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Abstract. Assumptions motivated by either logical or existing theory
can be imposed during model estimation to restrict the feasible region
of the parameters. The restrictions, implemented as shape constraints,
may not provide any benefits in an asymptotic analysis, but will im-
prove the estimator’s finite sample performance. This paper briefly re-
views an illustrative set of research on shape constrained estimation
in the economics and operations research literature. We highlight the
methodological innovations and applications, with a particular empha-
sis on utility functions, production economics, and sequential decision
making applications.
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1. INTRODUCTION

This paper builds on prior surveys of shape constrained estimation in the
economics literature by Matzkin (1994), Yatchew (2003), and Chetverikov et al.
(2018), and also surveys the operations research literature for the first time.
Although length limitations prohibit a comprehensive survey, we describe the
important central themes and identify the recent advances and applications and
active research directions in the literature.

One of the first papers published in the economics literature is Hildreth (1954)
who estimated the relationship between corn output and nitrogen fertilizer re-
stricting output to be a function of fertilizer that was monotonically increasing
and concave. Later, Brunk (1970) studied isotonic functions, or imposing a mono-
tonicity constraint on the function, and showed for isotonic regression with a
single regressor the consistency and the rate of convergence. Barlow et al. (1972)
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2 JOHNSON AND JIANG

were the first to develop and organize fundamental results in order restricted
inference for isotonic regression. Robertson et al. (1988) summarized one of the
earliest conferences on shape constrained functional estimation. Mammen (1991)
considered the two-step estimation of a smooth monotone function in a single re-
gressor setting and analyzed interchanging the isotonization step and the smooth-
ing step. Hall and Huang (2001) considered the estimation of a monotonic and
convex/concave function with a single regressor using kernel weighting methods
with an additional weigh vector to assure the function satisfied the shape con-
straints. Villalobos and Wahba (1987), who considered the estimation of a smooth
function with a set of linear inequality constraints, provided a characterization
which could be solved using a nonlinear programming algorithm.

Our survey is divide into a section on regression-based estimation and a sec-
tion on sequential decision making. Within the regression-based estimator sec-
tion, we divide the relevant research into three subsection: 1) The Nonparametric
Least Squares Estimator; 2) Approximate Global Shape Restrictions, Ensem-
ble Methods, and Local Weighting; and 3) Single Index Models and Alternative
Assumptions to Global Convexity. In each subsection we describe both a set
of estimators and an application that illustrates the estimators. For subsection
1) the application is utility function estimation, whereas in subsections 2) and
3) the application is production function estimation. In the sequential decision
making section, the subsections are 1) Convexity of the Value Function, 2) Mono-
tonicity and 3) Policy Structure. Several examples are included throughout the
section. We refer readers interested in other relevant topics and applications of
shape constraint estimation, e.g., option pricing or stochastic approximation to
see Ait-Sahalia and Duarte (2003) and Kushner and Yin (2003), respectively. For
testing, we suggest Chernozhukov et al. (2015) and Chetverikov et al. (2018) and
the references therein.

2. REGRESSION-BASED ESTIMATORS

Regression models allow the investigation of observational data to identify cor-
relations among variables to provide basic empirical evidence of the relationship
between variables. Here we will review several regression based methods for es-
timating these relationship while imposing additional information which can be
stated as shape constraints on the regression models. We will begin in Section
2.1 with the widely used nonparametric least squares estimator (LSE). Estimat-
ing the nonparametric LSE with shape constraints results in functional estimates
that satisfy a set of global axiomatic properties. We will describe the application
of using Afriat inequalities to test the generalized axioms of revealed preferences.
Then in Section 2.2 we will consider approximations to nonparametric estima-
tor with globally axiomatic properties. These estimators will approximate either
the axioms or the function by only imposing weaker versions of the axiom or
by using parametric approximations. In some cases these approximations can
be improved by ensemble methods or local weighting both of which will be dis-
cussed. We will discuss applications related to production economics where these
estimators are used. Finally in Section 2.3, we will review single index models
and alternative shape restrictions. Single index models assure predictor variables
are aggregated to maintain properties such as linearity or convexity while allow-
ing the relationship between the dependent variable and the aggregate predictor
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to remain general. These models can be used to implement more complicated
economic models of production where convexity is maintained between certain
variables while more complicated relationships such as the S-shape can be im-
posed between other variables. We will illustrate these models with extensions
developed in production economics applications.

2.1 The Nonparametric Least Squares Estimator

One of the most widely used shape constrained estimators is the nonparamet-
ric LSE of a multi-variate convex regression function (Groeneboom et al., 2001;
Kuosmanen, 2008; Seijo and Sen, 2011). Initial work on multi-variate convex re-
gression functions includes Matzkin (1991), Banker and Maindiratta (1992), and
Allon et al. (2007), who considered maximum likelihood estimators. The con-
sistency of the first two estimators is shown in Matzkin (1991) and Sarath and
Maindiratta (1997), respectively. However, both estimators have had little prac-
tical implementation because of the computational complexity of the associated
optimization problems. Allon et al. (2007) described some of these complexi-
ties and used the concept of entropic distance to develop a maximum likelihood
estimator that can be stated as a convex programming problem and thus can
be solved for data sets of up to 400 observations which was considered a large
instance. Many of the computational strategies for the nonparametric LSE de-
scribed below are directly applicable to the Allon estimator, but they have not
been pursued in the literature. Alternatively, Beresteanu et al. (2007) considered
a sieve estimator with a least squares loss function, and evaluated the metric
entropy of the space of shape-restricted functions.

Kuosmanen (2008) proposed the characterization of the nonparametric LSE
of a multi-variate convex regression function. Unlike the previous estimators,
this characterization relaxes assumptions on the distribution of the error term
and the need for turning parameters. To define the model, consider the set of
observations {(X;,Y;) : ¢ = 1,2,...,n} and a nonparametric shape restricted
regression satisfying

(2.1) Y = f(Xi) + €.

Here, X; € R? is an observed vector of predictors where d > 1. The noise term,
€; satisfy E(e; | X) = 0, and the real-valued regression function f is unknown
but obeys certain known restrictions. In the work described to this point, the
known restrictions were convexity and in some cases also monotonicity. Thus,
let .# denote the class of all regression functions satisfying a particular set of
restrictions. Letting 6* = (f(X1), f(X2),..., f(X,)), Y = (Y1,Y2,...,Y},) and
€ = (€1,€9,...,€,), rewrite the model (2.1) as

Y =0"+e.

Subject to the constraints imposed by the properties of %, the estimation problem
can be translated to constraints on 8* of the form 8* € €. The set € contains all
possible Y that can be generated by f, the set of functions in the shape restriction

Throughout this section we will use the mathematical notation common in this literature
which is to indicate matrices and vectors by using a bold font and indicate scalar variables as
non-bold font. Other notation is introduced as it is used.
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4 JOHNSON AND JIANG

class, given the observed matrix X. Specifically

¢ ={(f(X1), [(X2),.... f(Xpn)) ER": f € F}

is a closed subset of R™. Now consider an estimator of 8*. Define the LSE esti-
mator 6 of 8* for a shape-restricted regression as the projection of Y onto the
set 6%,
6 = argmin||Y — 0|?,
0 c?

where || - || denotes the Euclidean norm in R™. Generally, because € is a closed
convex set, 8 € € is unique and it can be characterized by:

(Y—0,06-0)<0, forall 0 € €,

where (-, -) denotes the inner product in R™. Consider the specific case of convex
regression when the restriction on % is convexity. As discussed in Seijo and
Sen (2011), both primal and dual characterizations are possible for the LSE’s
constraints. Pursuing the dual characterization leads to the positive semidefinite
quadratic program:

n

minimize (Vi — 6)?
(2.2) 0.8 ;

subject to (B, X; — Xp) <0 — 0% Vk,j=1,2,...,n.

