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The Linear Regression Model

with General Error
Covariance Matrix

6.1 INTRODUCTION

In this chapter we return to the linear regression model

y D Xþ C " (6.1)

In previous chapters, we assumed " to be N .0N ; h�1 IN ). This statement is really
a combination of several assumptions, some of which we might want to relax.
The assumption that the errors have mean zero is an innocuous one. If a model
has errors with a non-zero mean, this non-zero mean can be incorporated into
the intercept. To be precise, a new model, which is identical to the old except
for the intercept, can be created which does have mean zero errors. However,
the assumption that the covariance matrix of the errors is h�1 IN might not be
innocuous in many applications. Similarly, the assumption that the errors have
a Normal distribution is one which might be worth relaxing in many cases.
In this chapter, we consider several empirically-relevant ways of relaxing these
assumptions and describe Bayesian inference in the resulting models.

All the models in this chapter are based on (6.1) and the following assumptions:

1. " has a multivariate Normal distribution with mean 0N and covariance matrix
h�1�, where � is an N ð N positive definite matrix.

2. All elements of X are either fixed (i.e. not random variables) or, if they are
random variables, they are independent of all elements of " with a probability
density function, p.X j½), where ½ is a vector of parameters that does not
include þ and h.

Note that these assumptions are identical to those made in Chapters 2, 3 and
4, except for the assumption about the error covariance matrix. However, as we
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118 Bayesian Econometrics

shall show in this chapter, assumptions about this error covariance matrix are
closely related to distributional assumptions. Hence, we can use this framework
to free up the assumption that the errors are Normally distributed.

The various models we discuss differ in the precise form that � takes. After
discussing some general theory which is relevant for any choice of �, we exam-
ine several specific choices which arise in many applications. We begin by con-
sidering heteroskedasticity, which is the name given for cases where the error
variances differ across observations. We consider two types of heteroskedastic-
ity: one where its form is known and one where it is unknown. The latter case
allows us to free up the Normality assumption, and we discuss, in particular,
how a certain model with heteroskedasticity of unknown form is equivalent to
a linear regression models with Student-t errors. This model allows us to intro-
duce the concept of a hierarchical prior, which will be used extensively in the
remainder of this book. Subsequently, we consider a case where the errors are
correlated with one another. In particular, we discuss the Normal linear regres-
sion model with autoregressive or AR errors. In addition to being of interest
in and of themselves, AR models are important time series models and provide
us with a convenient starting point for an introduction to time series methods.
The final model considered in this chapter is the seemingly unrelated regres-
sions or SUR model. This is a model which has several equations corresponding
to multiple dependent variables and is a component of models considered in
future chapters.

6.2 THE MODEL WITH GENERAL �

6.2.1 Introduction

Before discussing the likelihood function, prior, posterior and computational
methods, we present a general result which has implications for both interpre-
tation and computation for this model. Since � is a positive definite matrix, it
follows from Appendix A, Theorem A.10 that an N ð N matrix P exists with
the property that P�P 0 D IN . If we multiply both sides of (6.1) by P , we obtain
a transformed model

yŁ D XŁþ C "Ł (6.2)

where yŁ D Py, XŁ D P X and "Ł D P". It can be verified that "Ł is N .0N ;

h�1 IN ). Hence, the transformed model given in (6.2) is identical to the Normal
linear regression model discussed in Chapters 2, 3 and 4. This has two impor-
tant implications. First, if � is known, Bayesian analysis of the Normal linear
regression model with nonscalar error covariance matrix is straightforward. The
researcher can transform her data and carry out Bayesian inference using the
methods of earlier chapters. Secondly, if � is unknown, (6.2) suggests methods
for Bayesian computation. That is, conditional on �, (6.2) implies that the pos-
teriors of þ and h will be of the same form as in previous chapters and, hence,
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LRM with General Error Covariance Matrix 119

these earlier results can be used for derivations relating to þ and h. If the prior
for þ and h is N G.þ; V ; s�2; ¹/, then all the results of Chapters 2 and 3 are
applicable conditional upon � and we can draw upon these results to derive a
posterior simulator. For instance, (3.14) can be used to verify that p.þjy; �/ is
a multivariate t distribution and this, combined with a posterior simulator for
p.�jy/ can be used to carry out posterior inference on þ and �. This is done
in Griffiths (2001) for the noninformative limiting case of the natural conju-
gate prior. In this chapter we use a prior of the independent Normal-Gamma
form of Chapter 4, Section 4.2, and a Gibbs sampler which sequentially draws
from p.þjy; h; �/, p.hjy; þ; �/ and p.�jy; þ; h/ can be set up. The first two of
these posterior conditionals will be Normal and Gamma, as in Section 4.2.2 of
Chapter 4, while p.�jy; þ; h/ depends upon the precise form of �. Hence, the
only new derivations which are required relate to this latter distribution. Similar
considerations hold for priors which impose inequality constraints (see Chapter 4,
Section 4.3).

6.2.2 The Likelihood Function

Using the properties of the multivariate Normal distribution, the likelihood func-
tion can be seen to be:

p.yjþ; h; �/ D h
N
2

.2³/
N
2

j�j� 1
2

²
exp

�
�h

2
.y � Xþ/0��1.y � Xþ/

½¦
(6.3)

or, in terms of the transformed data,

p.yŁjþ; h; �/ D h
N
2

.2³/
N
2

²
exp

�
�h

2
.yŁ � XŁþ/0.yŁ � XŁþ/

½¦
(6.4)

In Chapter 3, we showed how the likelihood function could be written in terms
of OLS quantities (see (3.4)–(3.7)). Here an identical derivation using the trans-
formed model yields a likelihood function written in terms of Generalized Least
Squares1 (GLS) quantities:

¹ D N � k (6.5)bþ.�/ D .XŁ0 XŁ/�1 XŁ0yŁ D .X 0��1 X/�1 X 0��1 y (6.6)

and

s2.�/ D .yŁ � XŁbþ.�//0.yŁ � XŁbþ.�//

¹
(6.7)

D .y � Xbþ.�//0��1.y � Xbþ.�//

¹

1For the reader unfamiliar with the concept of a Generalized Least Squares estimator, any fre-
quentist econometrics textbook such as Green (2000) will provide a detailed discussion. Knowledge
of this material is not necessary to understand the material in this chapter.
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120 Bayesian Econometrics

as:

p.yjþ; h; �/ D 1

.2³/
N
2

ð
²

h
1
2 exp

�
�h

2
.þ � bþ.�//0 X 0��1 X .þ � bþ.�//

½¦
(6.8)

ð
²

h
¹
2 exp

�
� h¹

2s.�/�2

½¦

6.2.3 The Prior

Here we use an independent Normal-Gamma prior for þ and h (see Chapter 4,
Section 4.2.1), and use the general notation, p.�/, to indicate the prior for �. In
other words, the prior used in this section is

p.þ; h; �/ D p.þ/p.h/p.�/

where

p.þ/ D fN .þjþ; V / (6.9)

and

p.h/ D fG.hj¹; s�2/ (6.10)

6.2.4 The Posterior

The posterior is proportional to the prior times the likelihood and is of the form

p.þ; h; �jy/ / p.�/

ð
²

exp

�
�1

2
fh.yŁ � XŁþ/0.yŁ � XŁþ/

C .þ � þ/0V �1.þ � þ/g
½¦

(6.11)

