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10
Flexible Models: Nonparametric

and Semiparametric Methods

10.1 INTRODUCTION

All the models considered in previous chapters involved making assumptions
about functional forms and distributions. For instance, the Normal linear regres-
sion model involved the assumptions that the errors were Normally distributed,
and the relationship between the dependent and explanatory variables was a linear
one. Such assumptions are necessary to provide the likelihood function, which
is a crucial component of Bayesian analysis. However, economic theory rarely
tells us precisely what functional forms and distributional assumptions we should
use. For instance, in a production example economic theory often tells us that a
firm’s output in increasing in its inputs and eventually diminishing returns to each
input will exist. Economic theory will not say “a constant elasticity of substitu-
tion production function should be used”. In practice, a careful use of the model
comparison and fit techniques described in previous chapters (e.g. posterior pre-
dictive p-values and posterior odds ratios) can often be used to check whether
the assumptions of a particular likelihood function are reasonable. However, in
light of worries that likelihood assumptions may be inappropriate and have an
effect on empirical results, there is a large and growing non-Bayesian literature
on nonparametric and semiparametric methods." To motivate this terminology,
note that likelihood functions depend on parameters and, hence, making partic-
ular distributional or functional form assumptions yields a parametric likelihood
function. The idea underlying the nonparametric literature is to try and get rid of
the such parametric assumptions either completely (in the case of nonparametric
methods) or partially (in the case of semiparametric methods).”

Horowitz (1998) and Pagan and Ullah (1999) provide good introductions to this literature.
2This noble goal of “letting the data speak” is often hard to achieve in practice since it is necessary
to place some structure on a problem in order to get meaningful empirical results. Nonparametric
methods do involve making assumptions, so it is unfair to argue that likelihood-based inference
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236 BAYESIAN ECONOMETRICS

Bayesian inference is always based on a parametric likelihood function and,
hence, in a literal sense we should not refer to Bayesian ‘nonparametric’ or
‘semiparametric’ methods. This is the reason why the main title to this chapter
is ‘Flexible Models’. Nevertheless, there are many Bayesian models which are
similar in spirit to non-Bayesian nonparametric methods and, thus, there is a large
and growing literature which uses the name Bayesian nonparametrics. This field is
too large to attempt to survey in a single chapter and, hence, we focus on two sorts
of Bayesian nonparametric approaches which are particularly simple and can be
done using the methods of previous chapters. The interested reader is referred to
Dey, Muller and Sinha (1998) for a broader overview of Bayesian nonparametrics.

To motivate the Bayesian nonparametric approaches discussed here, it is useful
to consider the assumptions underlying the Normal linear regression model. The
researcher may wish to relax the assumption of a linear relationship (i.e. relax a
functional form assumption) or relax the assumption of Normal errors (i.e. relax
a distributional assumption). The two approaches described here relate to these
two aspects. The section called Bayesian non- and semiparametric regression
relaxes functional form assumptions, and the section on modeling with mix-
tures of Normals relaxes distributional assumptions. As we shall see, we can
do Bayesian semiparametric regression using only techniques from Chapter 3 on
the Normal linear regression model with natural conjugate prior. Modeling with
mixtures of Normals can be done using a Gibbs sampler which is an extension
of the one introduced in Chapter 6 (Section 6.4) for the regression model with
Student-t errors.

10.2 BAYESIAN NON- AND SEMIPARAMETRIC
REGRESSION

10.2.1 Overview
In Chapter 5, we discussed the nonlinear regression model
vi = f(Xi,y)+ &

where X; is the ith row of X, f(-) is a known function which depends upon
X; and a vector of parameters, y. In this section, we begin with a very similar
starting point in that we write the nonparametric regression model as

i = f(Xi) + & (10.1)

but f(-) is an unknown function. Throughout this section, we make the standard
assumptions that

distinction between nonparametric and likelihood-based methods is what kind of assumptions are
made. For instance, a nonlinear regression model makes the assumption “the relationship between y
and x takes a specific nonlinear form”, whereas a nonparametric regression model makes assumptions
relating to the smoothness of the regression line. The question of which sort of assumptions are more
sensible can only be answered in the context of a particular empirical application.
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1. eis N(Oy, h=1y).

2. All elements of X are either fixed (i.e. not random variables) or, if they are
random variables, they are independent of all elements of ¢ with a probability
density function p(X|A), where A is a vector of parameters that does not
include any of the other parameters in the model.

Before discussing nonparametric regression, it is worth mentioning that non-
linear regression methods using extremely flexible choices for f(X;,y) allow
the researcher to achieve a goal similar to the nonparametric econometrician
without the need for any new methods. For instance, by using one of the com-
mon series expansions (e.g. a Taylor series, Fourier or Muntz—Szatz expansion)
one can obtain a parametric form for f(X;,y) which is sufficiently flexible to
approximate any unknown function. The choice of a truncation point in the series
expansion allows the researcher to control the accuracy of the approximation.’

Nonparametric regression methods hinge on the idea that f() is a smooth
function. That is, if X; and X; are close to one another, then f(X;) and f(X;)
should also be close to one another. Nonparametric regression methods, thus,
estimate the nonparametric regression line by taking local averages of nearby
observations. Many nonparametric regression estimators of f(X;) have the form

FX) =" wy (10.2)
JEN;

where w; is the weight associated with the jth observation and N; denotes
the neighborhood around X;. Different approaches vary in how the weights and
neighborhood are defined. Unfortunately, if there are many explanatory variables,
then nonparametric methods suffer from the so-called curse of dimensionality.
That is, nonparametric methods average over ‘nearby’ observations to approx-
imate the regression relationship. For a fixed sample size, as the dimension of
X; increases ‘nearby’ observations become further and further apart, and non-
parametric methods become more and more unreliable. Thus, it is rare to see the
nonparametric regression model in (10.1) directly used in applications involving
many explanatory variables. Instead, various models which avoid the curse of
dimensionality are used. In this section, we discuss two such models, beginning
with the partial linear model.

10.2.2 The Partial Linear Model

The partial linear model divides the explanatory variables into some which are
treated parametrically (z) and some which are treated nonparametrically (x). If
x is of low dimension, then the curse of dimensionality can be overcome. The
choice of which variables receive a nonparametric treatment is an application-
specific one. Usually, x contains the most important variable(s) in the analysis
for which it is crucial to correctly measure their marginal effect(s). Here we

3Koop, Osiewalski and Steel (1994) is a paper which implements such an approach.
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238 BAYESIAN ECONOMETRICS

assume x is a scalar, and briefly discuss below how extensions to nonscalar x
can be handled.
Formally, the partial linear model is given by

yi=zip+ f(xi)+é&i (10.3)

where y; is the dependent variable, z; is a vector of k explanatory variables, x; is
a scalar explanatory variable and f(-) is an unknown function. Note that z; does
not contain an intercept, since f(x;) plays the role of an intercept. We refer to
f O as the nonparametric regression line.

The basic idea underlying Bayesian estimation of this model is that f(x;) for
i =1,...,N can be treated as unknown parameters. If this is done, (10.3) is
a Normal linear regression model (albeit one with more explanatory variables
than observations). A Bayesian analysis of this model using a natural conjugate
prior can be done exactly as described in Chapter 3. Thus, it is simple and
straightforward to carry out Bayesian inference in the partial linear model.