Here, 3, is the estimated subgradient at the point Xj. In this paper, we refer to
the constraints in (2.2) as the Afriat inequalities (Afriat, 1967, 1972).

It has been noted that LSE achieves limited performance near the boundaries
of the domain (Seijo and Sen, 2011; Lim and Glynn, 2012). Lim (2014) proposed a
refinement to include restricting the domain of .% and bounding the subgradients
of f, resulting in the set

ﬂ:{fﬁ[O,I]d%R:fiSCOHVQXand |§J’| <Cforl<j<d,
where (¢1,¢2,...,¢h) e df(x) for x € (0, 1)d}’

where 0f(x) is the subdifferential of f at x. This means that additional con-
straints on the estimated subgradients can be added to (2.2):

(2.3) 18, <C Vk=1,2...n

Let f be an estimate of the function f computed using (2.2) augmented with
(2.3). Lim (2014) establishes a rate of convergence result: for any ¢ > 0, there
exists a constant ¢, depending on C' and ¢, that satisfies

lim sup PK; Zn:(f(Xj) - f(Xj))2>1/2 > Tnc] <e,

n—o0

j=1
where
n—2/(4+d) if d < 4.
T = { (logn)Y2n=1/4 if d = 4.
n-1/4d. if d > 4.
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Juditsky and Nemirovski (2002) obtain a similar but more general result by
estimating the distance from an unknown signal in a white-noise model to the
convex cones of the positive/monotone/convex function. The authors showed that
when the function belongs to a Holder class, the risk of estimating the L,-distance,
1 <r < oo, from the signal to the cone is the same, up to a logarithmic factor,
as estimating the signal itself. The same risk result holds for testing if an un-
known signal is positive, monotonic, and/or convex. See Guntuboyina and Sen
(2013, 2015) and Chatterjee et al. (2015) for other results related to the rate of
convergence.

2.1.1 Computation Wu (1982) and Dykstra (1983) published the initial work
on computational issues for the least squares estimator subject to convexity with
a single regressor. Goldman and Ruud (1993) considered the multi-variate prob-
lem and recognized that Dykstra’s insight could be generalized from searching
the intersection of a finite number of convex cones to search over the intersection
of a finite number of convex sets. More recent operations research literature in-
vestigated LSE’s computational issues. For example, Alizadeh (2006) discussed
the connection between shape constrained functional estimators and the corre-
sponding semidefinite constraints on the programming problems used to calculate
LSE’s parameters.

Lee et al. (2013) noted that while (2.2) is in the class of convex optimization and
is thus polynomial-time solvable, the number of constraints grows quadratically
with the size of the data set and can thus present practical challenges even for a
few hundred observations. The percentage of binding constraints at the optimal
solution is only 0.5 - 1% for typical problems in economic applications. Therefore
the authors proposed an estimation procedure which initially included only the
constraints for observations that are close to one another in terms of Euclidean
distance || X; — X;||? < C where C is prespecified parameter. Notating the set of
constraints implied by the closeness criteria as V', the constraints are

(2.4) (B X; —Xp) <09 — 08 Vk,jcV,B81,8,...,8, c RO cR".

To solve a series of smaller optimization problems, Lee et al. (2013) proposed Al-
gorithm 1 below, which adds back violated constraints iteratively until satisfying
the set of all Afriat constraints. The algorithm is demonstrated for data sets of
up to 1,800 observations.

Alternatively, using a least absolute deviation loss function, which can be for-
mulated as an easily solvable linear program, Luo and Lim (2016) showed that
the estimator converges almost surely to the true function as n increases to in-
finity. Mazumder et al. (2015) presented an Alternating Direction Method for
Multipliers (ADMM) algorithm for solving the nonparametric LSE of a multi-
variate convex regression function. Although their algorithm calculates estimates
for data sets of 3,500 observations in less than one hour, their proposed ADMM al-
gorithm has not been proven to converge for all data sets. Specifically, the ADMM
algorithm requires dividing the variables into groups and the algorithm alternates
between fixing all but one of the groups’ variables to their current best values and
optimizing only in terms of the selected group of variables. The ADMM algorithm
has been proven to converge for two groups of variables; however, Mazumder et al.
(2015) uses three groups of variables and the converge properties of ADMM with
three groups is still an open question (Bertsekas, 1999).
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6 JOHNSON AND JIANG

Algorithm 1 Iterative algorithm proposed by Lee et al. (2013)

(1) Let t =0 and let V' be a subset of the ordered pairs of observations.

(2) Solve (2.2) replacing the Afriat inequalities with the (2.4) to find an initial
solution, (8, 3.

(3) Do until (81, 3®)) satisfies all the Afriat inequalities:

(a) Select a subset of the concavity constraints that (8%, 3%)) violates
and let V(t) be the corresponding observation pairs.

(b) Set V=vVuv®,

(c) Solve (2.2) replacing the Afriat inequalities with the (2.4) and using
V from (b) to obtain solution (9¢+1), g0¢+1)),

(d) Set t =t+1.

2.1.2 Application: Consumer Preferences Standard approaches to analyze the
demand-side of an economy typically assume parametric functions for consumer
preferences and demand functions to develop models which are then fitted to
the observed data. An alternative approach called revealed preferences, proposed
by Samuelson (1938), used nonparametric methods, thus avoiding parametric
assumptions for both preferences and demand. In this section, we present the
concepts of rational preferences and the generalized axiom of revealed prefer-
ences (GARP). We explain how the Afriat inequalities, the shape constraints
mentioned above, can be used to test GARP. We discuss several applications of
shape constraints in the consumer preference literature. We end by summarizing
the literature that describes how to estimate a demand functional while imposing
shape constraints that imply consumer rationality.

Following the notation of Cherchye et al. (2007), under the assumption of
a set of T price-quantity pairs, denote the vectors of the prices and quantities
associated with observation ¢ by p, and q;, respectively, where p, € Rf 4 and
q; € Rf . The observations describe how the price p, changes over time and a
rational consumer should adjust their consumption q, accordingly.?

DEFINITION 1 (Samuelson (1950)). Let S = {(p;,q;)}L; be a set of observa-
tions. A utility function U provides a rationalization of S if for each observation
t, we have U(q,) > U(q) for all q with p] q < p{ q;.

Note p; q; is the total that a consumer pays for quantity q;. The definition states
that for a utility function to be rational, if the consumer is willing to pay more,
p; q < p/ q;, then the utility should be larger, U(q;) > U(q). And if the data set,
S can be rationalized, then the consumer behaved rationally during the observed
time period.