ðh
NC¹�2

2 exp

�
� h¹

2s�2

½
This posterior is written based on the likelihood function expressed as in (6.4).
Alternative expressions based on (6.3) or (6.8) can be written out. However, we
do not do this, since this joint posterior density for þ, h and � does not take the
form of any well-known and understood density and, hence, cannot be directly
used in a simple way for posterior inference. At least some of the conditionals
of the posterior are, however, simple. Proceeding in the same manner as in
Chapter 4 (see (4.4)–(4.10) and surrounding discussion), it can be verified thatCo
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LRM with General Error Covariance Matrix 121

the posterior of þ, conditional on the other parameters of the model is multivariate
Normal:

þjy; h; � ¾ N .þ; V / (6.12)

where
V D .V �1 C h X 0��1 X/�1 (6.13)

and
þ D V .V �1þ C h X 0��1 Xbþ.�// (6.14)

The posterior for h conditional on the other parameters in the model is Gamma:

hjy; þ; � ¾ G.s�2; ¹/ (6.15)

where
¹ D N C ¹ (6.16)

and

s2 D .y � Xþ/0��1.y � Xþ/ C ¹s2

¹
(6.17)

The posterior for � conditional on þ and h has a kernel of the form

p.�jy; þ; h/ / p.�/j�j� 1
2

²
exp

�
�h

2
.y � Xþ/0��1.y � Xþ/

½¦
(6.18)

In general, this conditional posterior does not take any easily recognized form.
In future sections of this chapter we consider particular forms for � and derive
appropriate posterior simulators. At this stage, we only note that, if we could
take posterior draws from p.�jy; þ; h/, then a Gibbs sampler for this model
could be set up in a straightforward manner, since p.þjy; h; �/ is Normal and
p.hjy; þ; �/ is Gamma.

6.3 HETEROSKEDASTICITY OF KNOWN FORM

6.3.1 Introduction

Heteroskedasticity is said to occur if the error variances differ across observa-
tions. The models in previous chapters all had error variances which were iden-
tical across observations and were, thus, homoskedastic. A couple of examples
will serve to motivate how heteroskedasticity might arise in practice. Consider
first a microeconomic example where the dependent variable is company sales.
If errors are proportionate to firm size, then errors for small firms will tend to
smaller than those for large firms. Secondly, heteroskedasticity might arise in a
study involving data from many countries. Since developed countries have better
agencies for collecting statistics than developing countries, it might be the case
that errors are smaller in the former countries.Co
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122 Bayesian Econometrics

In terms of our regression model, heteroskedasticity occurs if

� D

26664
!1 0 Ð Ð 0
0 !2 0 Ð Ð
Ð 0 Ð Ð Ð
Ð Ð Ð Ð 0
0 Ð Ð 0 !N

37775 (6.19)

In other words, the Normal linear regression model with heteroskedastic errors is
identical to that studied in Chapters 2–4, except that we now assume var."i / D
h�1!i for i D 1; : : : ; N :

The examples above indicate that we often know (or at least suspect), what
form this heteroskedasticity will take. For instance, !i might depend upon wheth-
er firm i is small or large or whether country i is developing or developed. Here
we will assume that

!i D h.zi ; Þ/ (6.20)

where h./ is a positive function which depends on parameters Þ and a p-vector of
data, zi . zi may include some or all of the explanatory variables, xi . A common
choice for h./, which ensures that the error variances are positive is:

h.zi ; Þ/ D .1 C Þ1zi1 C Þ2zi2 C Ð Ð Ð C Þpzip/2 (6.21)

but the discussion of this section works for other choices.
The prior, likelihood and posterior for this model are simply those in Section 6.2

with the expression for � given in (6.19) plugged in. Accordingly, we do not write
them out here. Note, however, that in the present section � depends upon Þ and,
hence, the formulae below are written as depending on Þ.

To carry out Bayesian inference in the present heteroskedastic model, a pos-
terior simulator is required. The previous discussion suggests that a Metropolis-
within-Gibbs algorithm (see Section 5.5.3) might be appropriate. In particular, as
noted in (6.12) and (6.15), p.þjy; h; Þ/ is Normal and p.hjy; þ; Þ/ is Gamma,
and we require only a method for taking draws from p.Þjy; þ; h/ to have a
complete posterior simulator. Unfortunately, if we plug (6.19) and (6.20) into
(6.18) to obtain an expression for p.Þjy; þ; h/ the result does not take the form
of any convenient density. Nevertheless, a Metropolis–Hastings algorithm can
be developed. In the empirical illustration which follows, a Random Walk Chain
Metropolis–Hastings algorithm (see Section 5.5.2 of Chapter 5) is used although
other algorithms are possible. Bayes factors for any hypothesis of interest (e.g.
Þ1 D Ð Ð Ð D Þp D 0 which is the hypothesis that heteroskedasticity does not
exist) can be calculated using the Gelfand–Dey approach. Alternatively, poste-
rior predictive p-values or HPDIs can be calculated to shed light on the fit and
appropriateness of the model. Predictive inference in this model can be carried
out using the strategy outlined in Chapter 4, Section 4.2.6.
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LRM with General Error Covariance Matrix 123

6.3.2 Empirical Illustration: Heteroskedasticity of a Known Form

We use the house price data set introduced in Chapter 3, to illustrate the use
of Gibbs sampling in the Normal linear regression model with heteroskedas-
ticity of known form. The reader is referred to Section 3.9 of Chapter 3 for
a precise description of the dependent and explanatory variables for this data
set. We assume the heteroskedasticity takes the form given in (6.21) and that
zi D .xi2; : : : ; xik/

0. The priors for þ and h are given in (6.9) and (6.10) and we
use the same values for hyperparameters as in Chapter 4, Section 4.2.7. We use
a noninformative prior for Þ of the form

p.Þ/ / 1

Note that this prior is improper and, hence, we cannot calculate meaningful Bayes
factors for hypotheses involving the elements of Þ. Accordingly, we present 95%
HPDIs along with posterior means and standard deviations in Table 6.1.

The posterior simulator is a Metropolis-within-Gibbs algorithm, with draws of
þ and h taken from (6.12) and (6.15), respectively. Draws from p.Þjy; þ; h/ are
taken using a Random Walk Chain Metropolis–Hastings algorithm with a Normal
increment random variable (see Chapter 5, (5.10)). p.Þjy; þ; h/ is given in (6.18)
with (6.21) providing the precise form for �. Equation (6.18), evaluated at old and
candidate draws, is used to calculate the acceptance probability (see Chapter 5,
(5.11)). The variance of the proposal density, labelled 6 in (5.12), is chosen by
first setting 6 D cI and experimenting with different values of the scalar c until
a value is found which yields reasonable acceptance probabilities. The posterior
simulator is then run using this value to yield an estimate of the posterior variance
of Þ, ̂var.Þjy/. We then set 6 D c ̂var.Þjy/ and experiment with different values
of c until we find one which yields an average acceptance probability of roughly
0:50. Then a final long run of 30 000 replications, with 5000 burn-in replications

Table 6.1 Posterior Results for þ; h and Þ

Standard
Mean Deviation 95% HPDI

þ1 �5453:92 2976:04 [�10 310, 557]
þ2 6:12 0:40 [5.42, 6.82]
þ3 3159:52 1025:63 [1477, 4850]
þ4 14 459:34 1672:43 [11 742, 17 224]
þ5 7851:11 939:34 [6826, 9381]
h 1:30 ð 10�7 4:05 ð 10�8 [7 ð 10�8; 2 ð 10�7]
Þ1 5:49 ð 10�4 1:36 ð 10�4 [3 ð 10�4; 8 ð 10�4]
Þ2 0:68 0:32 [0.21, 1.26]
Þ3 0:70 0:42 [0.08, 1.40]
Þ4 �0.35 0:33 [�0.89, 0.18]
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124 Bayesian Econometrics

discarded, is taken. MCMC diagnostics indicate convergence of the Metropolis-
within-Gibbs algorithm and numerical standard errors indicate an approximation
error which is small relative to posterior standard deviations of all parameters.