We begin by ordering observations so that x; < x» < --- < xpy. Since the
data points are independent of one another, their precise ordering is irrelevant
and choosing to order observations in ascending order makes the definition of
what a ‘nearby’ observation is clear. Stack all variables into matrices in the usual
way as y = (yi,...,¥N), Z=1(z1,"...,2y) and ¢ = (g1, ... ,en)". If we let

y =&, ..., fan),
W=I[Z:1y]
and 8§ = (B, '), then we can write (10.3) as
y=Ws+e (10.4)

Note first that y is an N-vector containing each point on the nonparametric
regression line. At this stage, we have not placed any restrictions on the elements
of y. Hence, we are being nonparametric in the sense that f(x;) can be anything
and f () is a completely unrestricted unknown function. Secondly, (10.4) is simply
a regression model with explanatory variables in the N x (N + k) matrix W.
However, (10.4) is an unusual regression model, since there are more unknown
elements in § than there are observations, i.e. N +k > N. An implication of this
is that a perfect fit is available such that the sum of squared errors is zero. For
instance, if we had an estimate of § of the form

()

then the resulting errors would all be zero. Note that ’S\implies the points on the
nonparametric regression line are estimated as f(x;) = y;. Hence, this estimate
implies no smoothing at all of the nonparametric regression line. In terms of
(10.2), the implied weights are w; = 1 and w; = 0 for j % i. Such an estimator
is unsatisfactory. Prior information can be used to surmount this pathology.
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In the nonparametric regression literature, estimators are based on the idea
that f() is a smooth function. That is, x; and x;_1 are close to one another, then
f(x;) should also be close to f(x;—1). In a Bayesian analysis, such information
can be incorporated in a prior. There are many ways of doing this, but here
we implement one simple approach discussed in Koop and Poirier (2002). We
assume a natural conjugate Normal-Gamma prior for 8, y and h. By adopting
such a choice, we are able to obtain simple analytical results which do not require
posterior simulation methods. To focus on the nonparametric part of the partial
linear model, we assume the standard noninformative prior for 4 and 8:

p(B, h) xh (10.5)

For the coefficients in the nonparametric part of the model, we use the partially
informative prior (see Chapter 3, Exercise 4) on the first differences of y:

RS ~ NOy_1, h~'V(n) (10.6)

where V() is a positive definite matrix which depends upon a hyperparameter
n (which will be explained later), and R = [Ov—_1)xk : DI, where D is the
(N — 1) x N first-differencing matrix:

-1 1.0 0 --- --- 0
o-11 0 ... .-+ 0

D= | cor i i e e e (10.7)
0 - v --- 0 0 —1 1

Note that this structure implies that we only have prior information on f(x;) —
f(xi—1). The fact that we expect nearby points on the nonparametric regression
line to be similar is embedded in (10.6) through the assumption that E[ f (x;) —
f(xi—1)] = 0. V() can be used to control the expected magnitude of f(x;) —
f(x;—1) and, thus, the degree of smoothness in the nonparametric regression line.

In this discussion of prior information, it is worth mentioning that the researcher
sometimes wants to impose inequality restrictions on the unknown function
describing the nonparametric regression line. For instance, the researcher may
know that f() is a monotonically increasing function. This is simple to do using
the techniques described in Chapter 4 (Section 4.3).

Before presenting the posterior for this model, a brief digression on two points
is called for. First, the perceptive reader may have noticed that the structure of
the partial linear model is almost identical to the local level model of Chapter 8.
In fact, if we omit the parametric term (i.e. drop Z) and change the i subscripts
in this chapter to ¢ subscripts, then this nonparametric regression model is iden-
tical to the state space model. This is not surprising once one recognizes that
both models have ordered data and the structure in the state equation of (8.5) is
identical to that of the prior given in (10.6). The fact that state space methods can
be used to carry out nonparametric regression has been noted in several places
(e.g. Durbin and Koopman, 2001). Everything written in Chapter 8 (Section 8.2)
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240 BAYESIAN ECONOMETRICS

is thus relevant here. For instance, empirical Bayes methods can be used as
described in Section 8.2.3 if the researcher does not wish to elicit prior hyper-
parameters such as 1. Secondly, the reader with a mathematical training may be
bothered by the fact that we have referred to (10.6) as controlling ‘the degree of
smoothness’ in the nonparametric regression line through prior information about
first differences. Usually, the degree of smoothness of a function is measured by
its second derivative, which would suggest we use prior information about sec-
ond differences (i.e. [ f(xi+1) — f(xi)] — [f(xi) — f(xi—1)]). Prior information
about second differences can be incorporated in a trivial fashion by redefining D
in (10.7) to be a second-differencing matrix.

It is straightforward to prove (see Chapter 3, Exercise 4), that the posterior
for the Normal linear regression model with partially noninformative Normal-
Gamma prior is

8, hly ~ NG, V.,572,%) (10.8)
where
V=RV 'R+WW)! (10.9)
§=V(W'y) (10.10)
V=N (10.11)
and
V52 = (y — W8) (y — W3) + (R3)'V(n)~'(RS) (10.12)

Furthermore, the posterior is a valid p.d.f., despite the fact that the number
of explanatory variables in the regression model is greater than the number of
observations. Intuitively, prior information about the degree of smoothness in
the nonparametric regression function suffices to correct the perfect fit pathology
noted above.

In an empirical study, interest usually centers on the nonparametric part of the
model. Using (10.8) and the properties of the multivariate Normal distribution
(see Appendix B, Theorem B.9), it follows that

E(yly) =Mz +D' V() 'DI"'M,y (10.13)

where My = Iy — Z(Z'Z)~'Z’. Equation (10.13) can be used as an estimate
of f(), and we refer to it as the ‘fitted nonparametric regression line’. To aid
in interpretation, note that Mz is a matrix which arises commonly in frequentist
studies of the linear the regression model. M7y are the OLS residuals from the
regression of y on Z. Hence, (10.13) can be interpreted as removing the effect
of y on Z (i.e. since M7y are residuals) and then smoothing the result using the
matrix [Mz + D'V ()~ D]~!. Note also that in the purely nonparametric case
(i.e. Z does not enter the model), if the prior in (10.6) becomes noninformative
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Ge. Vi)~ ! - On—1,n—1), then E(y|y) = y and the nonparametric part of the
model merely fits the observed data points (i.e. there is no smoothing).

So far, we have said nothing about V (n), and many different choices are pos-
sible. A simple choice, reflecting only smoothness considerations (i.e. f(x;) —
f(xi_1) is small), would be to take V() = nly_;.* This prior depends only
upon the scalar hyperparameter n, which can be selected by the researcher to con-
trol the degree of smoothness. To provide more intuition on how the Bayesian
posterior involves an averaging of nearby observations, it is instructive to look
at E(yly, y(i)), where y(i) = Wi1,---,Yi-1, Yi+1,--- » ¥Yn). For the pure non-
parametric regression case (i.e. where Z does not enter), it can be shown that:

. 1 n
E(ily,y") = m(ym + Vit1) + e

fori =2,...,N—1. E(y;ly, y®) is a weighted average of y; and the closest
points on the nonparametric regression curve above and below i (i.e. ;1 and
¥i+1). Since n controls the degree of smoothness we wish to impose on f(-),
it makes sense that as n — oo we obtain E(y;|y, y)) = y; (i.e. no smoothing
whatsoever). As 7 — 0 we obtain E (y;|y, y@) = %(Vi—l + ¥i+1). Furthermore,

. 2
it can be shown that var(y;|y, y@) = gT'r’) which goes to zero as n — 0. Thus,

the limiting case of n — 0 yields y; = %(yi,l + ¥i+1), and the nonparametric
regression component is merely a straight line.

In summary, Bayesian inference in the partial linear model can be carried
out using the familiar Normal linear regression model with natural conjugate
prior if we treat the unknown points on the nonparametric regression line as
parameters. Despite the fact that the number of explanatory variables in the
partial linear model is greater than the number of observations, the posterior is
proper. Model comparison and prediction can be done in exactly the same manner
as in Chapter 3.