Define the property, local nonsatiation, to mean that for any bundle of goods
there is always another bundle of goods arbitrarily close that is preferable, i.e., a
consumer always prefers more of or less of an item and not a specific amount. Note

*We use RY to refer to the N dimensional positive orthant including the origin and RY, is
the strictly positive orthant.
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strong monotonicity implies local nonsatiation but not vice versa. The revealed
preferences literature has defined a locally nonsatiated utility function that pro-
vides a rationalization of the set of observations .S if and only if the data satisfy
the Generalized Aziom of Revealed Preferences (GARP).

In order to define GARP, we first introduce the notions of strictly directly
revealed preferred and revealed preferred. Let S = {(p;, q;) }1—, be a set of obser-
vations. The bundle of quantities q, is strictly directly revealed preferred to q if
ptT q; > ptT q. Moreover, q, is revealed preferred to q if

P{ d; > P/ Ay Pu9y > Pydys---+P. 4, > P, d,

for some sequence (t,u,...,z). The set of observations S satisfies GARP if for
any t and s, the bundle g, being revealed preferred to q, implies that q, is not
strictly directly revealed preferred to q,. With these definitions, we can formalize
the relationship between GARP and the existence of a utility function that can
rationalize the data set S.

THEOREM 2.1 (Afriat (1967); Diewert (1973); Varian (1982)). For a set S =
{(py; a,)}E, of observations of price-quantity pairs, the following statements are
equivalent:

(1) There exists a utility function U, satisfying local nonsatiation, that provides
a rationalization of S.

(2) The set S satisfies GARP, as defined above.

(8) There exist U1, A1, Uz, Mg, ..., Up, A\p € RL such that the Afriat inequali-
ties hold: for all t,r € {1,2,...,T},

U, — U < M\epf (a4 — qp)-

(4) There exists a continuous monotonically increasing and concave utility func-
tion U that satisfies local nonsatiation and provides a rationalization of S.

Condition (2) implies that GARP is necessary and sufficient for rationalization
of the data. While Condition (3) states that satisfying the Afriat inequalities is
equivalent to satisfying GARP. Further, Condition (3) provides a test for GARP;
specifically, if the Afriat inequalities are satisfied, then the set of observations
S satisfy GARP. The utility function referenced in (1) is defined as the lower
envelope of a set of hyperplanes, specifically

U(x) = min Uy + A p{ (a—a)-

Brown and Matzkin (1996) extended Afriat results to other important economic
models; specifically, they identified restrictions on prices, incomes, and endow-
ments for general equilibrium models.

GARP and the associated estimators are the workhorses for the nonparametric
analysis of demand functions. Numerous extensions have been developed, such as
Matzkin (1991), who extended revealed preference analysis to nonlinear budget
sets while still imposing concave utility functions. Blundell et al. (2003) stud-
ied both observations and experimental data and developed methods to detect
revealed preference violations while considering the evolution of consumer pref-
erences over time modeled as an expansion path. Blundell et al. (2008), who
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8 JOHNSON AND JIANG

considered a case with a small number of market prices and a large number of
consumers within each market, used consumer level data to estimate the bounds
on consumers’ responses to new relative prices.

Note that if the GARP test is applied across households, it is often rejected.
This simply implies that all households do not have the same utility function and
thus have different demand functions. Often economists are interested in estimat-
ing a consumer demand equation, D(Z;) + b;. Here, the demand function, D(-) is
typically a function of the prices, total expenditures and observable characteris-
tics of household, Z;, plus an individual-specific term b;. Lewbel (2001) recognized
that GARP should be applied to an individual’s demand function and not the
aggregate demand function that is part of the consumer demand equation. Thus,
Lewbel (2001) listed the conditions for the demand function from the consumer
demand equation to satisfy utility function rationalization.

The analysis of heterogeneous demand using nonparametric shape constrained
methods has recently renewed in popularity. Examples include Dette et al. (2016),
who proposed a test for downward sloping demand curves, and Hausman and
Newey (2016), who considered unobserved individual heterogeneity in utility func-
tions and focused on recovering the relationship between demand and price for a
continuous consumption good. As with many nonparametric shape constrained
estimators, Hausman and Newey (2016) did not achieve point-identification rather
they obtained bounds on the average welfare effect. Bhattacharya (2016) studied
discrete demand with general heterogeneity in customers and derived the average
consumer surplus.

2.2 Approximations to Global Shape Restrictions, Ensemble Methods, and
Local Weighting

There are two potential limitations of the nonparametric shape constrained
estimators described above: 1) the estimators are computationally expensive and
often difficult to implement, and 2) they tend to over-fit the observed sample.
Below we review alternatives to address these two potential limitations.

2.2.1 Approximation to Global Shape Restrictions Gallant and Golub (1984)
proposed imposing shape restrictions, such as convexity or quasi-convexity, for
a Fourier Functional Form (Gallant, 1981). The Fourier Functional Form is an
early example of a sieve estimator, which approximates a sequence of parameter
spaces in which the parameter space increases as the number of observations in-
creases. In the limit, as the number of observations n — oo, the approximating
parameter space is dense in the original space. Diewert and Wales (1987) argued
that economic theory implies global curvature properties which are not guaran-
teed by Gallant’s estimator. Diewert and Wales (1987) identified two functional
forms, the Generalized McFadden and the Generalized Barnett cost functions,
which, when augmented with restrictions on the matrix of second order partial
derivatives, assured globally convexity and still maintained flexibility (Diewert,
1974).

Similar to Gallant and Golub (1984), methods to impose some shape restric-
tions on estimators without achieving global convexity have been introduced. For
example, Ryan and Wales (2000) considered imposing shape restrictions only at
one point in the domain of the function. The authors argued that in many cases
it is sufficient to result in estimates that are globally concave; they discussed
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examples of Translog and Generalized Leontief cost functions with a single re-
gressor estimated with 25 observations that produce globally concave estimates.
Alternatively, considering nonparametric shape constrained estimation, Du et al.
(2013) proposed imposing coordinate-wise concavity which, like Ryan and Wales
(2000), can be thought of as an approximation to global concavity. However, for
more complicated models, we found very little empirical evidence that imposing
concavity at a point or coordinate-wise will result in globally concave estimates
or something even close.

Other models that imposed approximations to global shape restirctions in-
clude Pya and Wood (2015), who considered a generalized additive model un-
der first and second order shape constraints. The estimator, which is an exten-
sion of P-splines, facilitates efficient estimation of the smoothing parameters as
part of the model estimation. The authors also developed algorithms to calculate
simulation-free approximate Bayesian confidence intervals for the smooth com-
ponents. Similarly, Wu and Sickles (2017) proposed a semiparametric estimator
which uses penalized splines and an integral transformation to impose monotonic-
ity and curvature constraints. The estimator is consistent and the authors derived
the asymptotic variance. Alternatively, Chen and Samworth (2016) considered a
slightly more general model

Vi = f1(Xi) = (0] Xi) + - + fn(0,X) + .

where the value of m € N is assumed known, and Yj is the response variable and
follows an exponential family distribution. The variable ¢ € R is the intercept
term, 61,05, ...,0,, € R? are called the projection indices, and fi, fo,..., fm :
R — R are called the ridge functions. Chen and Samworth (2016) generalizes the
class of generalized additive models by allowing each function f to be a function
of a linear aggregation of X, specifically to the component m, 8" X;. The benefit
of this model is that shape constraints can be imposed on each of the single-
dimensional functions f, making the estimator scalable and reducing the compu-
tational difficulty. The drawback is that shape are only imposed coordinate-wise
and global properties are not imposed.