Table 6.1 indicates that heteroskedasticity does seem to exist for this data set.
That is, the 95% HPDIs do not include zero for Þ1; Þ2 and Þ3 indicating that lot
size, number of bedrooms and number of bathrooms have significant explanatory
power in the equation for heteroskedasticity. The fact that all of these coefficients
are positive indicates that the error variance for large houses tends to be bigger
than for small houses. In previous chapters, we ignored heteroskedasticity when
working with this data set. To see what effect this omission had, you may wish to
compare the results in Table 6.1 with those in Table 4.1. The latter table contains
results for the homoskedastic version of the model, but uses the same data and the
same prior for þ and h. It can be seen that including heteroskedasticity has some
effect on the posterior of þ. For instance, the posterior mean of þ4 was 16 133 in
the homoskedastic model and is 14 459 in the heteroskedastic one. However, for
many purposes, such differences might be fairly small and the researcher might
conclude that the incorporation of heteroskedasticity has not had an enormous
effect on results relating to þ.

6.4 HETEROSKEDASTICITY OF AN UNKNOWN FORM:
STUDENT-t ERRORS

6.4.1 General Discussion

In the previous section, we assumed that the heteroskedasticity was of a form
given by (6.20). The question arises as to how to proceed if you suspect het-
eroskedasticity is present, but of unknown form. In other words, you are will-
ing to assume (6.19), but unwilling to assume a functional form as in (6.20).
With N observations and N C k C 1 parameters to estimate (i.e. þ; h and ! D
.!1; : : : ; !N /0), treatment of heteroskedasticity of unknown form may sound
like a difficult task. However, as we shall see, it is not too difficult to extend the
techniques of the previous sections of this chapter to be applicable to this model.
Furthermore, the method developed to handle this case is quite important for two
reasons. Firstly, the method involves the use of a hierarchical prior. This is a
concept we will use again and again throughout the remainder of this book. Hier-
archical priors have played a big role in many recent developments in Bayesian
statistical theory and are gradually becoming more popular in econometrics as
well. They are commonly used as a way of making flexible, parameter-rich mod-
els more amenable to statistical analysis.2 Secondly, this model also allows us to

2Frequentist econometricians also work with models that are hierarchical in structure and very
similar to ones discussed in this book. However, the frequentist statistical theory surrounding these
models is often quite difficult. Accordingly, Bayesian methods are particularly popular in this area
of the statistical literature.
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LRM with General Error Covariance Matrix 125

introduce concepts relating to flexible econometric modelling (see Chapter 10)
and, in particular, allows us to free up the assumption of Normal errors that we
have used so far.

We begin by eliciting p.!/, the prior for the N -dimensional vector !. As in
previous chapters, it proves convenient to work with error precisions rather than
variances and, hence, we define ½ � .½1; ½2; : : : ; ½N /0 � .!�1

1 ; !�1
2 ; : : : ; !�1

N /0.
Consider the following prior for ½:

p.½/ D
NY

iD1

fG.½i j1; ¹½/ (6.22)

Note that the prior for ½ depends upon a hyperparameter, ¹½, which is chosen by
the researcher and assumes each ½i comes from the same distribution. In other
words, (6.22) implies that the ½i s are i.i.d. draws from the Gamma distribution.
This assumption (or something similar) is necessary to deal with the problems
caused by the high-dimensionality of ½. Intuitively, if we were to simply treat
½1; : : : ; ½N as N completely independent and unrestricted parameters, we would
not have enough observations to estimate each one of them. Equation (6.22) puts
some structure which allows for estimation. It allows for all the error variances
to be different from one another, but says they are all drawn from the same
distribution. Thus, we can have a very flexible model, but enough structure is
still imposed to allow for statistical inference.

You may be wondering why we chose the particular form given in (6.22). For
instance, why should the ½i s be i.i.d. draws from the Gamma distribution with
mean 1:0? Rather remarkably, it turns out that this model, with likelihood given
by (6.3) and prior given by (6.9), (6.10) and (6.22) is exactly the same as the
linear regression model with i.i.d. Student-t errors with ¹½ degrees of freedom.
In other words, if we had begun by assuming

p."i / D ft ."i j0; h�1; ¹½/ (6.23)

for i D 1; : : : ; N , derived the likelihood and used (6.9) and (6.10) as priors for
þ and h, respectively, we would have ended up with exactly the same posterior.
We will not formally prove this statement and the interested reader is referred
to Geweke (1993) for proofs and further explanation. Note, however, the power
and convenience of this result. The Student-t distribution is similar to the Nor-
mal, but has fatter tails and is more flexible. In fact, the Normal distribution is a
special case of the Student-t which occurs as ¹½ ! 1. Thus, we have a model
that allows for a more flexible error distribution, but we have achieved this result
without leaving our familiar Normal linear regression model framework. Fur-
thermore, we can draw on the computational methods derived above to develop
a posterior simulator for the linear regression model with independent Student-t
errors. For this reason, an explicit statement of the likelihood function for this
model is not given here.

In Chapter 10 we discuss several ways of making models more flexible. How-
ever, it is worthwhile briefly noting that the model discussed here involves a
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126 Bayesian Econometrics

mixture of Normals distribution of a particular sort. Intuitively, if a Normal
distribution is too restrictive, you can create a more flexible distribution by taking
a weighted average of more than one Normal distribution. As more and more
Normals are mixed, the distribution becomes more and more flexible and, as
discussed in Chapter 10, can approximate any distribution to a high degree of
accuracy. Thus, mixtures of Normals models are a powerful tool for use when
economic theory does not suggest a particular form for the likelihood function and
you wish to be very flexible. Our treatment of heteroskedasticity of an unknown
form is equivalent to a scale mixture of Normals. This means that the assump-
tion that "i are independent N .0; h�1½�1

i / with prior for ½i given in (6.22) is
equivalent to the assumption that the error distribution is a weighted average (or
mixture) of different Normal distributions which have different variances (i.e.
different scales) but the same means (i.e. all errors have mean zero). When this
mixing is done using fG.½i j1; ¹½/ densities, the mixture of Normals ends up
being equivalent to the t distribution. However, using densities other than the
fG.½i j1; ¹½/ will yield other distributions more flexible than the Normal. See
Chapter 10 for further details.

The previous discussion assumed that ¹½ was known. In practice, this would
usually not be a reasonable assumption, and it is, thus, desirable to treat it as
an unknown parameter. In the Bayesian framework, every parameter requires
a prior distribution and, at this stage, we will use the general notation p.¹½/.
Note that, if we do this, the prior for ½ is specified in two steps, the first being
(6.22), the other being p.¹½/. Alternatively, the prior for ½ can be written as
p.½j¹½/p.¹½/. Priors written in two (or more) steps in this way are referred to
as hierarchical priors. Writing a prior as a hierarchical prior is often a conve-
nient way of expressing prior information and many of the models discussed
in future chapters will be written in this way. However, we do stress the con-
venience aspect of hierarchical priors. It is never necessary to use a hierar-
chical prior, since the laws of probability imply that every hierarchical prior
can be written in a non-hierarchical fashion. In the present case, the result
p.½/ D R

p.½j¹½/p.¹½/d¹½ could be used to derive the non-hierarchical version
of our prior for ½.