In many cases, the researcher may be willing to choose a particular value for
n. Or, as in the following application, empirical Bayes methods as described in
Chapter 8 (Section 8.2.3) can be used to estimate . However, it is worthwhile to
briefly mention another method for selecting a value for » in a data-based fashion.
This new method, which is commonly used by nonparametric statisticians, is
referred to as cross-validation. The basic idea of cross-validation is that some
of the data is withheld. The model is estimated using the remaining data and
used to predict the withheld data. Models are compared on the basis of how
well they predict the withheld data.> In the present context, we could define a

4In small data sets, the distance between x; and x;_; may be large, and it might be desirable to
incorporate this into the prior. A simple way of doing this would be to use a prior involving V (n)
being a diagonal matrix with (i, i)th elements equal to v; = n(x; — xj_1).
31t is worth mentioning that cross-validation can be used as a model comparison/evaluation tool
for any model, not just nonparametric ones.
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cross-validation function as

_ s, BIGNY;
CVn) =+ D i = Eily™))

i=1

where y(i) = (Y1, Vi1, Yi+1s--. » YN) . That is, we delete one observation at
a time and calculate the fitted nonparametric regression line using the remaining
data. We then use (y; — E (yily(i), n))? as a metric of how well the resulting
nonparametric regression line fits the left out data point. n is chosen so as to
minimize the cross-validation function.

Empirical lllustration: The Partial Linear Model

To illustrate Bayesian inference in the partial linear model, we use an artificial
data set using a very nonlinear data generating mechanism. Fori =1, ..., 100
we generate

vi = xjcos(4mx;) + & (10.14)

where ¢; is i.i.d. N(0,0.09) and x; is i.i.d. U(0, 1). The data is then re-ordered
so that x| < xp <--- < X100-

For simplicity, we assume a purely nonparametric model (i.e. do not include
Z). The partially informative prior, given in (10.5) and (10.6), requires us to
select a value for 1. Once a value for 7 is selected, posterior inference about the
nonparametric regression line can be done based on (10.8)—(10.13). Here we use
the empirical Bayes methods described in Chapter 8 (Section 8.2.3) to estimate
n. As stressed in Section 8.2.3, (very weak) prior information about n, y; or
h is required to do empirical Bayes methods in this model. Here we use prior
information about », and assume

n~G(p v,

and choose nearly noninformative values of v, = 0.0001 and = 1.0.
Remember that empirical Bayes estimation involves finding t?le maximum of
the marginal likelihood times p(n) (see Chapter 8 (8.21)). With the partially
informative prior, the integrating constant is not defined. However, insofar as
we are interested in comparing models with different values for 5, such integrat-
ing constants are irrelevant, since they cancel out in the Bayes factors. These
considerations suggest that we should choose the value of n which maximizes

- 1Y
p@ly) o p(yImp@) o (VIIR'V() ™' RD2 T2 fo(nlp, . v,)

We do the one-dimensional maximization of p(#n|y) through a grid search. The
reader who finds this brief discussion of implementing empirical Bayes meth-
ods confusing is urged to re-read Chapter 8 (Section 8.2.3) for a more thorough
explanation.
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Figure 10.1 True and Fitted Nonparametric Regression Lines

The value of n chosen by the empirical Bayes procedure is 0.1648. Figure 10.1
plots the fitted nonparametric regression line using this choice for 5 along with
the actual data and the true regression line given in (10.14) used to generate
the data. It can be seen that the fitted nonparametric regression line tracks the
(very nonlinear) shape of the true regression line quite well. If an empirical
application requires a smoother curve, then a prior on the second differences,
[f(xit1) — f(x)] = [f(xi) — f(xi—1)], can be used.

Since Chapter 3 already contains an empirical illustration using the Normal
linear regression model with natural conjugate prior, no further empirical results
will be presented here. Of course, all the tools presented there can be used to carry
out further posterior inference (e.g. HPDIs can be presented at each point on the
nonparametric regression line), model comparison (e.g. Bayes factors comparing
this model to a parametric model can be calculated) or prediction. Furthermore,
the perceptive reader may have noticed that this figure looks very similar to
Figure 8.2, and it is worth stressing yet again that state space and nonparametric
regression methods are very similar.

Extensions: Semiparametric Probit and Tobit

In this book we have emphasized the modular nature of Bayesian modeling,
especially in terms of posterior simulation. In the present context, the partial linear
regression model can serve as one component of a more complicated non- or
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semiparametric model. Many models can be written in terms of a parameter vector
(possibly including latent data) 6, and the partial linear model (with parameters
S and h). Hence, the results derived in this section can be used in an MCMC
algorithm to carry out Bayesian inference. That is, many models can be written
such that p(8, k|y, ) is Normal-Gamma, and either p(6|y) or p(8|y, §, h) can
conveniently be sampled from. The list of models which can be put in this form
is huge. Here we show how Bayesian semiparametric methods for probit and
tobit can be developed.

Bayesian methods for a semiparametric probit model can be derived by com-
bining the ideas of this section with results from Section 9.4 of Chapter 9 on the
probit model. The semiparametric probit model can be written as

yi=zB+ f(x)+e (10.15)
or
yi=Ws+e (10.16)

where all model assumptions are the same as for the partial linear model, except
that y* = (y},..., %)’ is unobserved. Instead, we observe

yi=1if y7 >0
(10.17)
yi=0if yf <0
Bayesian inference for this model proceeds by noting that p(8, h|y*) is pre-
cisely that given in (10.8)—(10.13) except that y is replaced by y* in these for-
mulae. In fact, if we make the usual identifying assumption that 2 = 1, the
conditional posterior distribution for § is simply Normal. Furthermore,

N
pO* 1y, 8, 1) =] pOilyi. 8, 1)
i=1
and p(y|yi,d,h) is truncated Normal (see Chapter 9, Section 9.4). Hence, a
simple Gibbs sampler with data augmentation which involves only the Normal
and truncated Normal distributions can be used to carry out Bayesian inference.
To be precise, the MCMC algorithm involves sequentially drawing from

Sly* ~ N, V) (10.18)
and, fori =1,..., N,
Yy, 8, B~ N@ip+y, DI =0 ify =1

. (10.19)
Y yi, 8, B~ N(ziB+vi, DI(y} <0) otherwise

where 1(A) is the indicator function which equals 1 if condition A is true and
otherwise equals 0.

Bayesian methods for a semiparametric tobit model can be derived along sim-
ilar lines to semiparametric probit by combining the techniques for the partial
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linear model with those for parametric tobit models (see Chapter 9, Section 9.3).
Comparable to (10.16) and (10.17), the semiparametric tobit model can be
written as

yi=zB+ fxi)+e (10.20)
or
Yi=Ws§+e (10.21)
where y* = (yT, e, y}t,)/ is unobserved. In the tobit model, we observe

yi=y; ifyf>0
(10.22)
yi=0 ifyf <0
Bayesian inference for this model proceeds by noting that our results for the
partial linear model provide us with p(8, h|y*). Furthermore,

N
pGH1y 8. b =] [ pO}lyi. 8. )
i=1

and p(y}|yi, 8, h) is either simply y; or truncated Normal. Hence, a simple Gibbs
sampler with data augmentation can be used to carry out Bayesian inference.
Formally, the MCMC algorithm involves sequentially drawing from

8, h|ly* ~NG@3,V,572,7) (10.23)
and, fori=1,..., N,
yi=yi ify >0
Vi 8, B h ~ NG+ v, h"DI(yF <0) ify; =0

Hence, Bayesian semiparametric probit or tobit (as well as many other models)
can be carried out in a straightforward fashion using MCMC methods that com-
bine the results for the partial linear model with some other model component.

It is also worth mentioning briefly that there is a myriad of other ways to
do Bayesian non- or semiparametric regression. One particular class of model
which does much the same thing as nonparametric regression is the class of spline
models. We do not discuss them here, but refer the interested reader to Green and
Silverman (1994), Silverman (1985), Smith and Kohn (1996) or Wahba (1983).
There are many other methods for flexible modeling on a regression function
which are not discussed in this book. The interested reader is referred to Dey,
Muller and Sinha (1998) for a discussion of some of these models and methods.