2.2.2 Other Shape Constrained Estimators and Ensemble Methods Hannah
and Dunson (2011) proposed Multi-variate Bayesian Convex Regression (MBCR),
which approximated a general convex multi-variate regression function with the
maximum value of a random collection of hyperplanes. Additions, removals, and
changes of proposed hyperplanes are done through a Reversible Jump Markov
Chain Monte Carlo (RJIMCMC) algorithm (Green, 1995). One of MBCR’s attrac-
tive features include the block nature of its parameter updating, which causes the
parameter estimate autocorrelation to drop to zero in tens of iterations in most
cases. In addition, MBCR spans of all convex multi-variate functions without the
need for any acceptance-rejection samplers, scales to a few thousand observations,
and relaxes the homoscedastic noise assumption.

Magnani and Boyd (2009) proposed an iterative fitting scheme to select the
covariate partitions creating K random subsets and fitted a linear model for
each subset. They constructed a convex function by taking the maximum over
these hyperplanes; the hyperplanes induced a new partition, which they used to
refit the function. The series of operations repeats until reaching convergence.
However, the iterative nature makes the final estimate dependent on the initial
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10 JOHNSON AND JIANG

partition. Further, note the estimator is not consistent and there are cases when
the algorithm never converges.

Alternatively, Hannah and Dunson (2013) proposed a multi-variate convex
adaptive partitioning (CAP) method to estimate locally linear estimates on adap-
tively selected covariate partitions. CAP uses the upper envelope of the set of local
linear estimates to construct a flexible linear hyperplane approximation to the
underlying function. The estimator is computationally feasible even for 10,000’s
of observations and the authors proved its consistency, but its asymptotic rate of
converagence is still unknown. Hannah and Dunson (2012) considered a set of en-
semble methods such as bagging and smearing which could be applied to the CAP
and the Magnani and Boyd (MB) estimators. Bagging subsamples the data set
with replacement taking subsample of size n repeated M times Breiman (1996).
Each subsample was used to create a new estimate and then the M estimates are
averaged. Smearing adds i.i.d. mean zero noise to the observed dependent vari-
able Breiman (2000). A regression model is then fitted to the new noisy data with
the observed dependent variables and the M regression estimates are averaged.
Hannah and Dunson (2012) implemented smearing and bagging with both CAP
and MB. The authors note the significant benefits of bagging and smearing for
small sample sizes of 200 observations, and for their large sample sizes of 5,000
observations. In application data, the MB method with either bagging or smear-
ing significantly outperformed (typically by an order of magnitude on a variety
of performance criteria) CAP with no augmentations.

Yagi et al. (2018) considers the multi-variate local polynomial kernel estima-
tor with shape constraints. Following their notation, define a set of m points,
X1,...,Xm, for evaluating constraints on the local linear kernel estimator. Recall
that {(X;,Y;) :i=1,2,...,n} is the set of observations. Yagi et al. (2018) define
the Shape Constrained Kernel-weighted Least Squares (SCKLS) estimator as

e LA T 2 Xj — X
mlrirgllze ;;(Y] —a; — (X; —x;) b;)*K (h)
subject to  I(x;) < 9™ (x;]a,b) <u(x;), i=1,...,m,
where a = (ay,...,a,)" are functional estimates, b = (b],...,b})T are slope
estimates at x, K(-) denotes a product kernel, h is a vector of bandwidths?,
™) (x; | a, b) is the st derivative of the estimated function v, and I(x;), u(x;) are
the lower and upper bounds, respectively. Specifically, the relationship between
¢ and the variables a and b is ¥(x;) = a; and () (x;) = b.

Yagi et al. (2018) showed that SCKLS is consistent and its convergence rate
nearly optimal (within a log factor). Unlike other nonparametric estimators,
SCKLS uses local information to estimate the functional at any particular point
X, but requires bandwidth selection. Compared to other kernel based shape con-
strained estimators, such as Hall and Huang (2001) and Du et al. (2013), SCKLS
imposes global convexity/concavity by taking the minimum of a set of hyper-
planes. A computational complexity analysis implies that SCKLS and Du et al.
(2013) method should be similarly difficult to solve because both estimators are
solving quadratic objective functions relative to a convex solution spaces. How-

3See Li and Racine (2007) for more details.
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ever, practically speaking, SCKLS is usually easier to solve, because the hyper-
plane structure leads to a sparse constraint matrix, whereas the constraint matrix
to restrict the unconstrained kernel estimator is dense making optimization more
difficult.

Semiparametric models are common in economics because standard interpre-
tations apply for the linear part. Consider a function f, although unknown, pos-
sesses shape properties such as homogeneity, concavity, or monotonicity. Tripathi
(2000) considered the standard partially linear model, Y = XT3, + f(Z) + e,
where Y is the response variable, (X, Z) are the covariates, 3 is a finite dimen-
sional parameter of interest, and € is an unobserved random Gaussian variable.
Tripathi showed that in the class of n/2 consistent regular estimators of the para-
metric parameters 3, the concavity and monotonicity of f do not improve the
efficiency of the estimate 3 in finite samples. However, homogeneity restrictions
on f reduce the lower bounds for the asymptotic variance of the n'/2
regular estimators of 3.

consistent

2.2.8 Application: Production Economics Microeconomic theory, which can be
interpreted as shape constraints, provides additional structure for modeling a
production or cost function. Consider a production process that uses d different
resources to produce a single output, Y € R. Call the quantity of the resources
consumed the inputs and use the notation, X; € R?. Letting n instances of the
production process, each called a production plan, lead to n pairs of input and
output data, {(X;,Y;)}j_;. Call the set of all technologically feasible production
plans the production possibilities set and denote the set as 7. Next, define the
production function as

Y]:go(X])+6]7 fOI‘jZl,...,n,

where ¢ is a random variable satisfying E(e; | X;;) = 0. Here, our primary interest
is production function estimation; examples of applications to estimate the dual
concept, the cost function, using nonparametric shape constrained estimators
include Beresteanu (2005) and Michaelides et al. (2015).

Microeconomic theory often implies basic assumptions, e.g. more input should
lead to more output (at least in the input range where the production processes
are observed). This particular assumption implies that the production function
increases monotonically, specifically

if x; < x2, then go(x1) < go(x2),

where the inequality is taken component-wise. Further, for a given output level
Y, define the set of input vectors used to produce output level Y as the input
requirement set (also referred to as the input set)

V(y) ={x: (y,x) is in T}.

Here, the assumption is an optimal ratio or set of ratios among the inputs exists
and any deviation from the optimal ratio requires an increase in other inputs that
is more than proportional to the decrease in a particular input. Given two input
vectors x; and x2 in V(y), then Ax; + (1 — A\)xg is in V(y) for all 0 < A < 1.
Thus, V (y) is a convex set for any value y (Varian, 1992). The boundary of the
input set is referred to as the input isoquant
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12 JOHNSON AND JIANG

Isoq V(y) ={x:xeV(y), \x ¢ V(y), A < 1}.

