þt C ut (8.54)

where yt is a q-vector of q time series and Þt is a p-vector of state equations and
H is a diagonal matrix. If p D q and Zt D Iq , then this becomes a multivariate
local level model. In this case, each of the q time series contains a stochastic
trend. That is, we can write

yit D Þi t C "i t

and

Þi;tC1 D Þi t C uit

for i D 1; : : : ; q and each individual time series follows a local level model.
There are q independent stochastic trends driving the q time series.

Consider what happens, however, if p < q and Zt is a q ð p matrix of
constants. In this case, there are p stochastic trends driving the q time series.
Since there are fewer stochastic trends than time series, some of the trends must
be common to more than one time series. For this reason, if p < q this model
is referred to as a common trends model. Other ways of expressing this common
trend behavior is to say the q time series are trending together or co-trending or
cointegrated.

The macroeconometric literature on cointegration is very voluminous; suffice
it to note here that cointegration is thought to hold in many economic time series.
That is, many economic time series seem to exhibit stochastic trend behavior.
However, economic theory also suggests many time series variables should be
related through equilibrium concepts. In practice, these two considerations sug-
gest cointegration should occur. Suppose, for instance, that y1t and y2t are two
time series which should be equal to one another in equilibrium. In reality, we
expect perturbations and random shocks to imply that equilibrium is rarely, if
ever, perfectly achieved. A bivariate local level model with a single stochastic
trend would fit with this theoretical expectation. That is, both time series would
exhibit stochastic trend behavior. Furthermore, (8.53) and (8.54) with q D 2,
p D 1 and Zt D 1 can be written as

y1t D y2t C . "1t � "2t /
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Introduction to Time Series 205

Hence, y1t D y2t apart from a random equilibrium error ."1t � "2t /. Thus, it can
be argued that cointegration is how macroeconomic equilibrium concepts should
manifest themselves empirically. Economic theories used to justify cointegration
include purchasing power parity, the permanent income hypothesis and various
theories of money demand and asset pricing.

Cointegration is, thus, a potentially important thing to look for in a wide
variety of applications in macroeconomics and finance. In multivariate state space
models the number of common trends can be directly investigated by comparing
models with different numbers of state equations. For instance, a researcher could
calculate the marginal likelihood for the model described in (8.53) and (8.54) for
various values of p. If substantial posterior probability is assigned to models with
p < q , then the researcher could conclude that evidence exists for cointegration.

8.5 SUMMARY

In this chapter, we have introduced a fairly general state space model along
with an interesting special case referred to as the local level model. State space
models are commonly used when working with time series data and are suitable
for modeling a wide variety of behaviors (e.g. trending, cycling or seasonal).
State space models are especially attractive for the Bayesian since they can be
interpreted as flexible models with hierarchical priors. Thus, the interpretation
and computational methods are similar to those for other models such as the
individual effects or random coefficients panel data models.

For the local level model, we used a natural conjugate prior and showed how
this allowed for analytical results. We introduced a new method for prior elici-
tation referred to as empirical Bayes. This method, which is especially popular
in models involving hierarchical priors, chooses as values for prior hyperparam-
eters those which maximize the marginal likelihood. Such an approach allows
the researcher to avoid subjective elicitation of prior hyperparameters or using
a noninformative prior. An empirical illustration involving artificial data showed
how the empirical Bayes approach could be implemented in practice.

For the more general state space model, we used an independent Normal-
Gamma prior and showed how this, along with a hierarchical prior defined by
the state equation, meant that a posterior simulator was required. Such a poste-
rior simulator was developed by combining results for the Normal linear regres-
sion model, and the SUR model along with a method developed in DeJong and
Shephard (1995) for drawing from the states (i.e. Þt for t D 1; : : : ; T ). The
state space model thus provides a good illustration of the modular nature of
Bayesian computation where model extensions often simply involve adding a
new block to a Gibbs sampler. An application of interest to economic historians,
involving a long time series of industrial production and an AR(p) model with
time varying coefficients, was used to illustrate Bayesian inference in the state
space model.
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The chapter ended with a discussion of several possible extensions to the
state space models considered in this chapter. Of particular importance were
the stochastic volatility model and multivariate state space models. The former
of these extensions is commonly used with financial time series while the lat-
ter can be used in macroeconomic applications to investigate cointegration and
related issues. We stressed how Bayesian analysis of these extensions can be
implemented through minor modifications of the posterior simulator described in
Section 8.3.

Time series econometrics is such a huge field that a single chapter such
as the present one necessarily skips over many important issues. Chapter 12
(Section 12.4.1) provides a brief discussion of some additional time series topics.

8.6 EXERCISES

The exercises in this chapter are closer to being small projects than standard
textbook questions. Remember that some data sets and MATLAB programs are
available on the website associated with this book.

1. (a) Use the derivations in Section 8.2 and Chapter 6, Section 6.4 to obtain a
posterior simulator for the local level model with independent Student-t
errors. You may use whatever prior you wish for the model parameters
(although the natural conjugate one of Section 6.4 will be the easiest).

(b) Write a program which uses your result from part (a) and test the program
on either real data (e.g. the industrial production data from the empiri-
cal illustration in Section 8.3.2) or artificial data generated according to
various data generating processes.

(c) Add to your program code for calculating the marginal likelihood for the
local level model with independent Student-t errors. For your data set(s)
calculate the Bayes factor comparing the local level model with Normal
errors to the local level model with Student-t errors.

2. Unit root testing with the local level model. To do this exercise, use either
real data (e.g. the industrial production data from the empirical illustration in
Section 8.3.2) or artificial data generated according to various data generating
processes of your choice. Use the local level model with natural conjugate
Normal-Gamma prior described in Section 8.2 with the second variant on the
empirical Bayesian methodology described in Section 8.2.3. That is, treat �

as an unknown parameter, choose a prior for � of your choice (e.g. a Gamma
or Uniform prior) and obtain p.�jy/. Remember that a unit root is present in
the model M1 : � > 0, but is not present in the model M2 : � D 0. You want
to calculate the Bayes factor comparing M1 to M2.
(a) Derive the formula for the marginal likelihood of M2.
(b) Using your result for part (a), write a program for calculating the required

Bayes factor and test the program using your data set(s).
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(c) Consider an approximate strategy where you calculate the Bayes factor
comparing M1 to MŁ

2 : � D a where a is a very small number. Using the
Savage–Dickey density ratio, derive a formula for calculating the Bayes
factor comparing M1 to MŁ

2 .
(d) For your data set(s) compare the approximate Bayes factor of part (c) to

that obtained in part (b) for various values of a (e.g. a D 0:01, 0.0001,
0.0000001, etc.). How well does the approximate strategy work?

3. Use the methods of Section 8.3 for the general state space model to answer
this question. Use either real data (e.g. the industrial production data from the
empirical illustration in Section 8.3.2) or artificial data generated according to
various data generating processes of your choice.
(a) Write a program which carries out posterior simulation in the local level

model described in Section 8.3.
(b) Write a program which carries out posterior simulation in the local linear

trend model described in Section 8.3.
(c) Test the programs you have written in parts (a) and (b) using your data

set(s).
(d) Modify your programs to calculate the marginal likelihood for each model

and, hence, calculate the Bayes factor comparing the local level model to
local linear trend model and test your program using your data set(s).
Remember that meaningful marginal likelihoods can only be calculated
with informative priors and, hence, choose informative priors of your
choice.

(e) Carry out a prior sensitivity analysis to investigate which aspects of prior
elicitation seem to be most important for model comparison involving the
local level and local linear trend models.
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