(10.24)

10.2.3 An Additive Version of the Partial Linear Model

Thus far we have assumed x; to be a scalar in the partial linear model. In this
scalar case, the prior used to impose smoothness on the nonparametric regres-
sion line involved simply reordering the observations so that x; < --- < xp.
As discussed at the beginning of this chapter, when x; is a vector the curse
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of dimensionality may preclude sensible nonparametric inference. However, if
x; is of low dimension, then it may be possible to implement Bayesian infer-
ence by using a nearest neighbor algorithm to measure the distance between
observations. The data can then be reordered according to the distance between
observations and the posterior given in (10.8) used to carry out Bayesian infer-
ence. For instance, a common definition of the distance between observations i
and j is

P
. 2
dist; j = E (xit — xj1)
I=1

where x; = (xj1,...,xj,)" is a p-vector. The procedure for ordering the data
involves selecting a first observation (e.g. the observation with the minimum
value for the first element of x). The second observation is the one which is
closest to the first observation. The third observation is the one closest to the
second (after deleting the first observation), etc. Once the data have been ordered,
the Bayesian procedure described above can be used. However, if p is large (e.g.
p > 3), then this procedure may work very poorly (and may be sensitive to
the choice of first observation and the definition of distance between observa-
tions). Accordingly, many variants of the partial linear model have been proposed
which place restrictions on f() to break the curse of dimensionality. Here we
describe one common model, and develop Bayesian methods for carrying out
econometric inference.
The additive version of the partial linear model is given by

yi =ziB+ filxin) + f2(xi2) + -+ fr(xip) + & (10.25)

where f;(-) for j = 1,..., p are unknown functions. In other words, we are
restricting the nonparametric regression line to be additive in p explanatory
variables:

f&x) = filtxin) + olxin) + -+ fp(xip)

In many applications, such an additivity assumption may be sensible, and it is
definitely much more flexible than the linearity assumption of standard regression
methods.

Extending the notation described between (10.3) and (10.4), we can write this
model as

y=ZB+yvi+nt+-+yte (10.26)

where y; = (y1j,...,vn) = [fi(x1)), ..., fi(xn;)]. In other words, the N
points on the nonparametric regression line corresponding to the jth explanatory
variable are stacked in y; for j = 1,..., p. The data are ordered according to
the first explanatory variable so that xi; < x7; < --- < xy1. We refer to this
ordering below as the ‘correct’ ordering.

In the case where x was a scalar, we used the simple intuition that, if we ordered
the data points so that x; < x» < ... < xy, then it was sensible to put a prior
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on f(x;)— f(xi—1). Here we have p explanatory variables which can be used to
order the observations, so there is not one simple ordering which can be adopted.
However, remember that the ordering information was only important as a way of
expressing prior information about the degree of smoothness of the nonparametric
regression line. If we express prior information for each of yp,...,y, with
observations ordered according to its own explanatory variable, then transform
back to the correct ordering, we can carry out Bayesian inference in a manner
virtually identical to that in Section 10.2.2. To emphasize the intuition, let me
repeat the econometric strategy in slightly different words. With independent data,
it does not matter how the data is ordered, provided all variables are ordered in
the same way. Here we have our observations ordered as x1; < xp1 < --- < xn|.
However, prior information on the degree of smoothness for f;() should be
elicited with observations ordered so that x1; < x2; < --- < xy;. But this means
that, for j = 2,..., p, the prior will be elicited with the observations ordered
incorrectly (i.e. the correct ordering does not have x1; < x2; < --- < xp;, but
rather has x11 < xp1 < --- < xn1). How do we solve this problem? After eliciting
each prior, we simply re-order the data back to the correct ordering. Once we
have done this, we are back in the familiar world of the Normal linear regression
model with natural conjugate prior.

To write out this strategy formally, some new notation is required. Remember
that our previous notation (e.g. y1, ... , ¥p) used an ordering of observations such
that x;; < x31 < --- < xn1. Define y.(’ ) as being equal to y; with observations
ordered according to the jth explanatory variable (i.e. all data is ordered so that
xX1j <xpj <--- < xy; for j =2,..., p). For individual elements of yj(J) we
use the notation

()

Yij
)
)/2] )/(j)
L) _ _ "
J (%)
Yj
)
VNj

That is, we have isolated out the first point on the jth component of the non-
parametric regression line (y1 ) from all the remaining points which we stack

in an (N — 1)-vector yj(] *) We define a similar notation when the observations

are ordered according to the first explanatory variable with yj(*) equaling y; with
one element deleted. This element is the one corresponding to the smallest value
of the jth explanatory variable.

Before formally deriving the requisite posterior, it is important to note that there
is an identification problem with the additive model, in that constants may be
added and subtracted appropriately without changing the likelihood. For instance,
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the models y; = fi(xi1) + f2(xi2) + & and y; = g1(x;1) + g2(xi2) + & are
equivalent if g1(x;1) = fi(xi1) + ¢ and g2(xj2) = f>(x;2) — ¢, where ¢ is any
constant. Insofar as interest centers on the marginal effect of each variable on
y (i.e. on the shapes of fj(x;) for j = 1,..., p) or the overall fit of the
nonparametric regression model, the lack of identification is irrelevant. Here we
impose identification in a particular way, but many other choices can be made,
and the interpretation of the empirical results will not change in any substantive
way. We impose identification by setting yl(j) =0for j =2,...,p (e. all
except the first additive functions are restricted to have intercepts equalling zero).

For y1, B and h we use the same partially informative prior as before. In
particular, the noninformative prior for g and 4 is given in (10.5) and, for y; (i.e.
the nonparametric regression line corresponding to the first explanatory variable)
we use the prior on the degree of smoothness

Dyi ~ N(Oy—1,h~"V () (10.27)
where D is the first-differencing matrix defined in (10.7). For yj(j ) for j=2,...,p
the smoothness prior can be written as

Dy” ~ NOy-1, k™ (1)) (10.28)

Alternatively, since we impose the identifying assumption y(] Y = 0, we can write

il
(10.28) as !
Dy ~ NOy-1. k™' V() (10.29)

where D* is an (N —1) x (N —1) matrix equal to D with the first column removed.
Note that, as desired (10.28) and (10.29) imply that if x; 1 ; and x;; are close to
one another, then fj(x;_ ;) and fj(x; ;) should also be close to one another. As
discussed previously, other priors can be used (e.g. D can be replaced with the
second-differencing matrix) with minimal changes in the following posteriors.

The prior in (10.28) is for j =2, ..., p, and is expressed using the observa-
tions ordered in an incorrect manner (i.e. they are ordered as x1; < xp; < --- <
xnj), so we have to re-order them before proceeding further. Hence, we define
D;, which is equivalent to D except that the rows and columns are re-ordered so
that observations are ordered correctly (i.e. as x1; < x21 < --- < xy1). We also
introduce the notation D]i* which is comparable to D*. That is, D]’." is equal to D;
with the column corresponding to the first point on the nonparametric regression
line removed.

A concrete example of how this works might help. Suppose we have N =5
and two explanatory variables which have values:

1 3
2 4
X=13 1
4 2
5 5
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The data has been ordered in the correct manner so that the first explanatory
variable is in ascending order, x1; < --- < x51. However, when observations are
ordered in this way, the second explanatory variable is not in ascending order.
The prior given in (10.28), written for the observations ordered according to
x12 < --- < x53, must be rearranged to account for this. This involves creating a
rearranged version of D:

0 0 -1 1
1 0 0 -1
—1 1 0 0
0 -1 0 0

D, =

—_— O O O

It can be verified that D,y» defines the distance between neighboring values for
the second explanatory variable and, thus, it is sensible to put smoothness prior
on it. The identification restriction implies 3, = 0 and, hence,

0O 0 1 0

. 1 0 -1 o
D=\ 1 1 0 o
0 -1 0 1

In summary, with the additive model we use the same smoothness prior on
each of p unknown functions. Since the observations are ordered so that xj; <
- < xn1, the smoothness prior for y; can be written using the first difference

matrix D. However, for y», ..., ¥, the same smoothness prior must be written
in terms of a suitably rearranged version of D. We label these rearranged first
difference matrices D; for j = 2, ..., p. Imposing the identification restriction

involves removing the appropriate column of D;, and we label the resulting
matrix D7.