The assumption of convex input sets can be strengthened. Define a production
function f(x) = F(g(x)). The production function is homothetic if: 1) Scale
function F' : R — R is a strictly monotone increasing function, and 2) Core
function g : R — R is a homogeneous of degree 1 function which implies g(tx) =
tg(x) for all t > 0. A production function that does not have this property is
referred to as non-homothetic.

The property, decreasing marginal benefit of inputs, holds for a variety of pro-
duction processes. Decreasing marginal benefit of inputs implies that beyond some
output level, Y/, the additional output that can be produced from an additional
unit of input decreases as the input level increases:

f(Ox) < Af(x) for all A > 1 and f(x) >y’

There are two primary reasons for this property. First, for a particular production
process certain inputs are well-matched or are the best inputs for that process.
Scarcity of inputs is the notion that as the scale of production increases, less
ideal inputs are used, and so less output per unit of input is achieved. Second,
as a production process increases, the related activities are harder to organize
or control. Economists call this the span of control. A production function with
convex input sets that satisfies decreasing marginal benefit of inputs over the
entire input space (i.e., y/ = 0) is globally concave (Varian, 1984).

For multi-product production, Mundlak (1963) defined a multi-product output
vector y = (y1,92, .- ., yq)T € R%. For a given input vector x, define the set of
output vectors that can be produced as the producible output set:

L(x)={y:(y,x)isin T}.

Mundlak (1963) argued that the producible output set L(x) should also be con-
vex. This leads naturally to an implicit multi-input/multi-output production func-
tion, also called the transformation function, defined as:

f(yax) =0.

Under the assumption that the input requirement and the producible output sets
are convex and that the scaling relationship between inputs and output increases
monotonically with the decreasing marginal product, Chambers (1988) shows the
multi-input /multi-output production technology 7 is globally convex. Further,
Chambers (1988) defined the the properties a multi-input/multi-output produc-
tion technology should satisfy and Kuosmanen and Johnson (2017) provided a
nonparametric shape constrained estimator for this technology.

Historically, much of the literature on production functions concerned endo-
geneity. For example, management would determine input levels with knowl-
edge of its firm-specific characteristics and potentially partial knowledge of ran-
dom shocks. In the production model, the assumption E(e | X) is violated, lead-
ing to biased and inconsistent estimates. A variety of solutions have been pro-
posed when the production function is estimated parametrically (Griliches and
Mairesse, 1995; Ackerberg et al., 2015). Florens et al. (2018) considered estimat-
ing a nonparametric shape constrained function using a kernel-based approach
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SHAPE CONSTRAINTS IN ECONOMICS AND OPERATIONS RESEARCH 13

with Landweber—Fridman regularization techniques using instrumental variables
to address endogeneity. Research which combines shape constraints with treat-
ment of endogenous variables when estimating production functions is a promis-
ing development.

2.3 Single Index Models and Alternative Assumptions to Global Convexity

The desire to maintain convex (linear) input sets while relaxing the concavity
assumption for the relationship between the dependent variable and the regres-
sors leads naturally to single index models. Consider the following single index
regression model:

Y =m0 X) + e

Here, X; € R? is an observed vector of predictors where d > 1, €1,€a,...,€n
satisfy E(e; | X;) = 0, 6y are the parameters of a linear function to project X to
a single dimension, and mg : R? — R is an unknown link function. The single
index model averts the curse of dimensionality typical of nonparametric regres-
sion functions with a vector of predictors. This specification states that the link
function depends on X only through a one dimensional projection QOT X. Shape
restrictions are often placed on the link function mg. Balabdaoui et al. (2016),
who studied this model under a monotonicity constraint on mg, proved consis-
tency of the least squares estimator and Balabdaoui et al. (2017) proved that
the least squares estimator achieves the n=1/2 rate of convergence. Kuchibhotla
et al. (2017) considered both a Lipschitz constrained least squares estimator and
the penalized least squares estimator and found similar results for consistency
and rate of convergence. The single index model adds structure to the estimator,
which can be useful particularly when the data are limited. However, assuming
linear substitution between inputs or goods, 98— X, can be overly restrictive for
many production or utility models.

2.8.1 Application: Production Functions Continued Convex input sets are typ-
ically a maintained assumption in production economics, but alternative assump-
tions are available for the scaling law (or the relationship between output and
expanding input levels). While decreasing marginal product is a common charac-
teristic for large firms, economists often assume an increase in marginal product
for production at a small scale, i.e. increasing returns to scale. Thus, a propor-
tional increase in inputs leads to a more than proportional increase in output

F(Ax) > Af(x) for all A > 1.

The primary reasons for the increasing returns to scale are the benefit of special-
ization and the reduction in change-over time when switching between compo-
nents of the production process.

Frisch (1964) proposed the Regular Ultra Passum (RUP) production law. The
law outlines when a firm is operating at a small scale size it can achieve significant
increases in output for incremental increase in input through specialization and
learning. In contrast, as the scale size becomes larger, a firm tends to face scarcity
of ideal production inputs and challenges related to increasing span of control,
thus the marginal benefits of additional inputs decrease. Based on these concepts,
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14 JOHNSON AND JIANG

define the elasticity of scale,* ¢(x), relative to a production function f(x):

<) — of(x) =y
29 =2 G 70

and define the RUP law as follows.

DEFINITION 2 (Fgrsund and Hjalmarsson (2004)). A production function
f(x) obeys the Regular Ultra Passum Law if Oe(x)/0xy < 0, and there exist
input vectors Xa and Xp where Xp > Xa component-wise such that e(xa) > 1
while €(xp) < 1.5

While the RUP law is often not referred to by name, most introductory mi-
croeconomic textbooks introduce the concept (Perloff, 2018). Further, researchers
commonly assume that along a given ray, there exists only a single inflection
point; however, neither Fgrsund and Hjalmarsson (2004) nor Frisch (1964) defi-
nition rules out this possibility. To make this concept rigorous, Yagi et al. (2018)
defined an S-shape function.

DEFINITION 3 (Yagi et al. (2018)).  For any vector v € RL and the associated
ray from the origin in input space av with o > 0, a production function f : R¢ —
R is S-shaped if there exists an x* such that V2f(av) > 0 for av < x*, and
V2 f(av) < 0 for av > x*, where V2 f is the directional second derivative of f
along v. This implies that for any ray from the origin in the direction v, there
exists a single inflection point x* that V2 f(x*) = 0.

In defining an S-shape production function, Yagi et al. (2018) derived the rela-
tionship to the long standing concept of the RUP law. Specifically, if a production
function f : R — R is twice-differentiable, monotonically increasing, satisfies the
RUP law, and has a single inflection point, then f is S-shaped.

Yagi et al. (2018) proposed an estimation algorithm for a non-homothetic pro-
duction function satisfying both the S-shape definition and input convexity with-
out any further structural assumptions. The algorithm has two steps: (1) Estimate
input isoquants for a set of output levels, and (2) estimate S-shape functions on
a set of rays from the origin. A CNLS-based estimator is used for isoquant es-
timation and a SCKLS-based estimators for the S-shape estimation. While this
estimator has a similar flavor as the single index model, relaxing the parameter
structure for aggregating the vector of inputs necessitates a two step procedure.
In the non-homothetic case, the performance of the estimator can be improved
by iterating between the two-steps. However, if the production function is homo-
thetic, the input isoquant can be estimated for just a single output level as in
Hwangbo et al. (2015).