In all of the previous empirical illustrations, we have presented posterior means
as point estimates of parameters and posterior standard deviations as measures
of the uncertainty associated with the point estimates. However, as mentioned
in Chapter 1, means and standard deviations do not exist for all valid probabil-
ity density functions. The present model is the first one we have considered
where means and standard deviations do not necessarily exist. In particular,
Geweke (1993) shows that if you use a common noninformative prior for þ

(i.e. p.þ/ / 1 on the interval .�1; 1/), then the posterior mean does not
exist, unless p.¹½/ is zero on the interval .0; 2]. The posterior standard devi-
ation does not exist unless p.¹½/ is zero on the interval .0; 4]. Hence, the
researcher who wants to use a noninformative prior for þ should either use
a prior which excludes small values for ¹½ or present posterior medians and
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LRM with General Error Covariance Matrix 127

interquartile ranges (which will exist for any valid p.d.f.). With an informative
Normal prior for þ like (6.9), the posterior mean and standard deviation of þ

will exist.
It is also risky to use a noninformative prior for ¹½. A naive researcher who

wishes to be noninformative might use an improper Uniform prior:

p.¹½/ / 1 for ¹½ 2 .0; 1/

thinking that it would allocate equal prior weight to every interval of equal
length. But the Student-t distribution with ¹½ degrees of freedom approaches the
Normal distribution as ¹½ ! 1. In practice, the Student-t is virtually identical
to the Normal for ¹½ > 100. Our naive ‘noninformative’ prior allocates virtually
all its weight to this region (i.e. p.¹½�100/

p.¹½>100/
D 0). So this prior, far from being

noninformative, is extremely informative: it is saying the errors are Normally
distributed! This illustrates one of the problems with trying to come up with
noninformative priors. There is a large Bayesian literature on how to construct
noninformative priors (Zellner, 1971, provides an introduction to this). A detailed
discussion of this issue is beyond the scope of the present book (although see
Chapter 12, Section 12.3). However, it is worth noting that extreme care must
be taken when trying to elicit a noninformative prior.

6.4.2 Bayesian Computation

In this subsection, we develop a Gibbs sampler for posterior analysis of þ; h; ½

and ¹½. The Gibbs sampler requires the derivation of the full conditional pos-
terior distributions of these parameters. We have already derived some of these
as p.þjy; h; ½/ and p.hjy; þ; ½/ are given in (6.12) and (6.15), respectively.3

Hence, we focus on p.½jy; þ; h; ¹½/ and p.¹½jy; þ; h; ½/. The former of these
can be derived by plugging the prior given in (6.22) into the general form for
the conditional posterior given in (6.18). An examination of the resulting den-
sity shows that the ½i s are independent of one another (conditional on the other
parameters of the model) and each of the conditional posteriors for ½i has the
form of a Gamma density. Formally, we have

p.½jy; þ; h; ¹½/ D
NY

iD1

p.½i jy; þ; h; ¹½/ (6.24)

and

p.½i jy; þ; h; ¹½/ D fG

 
½i j ¹½ C 1

h"2
i C ¹½

; ¹½ C 1

!
(6.25)

Note that, conditional on knowing þ, "i can be calculated and, hence, the param-
eters of the Gamma density in (6.25) can be calculated in the Gibbs sampler.

3Formally, the full conditionals to be used in the Gibbs sampler should be p.þjy; h; ½; ¹½/
and p.hjy; þ; ½; ¹½/. However, conditional on ½, ¹½ adds no new information and, thus,
p.þjy; h; ½; ¹½/ D p.þjy; h; ½/ and p.hjy; þ; ½; ¹½/ D p.hjy; þ; ½/.
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128 Bayesian Econometrics

Up until now, we have said nothing about the prior for ¹½, and its precise form
has no relevance for the posterior conditional for the other parameters. However,
the form of p.¹½/ does, of course, affect p.¹½jy; þ; h; ½/ and, hence, we must
specify it here. Since we must have ¹½ > 0, we use an exponential distribution
for the prior. As noted in Appendix B, Theorem B.7, the exponential density is
simply the Gamma with two degrees of freedom. Hence, we write

p.¹½/ D fG.¹½j¹½; 2/ (6.26)

Other priors can be handled with small changes in the following posterior simu-
lation algorithm.

p.¹½jy; þ; h; ½/ is relatively easy to derive, since ¹½ does not enter the like-
lihood and it can be confirmed that p.¹½jy; þ; h; ½/ D p.¹½j½/. It follows from
Bayes theorem that

p.¹½j½/ / p.½j¹½/p.¹½/

and, thus, the kernel of the posterior conditional of ¹½ is simply times (6.22)
times (6.26). Thus, we obtain

p.¹½jy; þ; h; ½/ /
�¹½

2

� N¹½
2

0
�¹½

2

��N
exp.��¹½/ (6.27)

where

� D 1

¹½

C 1

2

NX
iD1

[ln.½�1
i / C ½i ]

This density is a non-standard one. Hence, we will use a Metropolis–Hastings
algorithm to take draws from (6.27). However, it should be mentioned in passing
that Geweke (1993) recommends use of another useful computational technique
called acceptance sampling. This technique is very useful when the non-standard
distribution that the researcher wishes to draw from is univariate and can be
bounded. We will not discuss it here, but Geweke (1993) provides more detail
on acceptance sampling as it relates to the present model (see also Chapter 12,
Section 12.1). Devroye (1986) offers a thorough discussion of acceptance sam-
pling in general.

For many hypotheses (e.g. þj D 0) the Savage–Dickey density ratio can
be used for model comparison. It can be calculated as described in Chapter 4,
Section 4.2.5. However, not all hypotheses are easily calculated using the Sav-
age–Dickey ratio. For instance, in many cases you might be interested in seeing
whether there is any evidence of departures from Normality. In this case, you
would wish to compare M1 : ¹½ ! 1 to M2 : ¹½ is finite. These models do
not easily fit in the nested model comparison framework for which the Sav-
age–Dickey density ratio is suitable. However, the Bayes factor comparing these
two models can be calculated using the Gelfand–Dey approach. Note that this
would require a posterior simulator for each model (i.e. the posterior simulator
in Chapter 4, Section 4.2 for M1 and the one described in this section for M2).
Alternatively, posterior predictive p-values or HPDIs can be calculated to shed
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LRM with General Error Covariance Matrix 129

light on the fit and appropriateness of the model. Predictive inference in this
model can be carried out using the strategy outlined in Chapter 4, Section 4.2.6.

6.4.3 Empirical Illustration: The Regression Model with Student-t Errors

We return to our familiar house price data set introduced in Chapter 3 to illus-
trate the use of Gibbs sampling in the linear regression model with independent
Student-t errors (or, equivalently, the Normal linear regression model with het-
eroskedasticity of unknown form). The reader is referred to Section 3.9 for a
precise description of the dependent and explanatory variables for this data set.
The priors for þ and h are given in (6.9) and (6.10) and we use the same val-
ues for hyperparameters as in Chapter 4, Section 4.2.7. The prior for ¹½ depends
upon the hyperparameter ¹½, its prior mean. We set ¹½ D 25, a value which
allocates substantial prior weight both to very fat-tailed error distributions (e.g.
¹½ < 10), as well as error distributions which are roughly Normal (e.g. ¹½ > 40).