One more piece of notation relating to the imposition of the identification
restriction is required. Let I equal the N x N identity matrix with one column
deleted. The column deleted is for the observation which has the lowest value
for the jth explanatory variable.

With this notation established, we can proceed in a similar manner as for the
partial linear model. The model can be written as a Normal linear regression
model:

y=W§+e¢ (10.30)
where
W:[Z:IN:IZ*:...:I;]
and § = (B, yl’,yz(*),,... ,y,§*>')’ contains K = k+ N+ (p—-1)x (N—-1)

regression coefficients. The prior for this model can be written in compact nota-
tion as

RS ~ N(Opv—1), h~'V) (10.31)
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where
On-yyx« D O - - O
Onv—nxk 0 D3 .
R — . ) S0
. ) .0 - 0
ON—1)xk - - 0 - Dy
and
V() 0
0 )
V= ) 0
0 0 V)

At this point, it is useful to stress that, although the notation has become
complicated due to questions of identification and the ordering of observations,
this is still simply a Normal linear regression model with natural conjugate prior.
Thus, all of the familiar results and techniques for this model are relevant, and
we have

8, hly ~NG(@, V,572,7) (10.32)
where
V=RV IR+WW)! (10.33)
§=VW'y) (10.34)
T=N (10.35)
and
55 = (y — W8) (y — Wd) + (RS)' V"1 (RS) (10.36)

Bayesian inference in this additive model is complicated by the fact that it
is potentially difficult to elicit prior hyperparameters in a data-based fashion.
Note that the prior allows for a different degree of smoothing in each unknown
function (i.e. we have n; for j = 1,..., p). In some cases, the researcher may
have prior information that allows her to choose values for each n;. However,
in many cases it will be sensible to smooth each unknown function by the same
amount (i.e. setting n; = --- = n, = n will be reasonable), and only one prior
hyperparameter needs to be chosen. Empirical Bayesian inference can be carried
out exactly as for the partial linear model. Model comparison and prediction can
be carried out using the familiar methods for the Normal linear regression model.
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Hlustration: An Additive Model

To illustrate Bayesian inference in the partial linear model with additive non-
parametric regression line, we generate artificial data from

yi = filxiD) + fo(xiz) + &

fori =1,...,100, where ¢; is i.i.d. N(0, 0.09) and x;; and x, are i.i.d. U (O, 1).
We take

f1(xi1) = x; cos(dmx;y)
and
f2(xi2) = sin(2m x;2)

The partially informative prior in (10.31) requires elicitation of prior hyperpa-
rameters 1 and 1y. We set n = n; = 1, and use the same empirical Bayesian
methods as for the partial linear model to select a value for 5. This value for
n is then used to make posterior inference about the two components of the
nonparametric regression line using (10.32)—(10.36).

As in the previous section, we use (very weak) prior information about 7. In
particular, we assume

n~G(p, v,

and choose nearly noninformative values of v, = 0.0001 and B, = 1.0. We
choose the value of n which maximizes

~ 1 _v
p@ly) o p(ylmp®) o (VIIR'V"'R)2 (V5% 2 fe(lp, . vy

The value of n chosen by the empirical Bayes procedure is 0.4210. Figures 10.2a
and b plot the fitted and true nonparametric regression lines for each of the two addi-
tive functions in our nonparametric regression model (i.e. E(y;|y) and f;(x;;) for
J =1, 2). These figures indicate that we are successfully estimating f;(-). Remem-
ber that the identifying restriction means we can only estimate the functions up to
an additive constant. This is reflected in the slight shifting of the two components
of the fitted nonparametric regression lines in Figures 10.2a and b. As noted in our
illustration of the partial linear model, if the researcher requires a smoother curve,
then a prior on the second differences, [ f (x;j+1) — f (xi)] —[f (xi) — f(xi—1)], can
be used. Furthermore, in a serious empirical application other posterior features
(e.g. HPDIs), model comparison tools (e.g. Bayes factors comparing this model to
a parametric model) or predictive distributions could be presented.

Extensions

With the partial linear model we noted that many extensions were possible that
would allow for Bayesian inference in, for example, semiparametric probit or
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Figure 10.2 True and Fitted Lines for (a) First and (b) Second Additive Term

tobit models. With the additive variant of the partial linear model, the exact
same extensions can be done in the same manner.

10.3 MIXTURES OF NORMALS MODELS

10.3.1 Overview

The partial linear model and its additive variant allowed for the regression line
to have an unknown functional form. There are also many techniques for allow-
ing whole distributions to have unknown forms. Here, we describe one such
set of techniques. The basic idea underlying the model in this section is that
a very flexible distribution can be obtained by mixing together several distribu-
tions. The resulting flexible distribution can be used to approximate the unknown
distribution of interest. In this section, we discuss mixtures of Normal distribu-
tions, since these are commonly used and simple to work with. However, it
should be mentioned that any set of distributions can be mixed, resulting in a
more flexible distribution than would be obtained by simply choosing a single
distribution.

The models considered in this section are not ‘nonparametric’, in the sense that
they cannot become any unknown distribution. This is because they are so-called
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finite mixtures of Normals. For instance, a distribution which mixes five different
Normal distributions, although very flexible, cannot accommodate any possible
distribution. Thus, finite mixtures of Normals should be considered only as an
extremely flexible modeling strategy. However, we note that infinite mixtures are,
to all intents and purposes, nonparametric. Infinite mixtures of Normals will not
be discussed here. Robert (1996), which is Chapter 24 of Markov Chain Monte
Carlo in Practice, provides an introduction to this area of Bayesian statistics.
A particular infinite mixture model involving Dirichlet process priors is very
popular. Escobar and West (1995) and West, Muller and Escobar (1994) provide
thorough discussions of this model.

We have already seen one particular example of a mixture of Normals model.
Chapter 6 (Section 6.4) considered the case of the linear regression model with
independent Student-t errors, and showed how it could be obtained using a par-
ticular mixture of Normals. Since the Student-t distribution is more flexible than
the Normal (i.e. the Normal is a special case of the Student-t which arises when
the degrees of freedom parameter goes to infinity), Section 6.4 provides a sim-
ple example of how mixing Normals can lead to a more flexible distribution.
Here we consider more general mixtures of Normals in the context of the lin-
ear regression model. However, the basic concepts can be used anywhere the
researcher wishes to make a flexible distributional assumption. For instance, the
panel data models in Chapter 7 assumed hierarchical priors having particular
distributions for the individual effects (e.g. Normal in (7.7) and exponential in
(7.46) for the stochastic frontier model). Mixtures of Normals can be used to
make these hierarchical priors more flexible. Posterior simulation can be done
by combining the relevant components of the Gibbs sampler outlined below with
the appropriate Gibbs sampler from Chapter 7. Geweke and Keane (1999) offers
another nice use of mixtures of Normals in that it develops a mixtures of Normals
probit model.

10.3.2 The Likelihood Function
The linear regression model can be written as
y=XB+e¢ (10.37)

where the notation is the same as in previous chapters (e.g. see Chapter 3,
Section 3.2). The likelihood function for the Normal linear regression model
was based on the assumptions that

1. g isiid N©,h~Yfori=1,...,N.