4This variable, formerly referred to as the passum coefficient in the seminal work of Frisch
(1964), is now commonly referred to as the elasticity of scale.

5Note that this definition of the RUP law is slightly adapted from Fgrsund and Hjalmarsson
(2004) for clarity. Fgrsund and Hjalmarsson (2004) definition generalizes Frisch (1964) original
definition by not requiring the passum coefficient to go below 0 implying congestion. This gen-
eralization also allows for a monotonically increasing production function. Further, a concave
production function nests within this definition.
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In the future, the availability of shape constrained nonparametric estimation
techniques could allow economists to develop alternative theories of production
and validate them empirically.

3. SEQUENTIAL DECISION MAKING

Making sequential decisions under uncertainty, which has been studied ex-
tensively in both economics and operations research, is formalized under dy-
namic programming, optimal control, Markov decision processes, and other topics
(Stokey et al., 1989; Kamien and Schwartz, 1981; Puterman, 1994). The typical
setting consists of a decision-maker who alternates between making decisions and
observing new information, to inform future decisions:

choose decision ~~ observe information ~~ choose next decision ~» - - -

In a sequential setting where stochastic information is revealed over time, the
decision maker needs to find the optimal policy that prescribes a decision for every
possible “state-of-the-world” i.e., every outcome of the stochastic information
process. The following example, illustrates the well-known problem of multi-stage
inventory management (Clark and Scarf, 1960; Scarf, 1960; Porteus, 2002).

Consider a firm managing its inventory control policy over a finite horizon of
T periods. At time period ¢, the decision maker observes the current inventory
state s; and places an order for x; additional units. Between time ¢ and time ¢+1,
a random demand Dy, independent of the past, is realized. The cost function
for period t is given by

(31) Ct(St, l’t) = cx; + E[h(st —+ x4y — Dt+1)+ + b(Dt+1 — St — iL‘t)+],

where c is the ordering cost, h is the holding cost, and b is the backlogging cost
(i.e., cost per unit of unsatisfied demand). The inventory position at ¢ + 1 is
given by s;y11 = s¢ +ax — Di1 1, where s; < 0 represents unsatisfied or backlogged
demand. The decision maker needs to determine the optimal inventory ordering
policy 7} (a function mapping inventory states s; to order quantities x;) that
minimizes the expected cumulative cost E[ZtT;Ol ce(se, m(se))].

At every period t, the decision maker needs to determine an order quantity
x; for each possible inventory state s; (a scalar quantity). This model is known
as a finite-horizon Markov decision process (MDP) (Puterman, 1994). If s; takes
on a finite number of values and the expected value is easy to compute (e.g.,
in the case where order quantities are integer-valued and demands are integer-
valued and bounded), then the optimal decision in stage ¢, state s, denoted 7} (s¢),
can be computed by simply enumerating the inventory states and then applying
a standard dynamic programming method (Bertsekas, 2012; Puterman, 1994).
This amounts to solving a series of recursive equations to compute the so-called
optimal value functions. Let Vp(s) = 0 and for each ¢ < T, define the optimal
value function

(3.2) Vi(st) = nglcitn{ct(st, 1) + E[Vig1 (st + 2 — Diy1)] )

Here, the optimal decision in state s; at time t is an x; that achieves the minimum
of the right-hand-side of (3.2). Thus, solving for the optimal policy 7} for each ¢
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16 JOHNSON AND JIANG

under the dynamic programming framework depends on the decision maker’s abil-
ity to compute the value functions, V;. Although the recursive equations may seem
simple, realistic instances of the inventory control problem can quickly become
intractable for the enumeration-based dynamic programming method discussed
above. For example,

e Consider the case of a multi-product inventory system, as described in Evans
(1967) or Aviv and Federgruen (2001). In this setting, the decision maker
needs to track the inventory states for all products; thus, s; becomes multi-
dimensional. Even if the number of inventory states per product is enumer-
able, the number of states across all products grows exponentially with the
number of products; this is an example of the “curse of dimensionality.”

e The assumption that D;1q is independent of the past is called stage-wise
independence (Pereira and Pinto, 1991; Shapiro, 2011). In practical ap-
plications, the distribution of the demand could depend on factors such
as weather, previous demands, or market conditions represented by .
Consequently, the optimal policy depends on both s; and 4;, and is writ-
ten as m; (s, ;). Computational difficulties easily arise when 4; is multi-
dimensional, again due to the curse of dimensionality.

e An unknown distribution for D;; 1 implies the inability to compute the ex-
pectation in (3.1). This limitation, which prevents the application of stan-
dard dynamic programming techniques, forces the decision maker to use
sample-based methods, usually historical data or a simulator (generative
model).

Approximate dynamic programming (ADP) and reinforcement learning (RL)
refer to a set of methodologies and algorithms for approximately solving com-
plex sequential decision problems when the state space is large and/or parts
of the system are unknown (Bertsekas and Tsitsiklis, 1996; Sutton and Barto,
1998; Bertsekas, 2012; Powell, 2011). For general large-scale problems, unstruc-
tured approzimations including value iteration with linear approximations (i.e.,
using basis functions) (De Farias and Van Roy, 2000; Tsitsiklis and Roy, 1996;
Tsitsiklis and Van Roy, 1999; Geramifard et al., 2013), approximate linear pro-
gramming (De Farias and Van Roy, 2003; De Farias and Van Roy, 2004; Desai
et al., 2012a), and nonparametric methods are used (Ormoneit and Sen, 2002;
Bhat et al., 2012). Recently, RL with deep neural networks has become pop-
ular (Mnih et al., 2015; Silver et al., 2016). Structured approzimations can be
incorporated when properties can be identified a priori.

The next section reviews the uses of shape constraints to enforce structure
in the approximations used in ADP and RL. The primary focus is on convexity
of the value function, a particularly well-studied shape constraint in sequential
decision problems (Pereira and Pinto, 1991; Godfrey and Powell, 2001; Philpott
and Guan, 2008; Nascimento and Powell, 2009, 2010), and the secondary focus
is monotonicity (Papadaki and Powell, 2002; Jiang and Powell, 2015), which is
useful when convexity is not available. We conclude with a brief review of how
policy structure can be exploited (Kunnumkal and Topaloglu, 2008b; Huh and
Rusmevichientong, 2009; Zhang et al., 2017). The notation we use will largely
follow the standards of the literature.
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3.1 Convexity of the Value Function

In many problems, the value function V; is conver in the state variable, or, at
least in certain dimensions of the state variable, for each ¢t. One benefit of the
property of convexity is the potential for algorithms to exploit this structure.
Below, we survey several widely used and powerful methodologies.

3.1.1 Stochastic Decomposition We begin with the two-stage linear program
with recourse (Birge and Louveaux, 2011). The recourse decisions are made in the
second (and final stage) after uncertainties have been realized. The interpretation
is that the “mistakes” made by the first-stage decision (e.g., inventory shortage)
can be corrected in the second stage. Let X be a convex, polyhedral set. Using
the notation of Higle and Sen (1991), formulate the problem as

minixmize f(@) =c'z+E{h(z,0)}
subject to z € X,
where h(z,w) is the optimal objective function value of the second-stage problem
miniymize gTy

subject to Wy=w—-Tx
y > 0.