The posterior simulator is a Metropolis-within-Gibbs algorithm, with draws of
þ and h taken from (6.12) and (6.15), respectively. Draws from p.½jy; þ; h; ¹½/

are taken using (6.25). For p.¹½jy; þ; h; ½/, we use a Random Walk Chain
Metropolis–Hastings algorithm with a Normal increment random variable (see
Chapter 5, (5.10)) . Equation (6.27), evaluated at old and candidate draws, is used
to calculate the acceptance probability (see Chapter 5, (5.11)). Candidate draws
of ¹½ which are less than or equal to zero have the acceptance probability set to
zero. The variance of the proposal density, labelled 6 in (5.12), is chosen by first
setting 6 D c and experimenting with different values of the scalar c until a value
is found which yields reasonable acceptance probabilities. The posterior simula-
tor is then run using this value to yield an estimate of the posterior variance of
¹½, ̂var.¹½jy/. We then set 6 D c ̂var.¹½jy/ and experiment with different values
of c until we find one which yields an average acceptance probability of roughly
0:50. Then a final long run of 30 000 replications, with 5000 burn-in replications
discarded, is taken. MCMC diagnostics indicate convergence of the Metropolis-
within-Gibbs algorithm and numerical standard errors indicate an approximation
error which is small relative to posterior standard deviations of all parameters.

Table 6.2 contains posterior results for the key parameters and it can be seen
that, although posteriors for the elements of þ are qualitatively similar to those
presented in Tables 4.1 and 6.1, the posterior for ¹½ indicates the errors exhibit
substantial deviations from Normality. Since this crucial parameter is univariate,
we also plot a histogram approximation to its posterior. Figure 6.1 indicates that
p.¹½jy/ has a shape which is quite skewed and confirms the finding that virtually
all of the posterior probability is allocated to small values for the degrees of
freedom parameter. Note, however, that there is virtually no support for extremely
small values which would imply extremely fat tails. Remember that the Cauchy
distribution is the Student-t with ¹½ D 1. It has such fat tails that its mean does
not exist. There is no evidence for this sort of extreme behavior in the errors for
the present data set.
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130 Bayesian Econometrics

Table 6.2 Posterior Results for þ and ¹½

Standard
Mean Deviation 95% HPDI

þ1 �413:15 2898:24 [�5153, 4329]
þ2 5:24 0:36 [4.65, 5.83]
þ3 2118:02 972:84 [501, 3709]
þ4 14 910:41 1665:83 [12 188, 17 631]
þ5 8108:53 955:74 [6706, 9516]
¹½ 4:31 0:85 [3.18, 5.97]

2 3 4 5 6
Degrees of freedom

7 8 9

Figure 6.1 Posterior Density for Degrees of Freedom

6.5 AUTOCORRELATED ERRORS

6.5.1 Introduction

Many time series variables are correlated over time due to factors such as habit
persistence or the time taken for adjustments to take place. This correlation
between values of a variable at different times can spill over to the error. It
is thus desirable to consider forms for the error covariance matrix which allow
for this. In earlier chapters we assumed " to be N .0N ; h�1 IN ). In the previous
sections of the present chapter, we relaxed this to allow for the error covariance
matrix to be diagonal. However, so far, we have always assumed the errors to
be uncorrelated with one another (i.e. E."i "j / D 0 for i 6D j). In this section, we
consider a model which relaxes this assumption.

Following common practice, we will use a subscript t to indicate time. That
is, yt for t D 1; : : : ; T indicates observations on the dependent variable from
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LRM with General Error Covariance Matrix 131

period 1 through T (e.g. annual observations on GDP from 1946–2001). A simple
manner of allowing for the errors to be correlated is to assume they follow an
autoregressive process of order 1 or AR(1) process:

"t D ²"t�1 C ut (6.28)

where ut is i.i.d. N .0; h�1/. This specification allows for the error in one period
to depend on that in the previous period.

The time series literature has developed a myriad of tools to aid in a more
formal understanding the properties of various time series models and we digress
briefly to introduce a few of them here using a general notation, zt to indicate
a time series.4 In this section, we set zt D "t , but the concepts are generally
relevant and will be used in later chapters. It is standard to assume that the
process generating the time series has been running from time period �1 and
will run until period 1. The econometrician observes this process for periods
t D 1; : : : ; T . zt is said to be covariance stationary if, for every t and s:

E.zt / D E.zt�s/ D ¼

var.zt / D var.zt�s/ D �0

and
cov.zt ; zt�s/ D �s

where ¼, �0 and �s are all finite. In words, a time series is covariance stationary
if it has a constant mean, variance and the covariance between any two observa-
tions depends only upon the number of periods apart they are. Many time series
variables in economics do seem to be stationary or, if not, can be differenced to
stationarity. The first difference of zt is denoted by 1zt and is defined by

1zt D zt � zt�1

In a similar fashion, we can define mth order differences for m > 1 as

1mzt D 1m�1zt � 1m�1zt�1

To understand the economic relevance of differencing, suppose that zt is the
log of the price level, then 1zt is (approximately) the percentage change in
prices which is inflation. 12zt would then be the percentage change in the
rate of inflation. Any or all of these might be important in a macroeconomic
model.

A common tool for examining the properties of stationary time series vari-
ables is �s which is referred to as the autocovariance function. Closely related
is the autocorrelation function, which calculates correlations between observa-
tions s periods apart (i.e. it is defined as �s

�0
for s D 0; : : : ; 1). These are

both functions of s and it is common to plot either of them to see how they

4Space precludes a detailed discussion of time series methods. Bauwens, Lubrano and Richard
(1999) provide an excellent Bayesian discussion of time series methods and the reader is referred to
this book for more detail. Enders (1995) is a fine non-Bayesian book.
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132 Bayesian Econometrics

change as s increases. For instance, with macroeconomic variables we typically
find autocorrelation functions decrease with s since recent happenings have
more impact on current macroeconomic conditions than things that happened
long ago.

Let us now return to the AR(1) process for the errors given in (6.28). To figure
out its properties it is convenient to write "t in terms of ut�s for s D 0; : : : ; 1.
This can be done by noting "t�1 D ²"t�2 C ut�1 and substituting this expression
into (6.28), yielding

"t D ²2"t�2 C ²ut�1 C ut

If we then substitute in the expression for "t�2 we obtain an equation involving
"t�3 which we can substitute in for. Successively substituting in expressions for
"t�s in this manner, (6.28) can be written as

"t D
1X

sD0

²sut�s (6.29)

Written in this form, you can see that problems will occur if you try and calculate
the mean, variance and covariance of "t since ²s will become infinite if j²j > 1.
Even if ² D 1, such calculations will involve infinite sums of finite terms. In
fact, j²j < 1 is required for the time series to be stationary.

If we impose j²j < 1 it can be confirmed that E."t / D 0

�0 D var."t / D h�1
1X

sD0

²2s D 1

h.1 � ²2/

and

�s D cov."t ; "t�s/ D ²s

h.1 � ²2/

Note that, since j²j < 1, the autocovariance function �s declines as s increases.
Intuitively, with an AR(1) process, the influence of the past gradually dies away.

These results can be used to write the covariance matrix of " as h�1�,
where

� D 1

1 � ²2

266664
1 ² ²2 Ð ²T �1

² 1 ² Ð Ð
²2 ² Ð Ð ²2

Ð Ð Ð Ð ²

²T �1 Ð ²2 ² 1

377775 (6.30)

The AR(1) model can be extended to include more past time periods or lags.
We can define the autoregressive process of order p or AR(p) process as

"t D ²1"t�1 C Ð Ð Ð C ²p"t�p C ut (6.31)

and methods similar to those above can be used to calculate the mean, variance
and autocovariance function. As will be shown in the next section, we do not
need to know the exact form of the autocovariance function in order to do
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Bayesian inference with the AR(p) process. Hence, we do not write it out here.
The interested reader is referred to a time series book such as Enders (1995) for
detail. Suffice it to note here that the AR(p) process has similar properties to the
AR(1), but is more flexible.