2. All elements of X are either fixed (i.e. not random variables) or, if they are
random variables, they are independent of all elements of ¢ with a probability
density function, p(X|A) where A is a vector of parameters that does not
include B and h.
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Here we replace the first assumption with one where &; is a mixture of m
different distributions. That is,

mn 1
g=) ey (a,- +h} nl-,-) (10.38)

j=1
where n; is iid. N(,1) fori =1,... ,N, j =1,...,m and ¢;, oj and
h; are all parameters. ¢;; indicates the component in the mixture that the ith
error is drawn from. That is ¢; = O or 1 for j =1,... ,m and Z;-”:l ej = 1.

Since n;; is Normal, it follows that (ct; + h._in,-j) is a Normal random variable
with mean «; and precision h;. Thus, (10.38) specifies that the regression error
is a weighted average of m different distributions. Each of these component
distributions is N («;, hj_l). This motivates the terminology mixture of Normals.
The special case where a;j = 0 for all j is referred to as a scale mixture of
Normals. The special case where hy = --- = h,, is referred to as a mean
(or location) mixture of Normals. The mixture of Normals used in Chapter 6
(Section 6.4) was a scale mixture of Normals involving a particular hierarchical
prior. To simplify notation, we stack these new parameters into vectors in the

usual way: @ = (aq,...,qmn), h = (hy, ..., hy), & = (ei1,...,em) and
’
e=(e,...,ey).
In practice, it is unknown which component the ith error is drawn from and,
thus, we let p; for j = 1,... ,m be the probability of the error being drawn

from the jth component in the mixture. That is, p; = P(e;; = 1). Formally, this
means that e; are i.i.d. draws from the Multinomial distribution (see Appendix B,
Definition B.23):

e; ~ M(1, p) (10.39)

where p = (p1, ..., pm). Remember that, since p is a vector of probabilities,
we must have 0 < p; < land 377_, p; = 1.

As with many models, there is some arbitrariness as to what gets labeled ‘prior’
information and what gets labeled ‘likelihood’ information. Equation (10.39)
could be interpreted as a hierarchical prior for ¢;. However, following standard
practice, here we refer to B, h, o« and p as the parameters of the model and
p(y|B, h, a, p) as the likelihood function. The component indicators, e; for i =
I,..., N, will be treated as latent data (and will prove useful in the Gibbs
sampling algorithm outlined below). Since p; is the probability of the error
being drawn from the jth component in the Normal mixture, it can be seen that
the likelihood function is

1

N m h
pGIB. o p) = ——]] Zp,-Jh’jexp[—g(yi—aj—ﬁ’x»z]
2m) 72 i=1 j=1
(10.40)

where x; is a k-vector containing the explanatory variables for individual i.
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10.3.3 The Prior

As with any Bayesian model, any prior can be used. Here we describe a
commonly-used prior which allows for convenient computation and is flexible
enough to accommodate a wide range of prior beliefs. However, before describ-
ing precise forms for prior densities, there are two underlying issues which must
be discussed.

First, the mixtures of Normals model is an example of a model where the
likelihood function is unbounded.® This means that the standard frequentist the-
ory underlying maximum likelihood estimation breaks down. For the Bayesian,
the pathology implies that the researcher should not use a noninformative
prior. Bayesian inference with an informative prior, however, can be done in
the usual way.’

Secondly, there is an identification problem in this model, in that multiple sets
of parameter values are consistent with the same likelihood function. For instance,
consider a mixture with two components (i.e. m = 2). The probabilities associated
with each component are p; = 0.25 and p, = 0.75. The first distribution in the
mixture has «; = 2.0 and /#; = 2.0, while the second has o> = 1.0 and Ay = 1.0.
This distribution is identical to one where the labeling of the two components is
reversed. That is, it is exactly the same as one with parameter values p; = 0.75,
p2 =025 a1 = 1.0, hy = 1.0, ap = 2.0 and hp = 2.0. Because of this, it is
necessary for the prior to impose a labelling restriction, such as

aj—1 < aj (10.41)

hj_1 <h; (10.42)
or

Pj-1 < Pj (10.43)
for j = 2,...,m. Only one such restriction need be imposed. Here (10.41)

will be chosen, although imposing (10.42) or (10.43) will only cause minor
modification in the following material.

We begin with a prior for 8 and &, which is a simple extension of the familiar
independent Normal-Gamma prior (see Chapter 4, Section 4.2). In particular,

B~N(B.V) (10.44)
and we assume independent Gamma priors for A for j =2,... ,m,
hj ~ GG v)) (1045)

To see this, set B to E , the OLS estimate, hj_l to the OLS estimate of the error variance and

1—c

aj = 0 for j = 2,...,m. For some ¢ > 0 set p; = ¢ and p; = ;=5

for j =2,...,m.If

ar = — E/xl), then the likelihood function goes to infinity as h; — oco.
7A proof of this statement is provided in Geweke and Keane (1999) for the prior used in this
section.
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The Dirichlet distribution (see Appendix B, Definition B.28) is a flexible and
computationally convenient choice for parameters such as p which lie between
zero and one and sum to one (remember that 0 < p; < I and Z}"zl pj = 1.

Thus, we take
p~ D(p) (10.46)

where p is an m-vector of prior hyperparameters. Appendix B, Theorem B.17
lists some properties which show how p can be interpreted.

Here we impose the labeling restriction through . Hence, we assume the prior
for this parameter vector to be Normal with the restrictions in (10.41) imposed:

pla) o fy(ala, V )l(ar <ay < -+ < ap) (10.47)

Remember that 1(A) is the indicator function equalling 1 if condition A holds
and otherwise equalling zero.

10.3.4 Bayesian Computation

As with many other models in this book, Bayesian inference can be carried
out using a Gibbs sampler with data augmentation. Intuitively, if we knew
which component in the mixture each error was drawn from, then the model
would reduce to the Normal linear regression model with independent Normal-
Gamma prior (see Chapter 4, Section 4.2). Thus, treating e as latent data will
greatly simplify things. This intuition motivates a Gibbs sampler which sequen-
tially draws from the full posterior conditional distributions p(B8|y, e, h, p, o),
p(hly.e. B, p,a), p(ply,e, B, h,a), p(aly, e, B, h,p) and p(ely, B, h, p, ).
Below we derive the precise form for each of these distributions. These deriva-
tions are relatively straightforward, involving multiplying the appropriate prior
times p(yle, B, h, a, p) and re-arranging the result. Using methods comparable
to those used to derive (10.40), it can be shown that

1 N m h
p(y|e’13’h’av p): % J {Zel] hjexp [_?j(yi_aj_ﬂ/xi)z}}
(10.48)

Conditional on e, p(8|y, e, h, p, @) and p(hj|y,e, B, p,a) for j =1,... ,m
simplify, and results from Chapter 4, Section 4.2 can be applied directly. In
particular, p(8ly, e, h, p, @) does not depend upon p and

Bly,e,h,a ~ N(B,V) (10.49)

where

N m -1
V= (K_l + Z Zeijhjx,-xi/>

i=1j=1
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and
_ _ n m
B=V|V'B+> > ejhjxilyi — o]
i=1 j=I
Furthermore, for j = 1,... ,m, the posterior conditionals for the &;s are inde-
pendent of one another and simplify to
hjly, e, B,a ~ G(;7,7)) (10.50)
where
N
UEDITESY
i=1
and

N
Zeij()’i —a; = x(B) (vi — aj — x{p) +Ej£2j
-2 i=1

J 5.
Vj

To aid in interpretation, remember that e;; is an indicator variable equalling 1 if
the ith error comes from the jth component in the mixture. Hence, Zth 1 €ij
simply counts the number of observations in the jth component, the term
>N > ity ejhjxix; is comparable to the term ~2X'X in Chapter 4 (4.4), but
for the ith observation it picks out the appropriate /;. Other terms have similar
1ntuition.