Here, c is a cost vector and z is the first-stage decision, which must be chosen
before the realization of a random variable w. The second-stage recourse costs are
given by g and the associated decision is y. The recourse matriz is W and w —Tx
is discrepancy that is accounted for in the second stage by y. Assume that value
function h is finite. To illustrate the formulation, in a production problem, x may
represent raw material order quantities from a supplier (at cost ¢) to produce T'x
units of a product; w is the realized demand and w — Tz is a shortage; and y are
the raw material order quantities from an emergency supplier (at costs g), which
can produce Wy units of the product.

The stochastic decomposition (SD) algorithm proposed by Higle and Sen (1991)
exploits the converity and piecewise-linearity of h(x,w) by combining ideas from
Bender’s decomposition and stochastic approximation (Kushner and Yin, 2003).
The algorithm constructs a necessarily convex approximation of the objective
function f by defining it as the maximum of iteratively computed hyperplanes.
The steps of the stochastic decomposition method are summarized below.

(1) Subproblem. Given z* on iteration k, compute the solution to the second-

stage problem for a single sample w”* generated from the distribution of @
by using a dual formulation, with dual variables 7

h(z*, w*) = max {7 " (W — T2F) | WTr < g}.

(2) Compute Cut. Using all subproblem solutions generated until iteration k,
estimate the support of f(z) via an affine function of + (8F 4 ¢) 2. This
affine function is called a cut. See (Higle and Sen, 1991, Section 2.2) for the
details.
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(3) Update Old Cuts. Reduce the influence of the old cuts generated in iterations
t < k via the updates

af = (k=1 a; ' /k and Bf = (k—1)B8f"/k.

(4) Update Convex Approximation. Compute the piecewise-linear and convex
approximation of the objective function f(z) as a maximum of affine func-
tions:

fr(x) = tgg({af + (B + o)z}

The iterate z*t! is a solution to an approzimate first-stage problem given
by max;cx fr(x).

TuEOREM 3.1 (Higle and Sen (1991)). There exists a subsequence of {x*}
generated by SD, such that every accumulation point of the subsequence is an
optimal solution, with probability one.

The formal statement of the SD algorithm also uses the concept of an incumbent
solution, which roughly speaking, is an iterate which achieves a low objective
value and is revisited by the algorithm. Such an implementation improves the
method’s empirical performance and does not affect the convergence guarantee.
However, despite asymptotic guarantees, stopping rules are critical for practical
implementations (see, e.g., Higle and Sen (1996); Mak et al. (1999)). The original
SD algorithm was designed only for two-stage problems, but more recently, Sen
and Zhou (2014) proposed a regularized, multi-stage extension.

3.1.2 Stochastic Dual Dynamic Programming The stochastic dual dynamic pro-
gramming (SDDP) algorithm was first proposed by Pereira and Pinto (1991).
SDDP was proposed before SD, but both are based on the idea of iteratively
generating cuts to approximate a piecewise-linear convex value function. The dif-
ference is that SDDP does not use stochastic approximation (i.e., the phase-out
step), but requires the subproblems to be solved for every scenario in each it-
eration. SDDP is more general in the sense that it was directly proposed for
multistage problems.

We introduce the multistage stochastic linear programming model using the
notation of Philpott and Guan (2008), while noting that it is a direct extension
of the two-stage model discussed in the previous section. Let €2; be a finite set of
random outcomes for state ¢, where outcome wy; has probability p;;. The random
variables w; € {2 are independent across time (termed stagewise independence).

Let Qry1 =0 and define Q¢(x4—1) = >, pri Qe(w1—1,wsi), where
Qe(xp—1,wei) :rrglcitn et + Q1 ()

(3.3) subject to Az = wr — By_12¢1
Tt Z Oa

and write the first-stage problem as
Q1 =min c17; + Qo(z1)

subject to Ay x1 = by
x1 > 0.
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Once again, the value functions Q;(z) are piecewise-linear convex (Pereira and
Pinto, 1991), so the approximation used in SDDP is a maximum of hyperplanes.
Let Q{f be the approximation of Q, at iteration k and suppose Q’% 11 = Qry for
all k. The main steps of iteration k of the algorithm are as follows.

(1) Forward Pass. For each time period ¢t = 1,2,...,T, select a trial decision
#F. There are a variety of ways to do this, but the original proposal from
Pereira and Pinto (1991) is to simulate one sample of the decisions generated
by the current policy, i.e., the one induced by solving (3.3) where Q1 is
replaced with the current approximate value function Qf;ll.

(2) Backward Pass. SDDP now moves backward, starting from ¢ = T. At the
trial decision @f, loop through all possible outcomes of the random variable
wy and for each outcome wy;, solve the problem (3.3) with Qf " 1 replacing
Q41 and wy; replacing wy. Compute a cut and use it to update the approxi-
mation for time ¢, resulting in Q¥ (which is used in the subproblem solved in
at t —1). Note that the convexity of Q; is again exploited by approximating
it as the maximum of a series of affine cuts.

The convergence of the SDDP algorithm has been studied by Linowsky and
Philpott (2005) and further generalized by Philpott and Guan (2008). Note that
the improvement of the convergence result here compared to the one for SD is
because all scenarios are being considered when computing the cuts.

THEOREM 3.2 (Philpott and Guan (2008)). Under some technical assump-
tions on the forward pass, the SDDP algorithm converges to an optimal solution
of the first-stage problem in a finite number of iterations.

Two algorithms closely related to SDDP are the cutting plane and partial sam-
pling algorithm of Chen and Powell (1999) and the abridged nested decomposition
algorithm of Donohue and Birge (2006). Notably, the convergence of both meth-
ods follows from Philpott and Guan (2008). The stagewise independence assump-
tion of the random process was relaxed in Lohndorf et al. (2013) and Asamov
and Powell (2018). Asamov and Powell (2018) also proposed a regularized version
of SDDP to improve performance. Extensions of SDDP for risk-averse problems
were explored in Philpott and de Matos (2012), Shapiro et al. (2013), and Philpott
et al. (2013). All of these methods enforce a convex “shape constraint” on the
value function approximation via a piecewise-linear function.

ExAMPLE (Hydrothermal Planning). Hydrothermal operations planning has
a long history in the operations research literature (Pereira and Pinto, 1991;
Pritchard et al., 2005; Philpott and de Matos, 2012; Shapiro et al., 2013; Maceira
et al., 2015). The objective is to find an operational strategy that satisfies energy
demand at every location in the system while achieving minimal expected cost.
Below, we summarize the major features.

e The overall system contains a set of reservoirs whose storage levels are
tracked by the state variable. From period to period, the reservoir is subjected
to stochastic inflows and potential losses due to evaporation.

o Water stored in the reservoirs can be used for (free) energy production.
Thermal generators used to complement the hydroelectric production are
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expensive to operate, i.e., each generator has an associated generation cost
function.

e FEnergy can be interchanged between two locations via transmission lines.
This feature emphasizes the influence of the underlying network structure.

Discretization and standard dynamic programming cannot be used, because of the
increased number of states as the number of reservoirs increases. Instead, SDDP
1s used to provide approximations of the optimal policy for problems ranging in
size from 22 reservoirs (Pereira and Pinto, 1991) to 69 reservoirs (Shapiro et al.,
2013).