This is a convenient place to introduce some more time series notation. The
lag operator is denoted by L and has the property that L"t D "t�1 or, more
generally, Lm"t D "t�m . The AR(p) model can thus be written as

.1 � ²1L � Ð Ð Ð � ²p L p/ "t D ut

or
².L/"t D ut

where ².L/ D .1 � ²1L � Ð Ð Ð � ²p L p/ is a polynomial of order p in the lag
operator. It can be verified that an AR(p) process is stationary if the roots of
the equation ².z/ D 0 are all greater than one in absolute value. For future
reference, define ² D .²1; : : : ; ²p/0 and let 8 denote the stationary region for
this model.

6.5.2 Bayesian Computation

A posterior simulator which allows for Bayesian inference in the Normal linear
regression model with AR(p) errors can be developed by adapting the formulae
for the general case with � unspecified given in (6.12), (6.15) and (6.18). If
we make one approximation, these posterior conditionals assume a simple form.
This approximation involves the treatment of the initial conditions. To understand
what is meant by this statement, consider how we would transform the model as
in (6.2). We can do this by working out the form of � when AR(p) errors are
present and then deriving the matrix P such that P�P 0 D I . Alternatively, let
us write the regression model as

yt D x 0
t þ C "t (6.32)

where xt D .1; xt2; : : : ; xtk/0. Multiplying both sides of (6.32) by ².L/ and
defining yŁ

t D ².L/yt and xŁ
t D ².L/xt we obtain

yŁ
t D xŁ

t
0þ C ut (6.33)

We have assumed that ut is i.i.d. N .0; h�1/ and, thus, the transformed model
given in (6.33) is simply a Normal linear regression model with i.i.d. errors.
Note, however, what happens to this transformation for values of t � p. yŁ

1 , for
instance, depends upon y0; : : : ; y1�p. Since our data runs from t D 1; : : : ; T ,
these so-called initial conditions, y0; : : : ; y1�p; are not observed. The treatment
of initial conditions is a subtle issue, especially if the AR process is non-stationary
or nearly so. The interested reader is referred to Bauwens, Lubrano and Richard
(1999) or Schotman (1994) for more detail. Here, we will assume stationarity of
errors, so the treatment of initial conditions is of less importance. Accordingly,
we will follow a common practice and work with the likelihood function based
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134 Bayesian Econometrics

on data from t D p C 1; : : : ; T rather than t D 1; : : : ; T . Provided p is small
relative to T , this will result in an approximate likelihood which is quite close to
the true likelihood. Since yŁ

t and xŁ
t for t D p C 1; : : : ; T do not depend upon

unobserved lagged values, the transformation given in (6.33) can be done in a
straightforward fashion.

To keep the notation as simple as possible, we will not introduce a new notation
for the likelihood, posterior, etc. for data from t D p C 1; : : : ; T . Instead, for the
remainder of this section, we will simply interpret y; yŁ; " and "Ł as .T � p/-
vectors (i.e. the first p elements have been removed). X and XŁ will be .T � p/ðk
matrices. With these changes, a Gibbs sampling algorithm can be derived in
a straightforward fashion using previous results. Intuitively, p.þjy; h; ²/ and
p.hjy; þ; ²/ are given in (6.12) and (6.15). p.²jy; þ; h/ can be derived by noting
that, conditional on þ and h, "t for t D pC1; : : : ; T is known and (6.31) is simply
a Normal linear regression model (with known error variance) with coefficients
given by ². Thus, standard Bayesian results from previous chapters can be used
to derive p.²jy; þ; h/.

Formally, using the independent Normal-Gamma prior for þ and h given in
(6.9) and (6.10), the results of Section 6.2 can be modified to the present case as

þjy; h; ² ¾ N .þ; V / (6.34)

where
V D .V �1 C h XŁ0 XŁ/�1 (6.35)

and
þ D V .V �1þ C h XŁ0yŁ/ (6.36)

The posterior for h conditional on the other parameters in the model is Gamma:

hjy; þ; ² ¾ G.s�2; ¹/ (6.37)

where
¹ D T � p C ¹ (6.38)

and

s2 D .yŁ � XŁþ/0.yŁ � XŁþ/ C ¹ s2

¹
(6.39)

The posterior for ² depends upon its prior which, of course, can be any-
thing which reflects the researcher’s non-data information. Here we assume it is
multivariate Normal, truncated to the stationary region. That is,

p.²/ / fN .²j²; V ²/1.² 2 8/ (6.40)

where 1.² 2 8/ is the indicator function which equals 1 for the stationary region
and zero otherwise. With this prior, it is straightforward to derive

p.²jy; þ; h/ / fN .²j²; V ²/1.² 2 8/ (6.41)
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LRM with General Error Covariance Matrix 135

where
V ² D .V �1

² C hE 0E/�1 (6.42)

² D V ².V �1
² ² C hE 0"/ (6.43)

and E is a .T � p/ ð k matrix with t th row given by ."t�1; : : : ; "t�p/.
The Gibbs sampler involves sequentially drawing from (6.34), (6.37) and

(6.41). The fact that (6.41) is truncated multivariate Normal, rather than sim-
ply multivariate Normal adds a slight complication. However, drawing from
the truncated multivariate Normal distribution can be done by drawing from
the untruncated variant and simply discarding the draws which fall outside the
stationary region. Provided ² lies within (or not too far outside) the station-
ary region, this strategy should work well. Alternatively, a Metropolis–Hastings
algorithm can be derived or the methods of Geweke (1991) for drawing from
the truncated multivariate Normal can be used. Predictive inference in this model
can be carried out using the strategy outlined in Chapter 4, Section 4.2.6. Poste-
rior predictive p-values or HPDIs can be calculated to shed light on the fit and
appropriateness of the model. Bayes factors for any hypothesis of interest can
be calculated using either the Savage–Dickey density ratio or the Gelfand–Dey
approach. The fact that (6.41) provides only the kernel of p.²jy; þ; h/ makes
the use of the Savage–Dickey density ratio a little more complicated. Remember
(see Chapter 4, Section 4.2.5) that the Savage–Dickey density ratio requires you
to know the complete densities (not just the kernel), p.²jy; þ; h/ or p.²jy/. For
p D 1, the integrating constant can be easily calculated since p.²jy; þ; h/ is a
univariate truncated Normal and the properties of this univariate density are well
known (see Poirier, 1995, p. 115). However, for p > 1 the stationary region is
nonlinear and p.²jy; þ; h/ is harder to work with analytically. Nevertheless, it is
straightforward to calculate the necessary integrating constant through posterior
simulation. That is, the density corresponding to (6.41) is

p.²jy; þ; h/ D fN .²j²; V ²/1.² 2 8/R
8

fN .²j²; V ²/d²

A common posterior simulator involves drawing from fN .²j²; V ²/ and dis-
carding draws outside the stationary region. But,

R
8

fN .²j²; V ²/d² is sim-
ply the proportion of draws retained. This can be estimated by, at every pass
through the Gibbs sampler, calculating the number of rejected draws before
an acceptable one is found. 1 � R

8
fN .²j²; V ²/d² is approximated by the

number of rejected draws divided by the number of rejected draws plus one.
As the number of Gibbs replications goes to infinity, the approximation error
will go to zero. In general, the integrating constant of any truncated density
can always be found by drawing from its untruncated counterpart and calcu-
lating the proportion of draws within the truncated region. Depending on the
prior used, such a strategy may be necessary for calculating its integrating
constant.
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136 Bayesian Econometrics

6.5.3 Empirical Illustration: The Normal Regression Model
with Autocorrelated Errors

To illustrate Bayesian inference in the Normal regression model with autocor-
related errors, we use a data set pertaining to baseball. The dependent variable
is the winning percentage of the New York Yankees baseball team every year
between 1903 and 1999. Interest centers on explaining the Yankees’ performance
using various measures of team offensive and defensive performance. Thus

ž yt = winning percentage (PCT) in year t = wins/(wins + losses),
ž xt2 = team on-base percentage (OBP) in year t;
ž xt3 = team slugging average (SLG) in year t ,
ž xt4 = team earned run average (ERA) in year t .