Noting that «; enters in the role of an intercept from a Normal linear regression
model in (10.48) and (10.47) describes a Normal prior (subject to the labelling
restrictions), it can be seen that the conditional posterior of « is Normal (subject
to the labeling restrictions). In particular,

plaly,e, B, h) « fy(al@, V)l(ag <oz < -+ < o) (10.51)

where

. N m -1

Vo = K;l—i—z Zeijhj eie;

i=1 \j=1

and

. N m

T=Vo| Vi'a+ Y 1> eyhjeilyi—px)
i=1 j=1

These formulae may look somewhat complicated, but they are calculated using
methods which are minor modifications of those used for the Normal linear
regression model. The term {Z;":] ejjh;j} picks out the relevant error precision
for observation i.
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Multiplying (10.46) by (10.48) yields the kernel of the conditional posterior,
p(ply, e, B, h,a). Straightforward manipulations show that this only depends
upon e, and has a Dirichlet distribution

p ~ D(p) (10.52)

where

N
5=£+Zei
i=1

Remember that e; shows which component in the mixture the ith error is drawn
from. It is an m-vector containing all zeros except for a 1 in the appropriate
location. Thus Zth 1 € 1s an m-vector containing the number of observations
drawn from each Normal distribution in the mixture.

The last block in the Gibbs sampler is p(e|y, 8, h, p, «). The rules of condi-
tional probability imply p(e|y, B, h, p, o) o p(yle, B, h, p,a)p(e|B, h, p, ).
The prior independence assumptions imply p(e|B,h, p,a) = p(e|p) and,
thus, p(ely, B, h, p,«) can be obtained by multiplying (10.48) by (10.39)
and re-arranging. If this is done, we find that p(el|y,B,h, p,a) =
]_[lN:l p(eily, B, h, p, ), and each of the p(e;|y, B, h, p, «) is a Multinomial
density (see Appendix B, Definition B.23). To be precise,

eily, B, h,p,a ~

/

w1 | PGl + B xi,hh P SN Giletm + B'xi, byt
I m L )
> pifnGiley + Bxi, hj_l) > pifnGiley + B xi, hj_l)
Jj=1 j=1
(10.53)

Posterior inference in the linear regression model with mixture of Normals
errors can be carried out using a Gibbs sampler which sequentially draws from
(10.49), (10.50), (10.51), (10.52) and (10.53).

10.3.5 Model Comparison: Information Criteria

All the model comparison methods described in previous chapters can be used
with mixtures of Normals. With this class of model, an important issue is the
selection of m, the number of components in the mixture. This can be done by cal-
culating the marginal likelihood for a range of values for m and choosing the value
which yields the largest marginal likelihood. Either the Gelfand—Dey method (see
Chapter 5, Section 5.7) or the Chib method (see Chapter 7, Section 7.5) can be
used to calculate the marginal likelihood. A minor complication arises, since
both these methods require the evaluation of prior densities, and the labeling
restriction means that (10.47) only gives us the prior kernel for «. However, the
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necessary integrating constant can be calculated using prior simulation. A crude
prior simulator would simply take draws from fy(a|a, V) and calculate the
proportion of draws which satisfy o] < @y < --- < oy,. One over this propor-
tion is the required integrating constant. More efficient prior simulators can be
developed using algorithms for drawing from the truncated Normal.

However, calculating marginal likelihoods can be computationally demanding
and care has to be taken with prior elicitation (e.g. marginal likelihoods are usu-
ally not defined when using noninformative priors). Accordingly, interest exists
in shortcut methods for summarizing the data evidence in favor of a model. Moti-
vated by this consideration, various information criteria have been developed. In
this section, a few of these will be introduced. Their advantage is that they are
easy to calculate, and typically do not depend on prior information. Their dis-
advantage is that it is hard to provide a rigorous justification for their use. That
is, the logic of Bayesian inference says that a model should be evaluated based
on the probability that it generated the data. Hence, for the pure Bayesian, the
posterior model probability should be the tool for model comparison. Information
criteria do not have such a formal justification (at least from a Bayesian perspec-
tive). However, as noted below, they can often be interpreted as approximations
to quantities which have a formal Bayesian justification.

Information criteria can be used with any model. Accordingly, let us temporar-
ily adopt the general notation of Chapter 1, where 6 is a p-vector of parameters
and p(y|0), p(0) and p(0|y) are the likelihood, prior and posterior, respectively.
Information criteria typically have the form

1C(0) =2In[p(y|0)] — g(p) (10.54)

where g(p) is an increasing function of p. The traditional use of information
criteria involves evaluating /C (0) at a particular point (e.g. the maximum likeli-
hood value for 6) for every model under consideration, and choosing the model
with the highest information criteria. Most information criteria differ in the func-
tional form used for g(p). This is a function which rewards parsimony. That it,
it penalizes models with excessive parameters.

In Bayesian circles, the most common information criterion is the Bayesian
Information Criterion (or BIC)

BIC(0) = 21n[p(y|0)] — pIn(N) (10.55)

As shown in Schwarz (1978), twice the log of the Bayes factor comparing two
models is approximately equal to the difference in BICs for the two models. Two
other popular information criteria are the Akaike Information Criterion (or AIC),
given by

AIC(0) =2In[p(y|0)] —2p (10.56)
and the Hannan—Quinn Criterion (or HQ)

HQ@©O) =2In[p(y|9)] — PCHo In[In(N)] (10.57)
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In (10.57) cgp is a constant. HQ is a consistent model selection criterion® if
CHQ > 2.

These are the most popular of the many information criteria which exist. There
are many places where the interested reader can find out more. The discussion
and citations in Poirier (1995, p. 394) provide a good starting point. Kass and
Raftery (1995) is a fine survey paper on Bayes factors which, among many
other things, draws out the relationship between Bayes factors and information
criteria. Carlin and Louis (2000) include much relevant discussion, including a
newly developed information criterion called the Deviance Information Criterion,
which is designed to work well when models involve latent data and hierarchical
priors. In this book, we note only that a quick and dirty method of model selection
is to choose the model with the highest value for an information criterion. In the
following empirical illustration, we investigate how effective this strategy is in
selecting the number of components in a Normal mixture.

10.3.6 Empirical Illustration: A Mixture of Normals Model

We illustrate the mixtures of Normals model using two artificial data sets. To
focus on the mixtures of Normals aspect of the model, we do not include any
explanatory variables (i.e. B does not enter the model). The two data sets are,
thus, all generated from

Vi = ¢&i

where ¢; takes the mixtures of Normals form of (10.38). All three data sets have
N = 200. The data sets are given by:

1. Data Set 1 has m = 2. The first Normal has «y = —1, h; = 16 and p; = 0.75.
The second Normal has oy = 1, hp =4 and p, = 0.25.

2. Data Set 1 has m = 3. The first Normal has o = —1, h; =4 and p; = 0.25.
The second Normal has ap = 0, i, = 16 and pp = 0.5. The third Normal has
a3 = 1,h3 = 16 and p3 = 0.25.

Histograms of these data sets are given in Figures 10.3a and b. These figures
are included to show just how flexible mixtures of Normals can be. By mixing
just two or three Normals together, we can get distributions which are very
non-Normal. Mixtures of Normals can be used to model skewed, fat-tailed or
multi-modal distributions.

We use a prior which is proper but very near to being noninformative. In par-
ticular, using the prior in (10.45), (10.46) and (10.47) we set o = 0,,,V,, =
(10000%)I,,,, g;z =1, V= 0.01 and p = ,,, where (,, is an m-vector of ones.
Bayesian inference is carried out using the Gibbs sampler involving (10.49),
(10.50), (10.51), (10.52) and (10.53). For each data set, Bayesian inference is

8 A consistent model selection criterion is one which chooses the correct model with probability
one as sample size goes to infinity.
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Figure 10.3 Histogram of (a) Data Set 1, (b) Data Set 2

done using m = 1, 2 and 3. The information criteria are evaluated at the posterior
mean of the parameters in the model. The Gibbs sampler was run for 11 000 repli-
cations, with 1000 burn-in replications discarded and 10 000 replications retained.
MCMC diagnostics indicate that this is an adequate number of replications to
ensure convergence of the Gibbs sampler.

Tables 10.1 and 10.2 contain information criteria for Data Sets 1 and 2, respec-
tively. The information criteria are consistent with one another and conclusive.
For Data Set 1 (which was generated with m = 2), all of the information criteria
select m = 2 as the preferred model. For Data Set 2, the information criteria all
select the correct value of m = 3. Thus, at least for these data sets, informa-
tion criteria do seem to be useful for selecting the number of components in a
Normal mixture.

Table 10.3 presents posterior means and standard deviations of all parameters
for the selected model for each data set. A comparison of posterior means with the
values used to generate the data sets indicate that we are obtaining very reliable

Table 10.1 Information Criteria for Data Set 1

Model AIC BIC HQ

m=1 —174.08 —183.98 —183.09
m=2 92.41 77.62 74.40
m=73 —52.24 —81.92 —79.25
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Table 10.2 Information Criteria for Data Set 2

Model AIC BIC HQ

m=1 —120.99 —130.88 —130.00
m=2 —103.72 —123.51 —121.23
m=23 —76.77 —106.35 —103.69

Table 10.3 Posterior Results for Two Data Sets

Data Set 1 Data Set 2

Mean St. Dev. Mean St. Dev.
o] —1.01 0.02 —0.86 0.22
o) 1.02 0.06 —0.04 0.04
o3 — — 1.02 0.04
hi 18.43 2.14 3.38 1.40
hy 5.65 1.19 21.97 8.29
h3 — — 17.80 5.19
p1 0.76 0.03 0.33 0.09
P2 0.24 0.03 0.41 0.08
P3— — — 0.25 0.04

estimates of all parameters. An examination of posterior standard deviations indi-
cates that the parameters are reasonably precisely estimated, despite having only
a moderately large sample size.

10.4 EXTENSIONS AND ALTERNATIVE APPROACHES

As we have stressed throughout, virtually any model in this book can be used
as a component of a larger model. In many cases, posterior simulation for the
larger model can be done using a Gibbs sampler, where one or more blocks of
the Gibbs sampler can be lifted directly from the simpler model discussed in
this book. We have shown how such a strategy can be used to develop posterior
simulators for semiparametric probit and tobit models. A myriad of other such
extensions are also possible. Similar extensions exist for the mixtures of Normals
linear regression model considered above. There are many obvious extensions of
models from previous chapters (e.g. mixtures of Normals nonlinear regression
or any of the panel data models can be extended to have mixtures of Normals
errors). Mixtures of Normals can also be used to make hierarchical priors more
flexible. The possibilities are virtually limitless.

Bayesian nonparametrics is, at present, a very active research area and there are
many approaches we have not discussed (e.g. Dirichlet process priors, wavelets,
splines, etc.). Dey, Muller and Sinha (1998), Practical Nonparametric and Semi-
parametric Bayesian Statistics, provides an introduction to many such approaches
in this rapidly developing field.
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10.5 SUMMARY

In this chapter, Bayesian inference in several flexible models has been discussed.
These models are designed to achieve similar goals as the non- or semiparametric
models so popular in the non-Bayesian literature. There are numerous Bayesian
nonparametric methods, but in this chapter we focus on simple models which are
straightforward extensions of models discussed in previous chapters. The chapter
is divided into sections containing models involving nonparametric regression
(i.e. the regression line has an unknown functional form) and models involving
a flexible error distribution.

The first model considered was the partial linear model. This is a regression
model where some explanatory variables enter in a linear fashion and another
one enters in a nonparametric fashion. We showed how this model can be put
in the form of a Normal linear regression model with natural conjugate prior
and, thus, analytical results from Chapter 3 apply directly. We showed how
the partial linear model could be used as a component of a more complicated
model (e.g. a semiparametric probit or tobit model), and how a Gibbs sam-
pler could be constructed in a straightforward manner. We next considered the
partial linear model where p > 1 explanatory variables were treated in a non-
parametric fashion. Although such a model can be analyzed by ordering the
data using a distance function, such an approach may not work well if p is
more than 2 or 3. Hence, an additive version of the partial linear model was
discussed. This model can also be put in the form of a Normal linear regres-
sion model with natural conjugate prior and, thus, a posterior simulator is not
required. For modeling flexible error distributions, mixtures of Normals are pow-
erful tools. We showed how a Gibbs sampler with data augmentation can be used
to carry out posterior inference in the linear regression model with mixture of
Normals errors.

No new tools for Bayesian computation were developed in this chapter.
Bayesian quantities such as posterior and predictive means, Bayes factors, etc.,
can all be calculated using methods described in previous chapters. The only
new tool introduced is a model selection technique involving information cri-
teria. Information criteria do not have a rigorous Bayesian interpretation (other
than as an approximation). However, they are typically very easy to calculate
(and do not depend upon prior information) and, thus, are popular in practice.
In this chapter, we showed how information criteria can be used to select the
number of components in a Normal mixture.

10.6 EXERCISES

The exercises in this chapter are closer to being small projects than standard
textbook questions. Remember that some data sets and MATLAB programs are
available on the website associated with this book. The house price data set is
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available on this website, or in the Journal of Applied Econometrics Data Archive
listed under Anglin and Gencay (1996)
(http://qed.econ.queensu.ca/jae/1996-v11.6/anglin-gencay/).

1. The empirical illustration in Chapter 3 (Section 3.9) used the Normal linear
regression model with natural conjugate prior with the house price data set.
Please refer to this illustration for data definitions.

(a) Use the house price data set and the partial linear model to investigate
whether the effect of lot size on house price is nonlinear. Experiment with
different priors (including empirical Bayes methods).

(b) Calculate the Bayes factor comparing the partial linear model to the Nor-
mal linear regression model for this data set.

(c) Carry out a prior sensitivity analysis to investigate how robust your answer
in part (b) is to prior choice.

2. The additive version of the partial linear model may be too restrictive in some
applications. This motivates interest in specifications which are more general,
but less likely to suffer from the curse of dimensionality than the partial linear
model. One such specification includes interaction terms between explanatory
variables. In the case where p = 2, we would have the model

i = filxit) + f2(xi2) + f3(xi1xi2) + &

(a) Describe how the methods of Section 10.2.3 can be extended to allow for
Bayesian analysis of this model.

(b) Using artificial data sets of your choice, investigate the empirical perfor-
mance of the methods developed in part (a).

3. Chapter 9 included empirical illustrations of the tobit and probit models (see

Sections 9.3.1 and 9.4.1, respectively).

(a) Re-do these empirical illustrations using semiparametric tobit and probit as
described in the present chapter. Note: the empirical illustrations describe
the artificial data sets used (see also the website associated with this book).

(b) Describe how Bayesian inference in a semiparametric ordered probit model
could be developed.

(c) Write a program which carries out Bayesian inference in the semiparamet-
ric ordered probit model and investigate its performance using artificial
data.

4. The empirical illustration of the mixtures of Normals model (Section 10.3.6)
used information criteria to select the number of elements in the mixture.

(a) Write a program (or modify the one on the website associated with this
book) which uses marginal likelihoods to choose the number of elements
in the mixture.

(b) Using an informative prior, investigate the performance of your program
using the artificial data sets described in Section 10.3.6.

(c) Repeat part (b) using different data sets, and compare results obtained
using marginal likelihoods with those obtained using information criteria.
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