A knowledge of baseball is not necessary to understand this empirical example.
You need only note that the explanatory variables are all measures of team per-
formance. We would expect xt2 and xt3 to be positively associated with winning
percentage while xt4 should exhibit a negative association. Despite the prior
information revealed in the previous sentence, we use a noninformative prior
for þ and set V �1 D 0kðk . We also use a noninformative prior for the error
precision and set ¹ D 0. With these choices, the values of þ and s�2 are irrele-
vant. We use the technique described in the previous subsection to calculate the
Savage–Dickey density ratios comparing models with ²j D 0 for j D 1; : : : ; p
to unrestricted models. This requires an informative prior for ² and, thus, we
set ² D 0 and V ² D cIp. Various values of c are chosen below in a prior sensi-
tivity analysis. Throughout, we set p D 1. In preliminary runs with larger values
of p, Bayes factors and HPDIs provided no evidence for autocorrelation of an
order higher than one. To help provide intuition, note that the stationarity condi-
tion with p D 1 implies j²1j < 1 and values of ²1 near one can be considered
as implying a large degree of autocorrelation.

All results are based on 30 000 replications, with 5000 burn-in replications dis-
carded and 25 000 replications retained. MCMC diagnostics indicate convergence
of the Gibbs sampler, and numerical standard errors indicate an approximation
error which is small relative to posterior standard deviations of all parameters.

Table 6.3 presents posterior results for þ with c D 0:09, a reasonably small
value reflecting a prior belief that autocorrelation in the errors is fairly small (i.e.
the prior standard deviation of ²1 is 0:3). It can be seen that the results are as
expected in that OBP and SLG are positive and ERA is negatively associated
with winning.

At the beginning of the book, we emphasized the importance of doing prior
sensitivity analysis. For the sake of space, our previous empirical illustrations
did not include any investigation of prior sensitivity. However, we will do one
here with regards to the AR(1) coefficient. Table 6.4 contains results from a prior
sensitivity analysis where various values of c are used. This table reveals that
prior information has little affect on the posterior, unless prior information is
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LRM with General Error Covariance Matrix 137

Table 6.3 Posterior Results for þ

Standard
Mean Deviation 95% HPDI

þ1 0:01 0:07 [�0:11; 0:12]

þ2 1:09 0:35 [0:52; 1:66]

þ3 1:54 0:18 [1:24; 1:83]

þ4 �0:12 0:01 [�0:13; �0:10]

Table 6.4 Posterior Results for ²1

Standard Bayes Factor
Mean Deviation 95% HPDI for ²1 D 0

c D 0:01 0:10 0:07 [�0:02; 0:23] 0:49

c D 0:09 0:20 0:10 [0:03; 0:36] 0:43

c D 0:25 0:21 0:11 [0:04; 0:39] 0:56

c D 1:0 0:22 0:11 [0:05; 0:40] 0:74

c D 100 0:22 0:11 [0:05; 0:40] 0:84

extremely strong as in the c D 0:01 case. This can be seen by noting that pos-
terior means, standard deviations and HPDIs are almost the same for all values
of c between 0:09 and 100. The latter is a very large value which, to all intents
and purposes, implies that the prior is flat and noninformative over the station-
ary region. The Bayes factors are also fairly robust to changes in the prior. As
an aside, it is worth noting that this robustness of the Bayes factor is partly to
do with the fact that the prior is truncated to a bounded interval – the stationary
region. Don’t forget the problems that can occur with Bayes factors when you
use noninformative improper priors on parameters whose support is unbounded
(e.g. see Chapter 3, Section 3.6.2).

6.6 THE SEEMINGLY UNRELATED
REGRESSIONS MODEL

6.6.1 Introduction

The final model considered in this chapter is the Seemingly Unrelated Regressions
(SUR) model. It is a multiple equation model which is both interesting in and
of itself and is a component of other common models. In economics, multiple
equation models arise in many contexts. For instance, in a study of consumption,
the researcher may wish to estimate an equation for each category of consumption
(i.e. food, consumer durables, non-durables, etc.). In a microeconomic application,
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138 Bayesian Econometrics

the researcher may wish to estimate a factor demand equation for each factor of
production.5 In many cases, simply working with one equation at a time using
the techniques of previous chapters will not lead the researcher too far wrong.
However, working with all the equations together can improve estimation. This
section discusses how to do so.

The SUR model can be written as

ymi D x 0
miþm C "mi (6.44)

with i D 1; : : : ; N observations for m D 1; : : : ; M equations. ymi is the i th
observation on the dependent variable in equation m, xmi is a km-vector con-
taining the i th observation of the vector of explanatory variables in the mth
equation and þm is a km-vector of regression coefficients for the mth equation.6

Note that this framework allows for the number of explanatory variables to dif-
fer across equations, but some or all of them may be the same in different
equations.

We can put the SUR model in a familiar form. To do this we stack all equations
into vectors/matrices as yi D .y1i ; : : : ; yMi/

0, "i D ."1i ; : : : ; "Mi/
0

þ D

0BB@
þ1
Ð
Ð

þM

1CCA

Xi D

0BBB@
x 0

1i 0 Ð Ð 0
0 x 0

2i 0 Ð Ð
Ð Ð Ð Ð Ð
Ð Ð Ð Ð 0
0 Ð Ð 0 x 0

Mi

1CCCA
and define k D PM

mD1 km . Using this notation, it can be verified that (6.44) can
be written as

yi D Xi þ C "i (6.45)

We now stack all the observations together as

y D

0BB@
y1
Ð
Ð

yN

1CCA
5For the reader with additional knowledge of econometrics, the reduced form of a simultaneous

equations model is in the form of a SUR model. Similarly, a Vector Autoregression or VAR is also
a SUR model (see Chapter 12, Section 12.4).

6Note that we have slightly changed notation from that used previously. In this section, xmi is a
vector and the first subscript indicates the equation number. Previously, xij was a scalar indicating
the i th observation on the j th explanatory variable.
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" D

0BB@
"1
Ð
Ð

"N

1CCA

X D

0BB@
X1
Ð
Ð

X N

1CCA
and write

y D Xþ C "

Thus, the SUR model can be written as our familiar linear regression model.
So far we have said nothing about error properties of this model. If we were

to assume "mi to be i.i.d. N .0; h�1/ for all i and m, then we would simply have
the Normal linear regression model of Chapters 2, 3 and 4. However, in many
applications, it is common for the errors to be correlated across observations
and, thus, we assume "i to be i.i.d. N .0; H�1/ for i D 1; : : : ; N where H is
an M ð M error precision matrix. With this assumption it can be seen that " is
N .0; �/ where � is an N M ð N M block-diagonal matrix given by

� D

0BBBB@
H�1 0 Ð Ð 0

0 H�1 Ð Ð Ð
Ð Ð Ð Ð Ð
Ð Ð Ð Ð 0
0 Ð Ð 0 H�1

1CCCCA (6.46)

Hence, the SUR model lies in the class of models being studied in this chapter
and the prior, likelihood and posterior have been discussed in Section 6.2. One
minor issue you may have noticed is that there is no h in this model. This is not
a substantive difference in that h was merely a scalar that was factored out for
convenience in the previous sections. In this model, it is not convenient to factor
out a scalar in this way (although we could have done this if we had wanted to).

6.6.2 The Prior

It is worthwhile to briefly discuss prior elicitation in the SUR model as this is a
topic which has received a great deal of attention in the literature. In this section,
we will use an extended version of our familiar independent Normal-Gamma
prior, the independent Normal-Wishart prior:

p.þ; H/ D p.þ/p.H/

where
p.þ/ D fN .þjþ; V / (6.47)
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and
p.H/ D fW .H j¹; H/ (6.48)

The Wishart distribution, which is a matrix generalization of the Gamma distri-
bution, is defined in Appendix B, Definition B.27. For prior elicitation, the most
important things to note are that E.H/ D ¹ H and that noninformativeness is
achieved by setting ¹ D 0 and H�1 D 0MðM (see Appendix B, Theorem B.16).

However, many other priors have been suggested for this model. In particular,
a Normal-Wishart natural conjugate prior exists for this model analogous to that
used in Chapter 3. This prior has the advantage that analytical results are available
so that a posterior simulator is not required. However, the natural conjugate prior
for the SUR model has been found by many to be too restrictive. For instance, it
implies that the prior covariances between coefficients in each pair of equations
(i.e. þm and þj for j 6D m) are all proportional to the same matrix. For this reason,
only the noninformative variant of the natural conjugate prior has received much
attention in empirical work. Furthermore, there have been various attempts to
derive extended versions of the natural conjugate prior which are less restrictive.
Readers interested in learning more about this area of the literature are referred
to Dreze and Richard (1983) or Richard and Steel (1988).

6.6.3 Bayesian Computation

Bayesian computation in this model can be implemented with a Gibbs sampler
using (6.12) and (6.18) based on the prior given in (6.47) and (6.48). However,
both of these posterior conditionals involving inverting the N M ð N M matrix
�, which is computationally difficult. However, the block-diagonal structure of
� allows the matrix inversion to be partly done analytically. If we do this,
p.þjy; H/ and p.H jy; þ/ take convenient forms. In particular,

þjy; H ¾ N .þ; V / (6.49)

where

V D
 

V �1 C
NX

iD1

Xi
0 H Xi

!�1

(6.50)

and

þ D V

 
V �1þ C

NX
iD1

X 0
i H yi

!
(6.51)

The posterior for H conditional on þ is Wishart:

H jy; þ ¾ W .¹; H / (6.52)

where
¹ D N C ¹ (6.53)
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and

H D
"

H�1 C
NX

iD1

.yi � Xi þ/.yi � Xi þ/0
#�1

(6.54)

Since random number generators for the Wishart distribution are available (e.g.
a MATLAB variant is available in James LeSage’s Econometrics Toolbox), a
Gibbs sampler which successively draws from p.þjy; H/ and p.H jy; þ/ can
easily be developed.

Predictive inference in this model can be carried out using the strategy out-
lined in Chapter 4, Section 4.2.6. Posterior predictive p-values or HPDIs can be
calculated to shed light on the fit and appropriateness of the model. The Sav-
age–Dickey density ratio is particularly easy to calculate should you wish to
calculate posterior odds ratios.

6.6.4 Empirical Illustration: The Seemingly Unrelated Regressions Model

To illustrate Bayesian inference in the SUR model we use an extended version of
the baseball data set used in the autocorrelated errors example. In that example,
we chose one baseball team, the Yankees, and investigated how team winning
percentage (PCT) depended upon team on-base percentage (OBP), slugging aver-
age (SLG) and earned run average (ERA). The former two of these explanatory
variables are measures of offensive performance, the last defensive performance.
In the current example, we add a second equation for a second team, the Boston
Red Sox (the arch-rivals of the Yankees). Hence, we have two equations, one for
each team, with explanatory variables in each equation being the relevant team’s
OBP, SLG and ERA. Section 6.5.3 provides further detail about the data.

We use a noninformative prior for H and set ¹ D 0 and H�1 D 02ð2. For the
regression coefficients, we set þ D 0k and V D 4Ik . This prior reflects relatively
noninformative prior beliefs. That is the regression coefficients are all centered
over points which imply the explanatory variable has no effect on the dependent
variable. But each coefficient has prior standard deviation of 2, a value which
allows for the explanatory variables to have quite large impacts on the dependent
variable.

Table 6.5 presents posterior results obtained from 30 000 replications from
the Gibbs sampler outlined above, with 5000 burn-in replications discarded and
25 000 replications retained. MCMC diagnostics indicate convergence of the
Gibbs sampler and numerical standard errors indicate an approximation error
which is small relative to the posterior standard deviations of all parameters.
Instead of presenting posterior results for H , which may be hard to interpret, we
focus on the correlation between the errors in the two equations (i.e. corr."1i ; "2i /

which is assumed to be the same for all i D 1; : : : ; N ). If this correlation is equal
to zero, then there is no benefit to using the SUR model over simply doing pos-
terior inference on each equation separately. As we have emphasized throughout
this book (see, e.g., Chapter 1, Section 1.2 or Chapter 3, Section 3.8), posterior
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Table 6.5 Posterior Results for þ and Error Correlation

Mean Standard Deviation 95% HPDI

Yankees Equation

þ1 0:03 0:06 [�0:06; 0:13]
þ2 0:92 0:30 [0:43; 1:41]
þ3 1:61 0:15 [1:36; 1:86]
þ4 �0:12 0:01 [�0:13; �0:10]

Red Sox Equation

þ5 �0:15 0:06 [�0:26; �0:05]
þ6 1:86 0:28 [1:41; 2:32]
þ7 1:24 0:15 [0:99; 1:50]
þ8 �0:11 0:01 [�0:12; �0:10]

Cross-equation Error Correlation

corr."1; "2/ �0:01 0:11 [�0:18; 0:17]

simulator output can be used to do posterior inference on any function of the
parameters of the model. Hence, the Gibbs draws of H can be used to derive
posterior properties of corr."1i ; "2i /. It can be seen that, with this data set, the cor-
relation between the errors in the two equations is very near to zero. Thus, there
is minimal benefit to working with the SUR model. If we had used an informative
prior for H , we could have calculated a Bayes factor using the Savage–Dickey
density ratio. This Bayes factor would have provided more formal evidence in
favor of the hypothesis that the errors in the two equations are uncorrelated.

The regression coefficients measure the impacts of OBP, SLG and ERA on
team performance. For both teams, results are sensible, indicating that higher
OBP and SLG and lower ERA are associated with a higher team winning per-
centage. A baseball enthusiast might be interested in whether these coefficients
are different in the two equations. After all, baseball wisdom has it that in some
stadiums it is important to have power hitters, in others pitching is a relatively
important key to success, etc. An examination of Table 6.5 indicates that, with
one exception, the posterior means of comparable regression coefficients are
roughly the same across equations, relative to their standard deviations. Further-
more, 95% HPDIs for comparable coefficients in different equations exhibit a
large degree of overlap. The one exception is OBP where þ2 and þ6 are quite
different from one another. The question of whether comparable coefficients are
different in the two equations can be formally addressed by calculating Bayes
factors comparing: M1 : þj � þk1C j D 0 for j D 1; : : : ; k1 against M2 where the
coefficients are left unrestricted. This can be calculated using the Savage–Dickey
density ratio implemented as outlined in Chapter 4, Section 4.2.5. Since the prior
and conditional posterior of þ are both Normal (see (6.47) and (6.49)), the prior
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