8.1.3 Separable, Projective Approzimation Routine As proposed by Powell et al.
(2004), the separable, projective approximation routine (SPAR), was motivated
by the need for integer solutions in certain applications (e.g., consider the case of
ordering a discrete number of items per period). The term “separable approxima-
tion” means that a multi-dimensional convex function is approximated by a sum
of one-dimensional convex functions, which unfortunately implies that the algo-
rithm does not converge to an optimal solution in general. However, its empirical
performance is strong. Nascimento and Powell (2013) extended theory in Powell
et al. (2004) to a multistage setting for the (one-dimensional convex) problem of
lagged asset acquisition. The SPAR algorithm relies on stochastic approximation
theory and bears a strong resemblance to the Q-learning algorithm (Watkins and
Dayan, 1992) in the reinforcement learning literature (Sutton and Barto, 1998).
Below, we describe a single period setting.

Using the notation of Powell et al. (2004), consider maximization of a piecewise-
linear concave function f(z) = E{f(z,w)} with integer breakpoints on a domain
[0, M]. If | < x < |+ 1, write function f as

where 75 = f(s) — f(s — 1) are the slopes of f. The idea of the SPAR algorithm
is to iteratively construct approximations of f using noisy observations while
employing a concavity preservation step to ensure that v5 are nonincreasing in s.
The steps of iteration k, where the current approximation of the true slope " is

S
v are as follows.

(1) Noisy Observation. Sample a “state” s* from {1,2,..., M} and observe
(from data or a simulator) an unbiased estimate 1* of the slope .

(2) Update Approzimation. Compute an intermediate approximation 2F . with
sz = (1 — ag)vF + agnF and 2% = ¥ for all other s. This step simply
smoothes the new observation with the current estimate.

(3) Enforce Concavity. Let V be the set of vectors v that represent concave
functions f ,1.e., those that satisfy U541 < o5 for each s. The SPAR algorithm

enforces concavity by projecting z* to the set V

Rl = argmin{ ||lv — v e Vi,

which can be computed via a straightforward procedure. This step can be
thought of as correcting any nonconcavity introduced by the noisy update.
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THEOREM 3.3 (Powell et al. (2004)). Under some technical conditions, the
approzimations v¥ produced by the SPAR method converge almost surely to ©.

The SPAR procedure can be used within an approximate dynamic programming
setting for multistage decision making, as analyzed in Nascimento and Powell
(2009). Related algorithms that make use of stochastic approximation to update
piecewise linear approximations can be found in Cheung and Powell (2000) and
Godfrey and Powell (2001). This class of techniques is more amenable to the
distribution-free setting, where sampling can be done with respect to the true
distribution or from real data, whereas SDDP requires either a pre-sampled model
(with a finite number of scenarios per stage) or the assumption that the true
distribution has finite support and is known (Shapiro, 2011). SPAR’s limitations
are its requirement for a separable approximation for multi-dimensional problems,
and the unavailability of lower bounds for the minimization case. See Asamov
et al. (2016) for a thorough empirical comparison of SPAR versus SDDP for
the case of optimizing grid-level energy storage; the authors concluded that each
algorithm has benefits in certain contexts.

ExaMpLE (Cash Balance). The mutual fund cash balance problem (Nasci-
mento and Powell, 2010), is an updated version of the stochastic cash balance
problem (Neave, 1970). Consider the decision problem of a mutual fund man-
ager, who requires a policy to decide the cash quantity of the fund’s assets kept
in each period. Several trade-offs need to be considered.

o A mutual fund needs to meet shareholder redemptions. There is redemption
demand from retail (small) investors and institutional (large) investors, who
are treated slightly differently. If there is not enough cash on hand to satisfy
the redemption of a large investor, the fund manager takes out short-term
loans to immediately meet the demand.

e In the case of a retail investor, the fund manager pays a cost to liquidate
a portion of the individual’s illiquid assets. Generally, the cost is smaller
than the interest on the short-term loans.

e If too much cash is kept on hand, the fund manager foregoes the portfolio
return on the portion of excess cash.

The authors formulated the above problem as an MDP and proved that the op-
timal value function was piecewise-linear concave in the cash level for each en-
vironmental state. Given that the problem is one-dimensional and that the two
exogenous stochastic processes (portfolio return and interest rate) have unknown
distributions, SPAR is an ideal solution algorithm.

3.2 Monotonicity

Some studies have exploited monotone structure in sequential decision mak-
ing. In the scalar case, the discussion above shows that enforcing concavity is
equivalent to enforcing monotonicity in the slopes v*. Similar methods have been
designed for this setting. See Papadaki and Powell (2002) for an example of the
SPAR-like procedure adapted to exploit monotonicity in the stochastic batch
service problem. Kunnumkal and Topaloglu (2008a) proposed a monotone Q-
learning for the setting of scalar state variables in an infinite horizon setting; for
convergence analysis, it requires a different proof technique from the finite horizon
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setting of Nascimento and Powell (2013). However, for a multi-dimensional state,
Kunnumkal and Topaloglu (2008a) suggest arbitrarily selecting a dimension in
which monotonicity is enforced.

Jiang and Powell (2015) proposed monotone-ADP, extending previous work to
the multi-dimensional state space setting. More generally, the algorithm applies
when monotonicity is preserved over partially ordered states. Consider a dynamic
programming setting similar to (3.2), where the value functions V;(s) satisfy

Vi(s) < Vi(s') foralls < s,

where < is a partial order over the state space. Monotone-ADP is useful in the
setting of s = (x1,%2,...,2q) and s’ = (2,25, ..., 2/) with monotonicity in the
value function whenever z; < 2 for all i. The steps of the algorithm are analogous
to those of SPAR, except in a multistage setting. For example, in iteration k, there
is a state sf, an updated value zf, and a current value function approximation
Vtk. Here, we focus on a new operator II,;, which depends on sf, zt’“, and Vtk,
where there is an arbitrary state s and the output is the updated value of state
s after accounting for the new observation at s and the monotone structure.

Define it as

k £ ok
2 it s = sy,

VvV VE(Gs) if sF < s, s # sF,

Iy (55, 28, VF) (s) =
(86,20, V1) 2F ANVE(s) if sf = s, 5 # sF,

Vi(s) otherwise,

where a V b = max(a,b) and a A b = min(a,b). The first condition says that the
value of sf is updated to zf regardless of the other values, which is a departure
from SPAR. The second condition says that if s is greater than sf , then its value
should be the maximum of zf and V¥ under the monotonicity condition. The
third condition similarly covers the case of s less than sF. The fourth condition
leaves the “incomparable” states unchanged, because there is only a partial order
over the states.

THEOREM 3.4 (Jiang and Powell (2015)).  Under some technical assumptions,
the approximation V;k(s) generated by monotone-ADP converges to the value
function Vi(s) almost surely for each stage t and state s.

Since the theoretical basis of the monotone-ADP algorithm is stochastic ap-
proximation, this theorem emphasizes that the monotone shape constraint does
not affect its convergence properties.

ExAMPLE (Optimal Stopping). Perhaps the most fundamental problem class
in sequential decision making concerns the question of optimal stopping or optimal
replacement (Pierskalla and Voelker, 1976; Rust, 1987; Tsitsiklis and Van Roy,
1999; Kurt and Maillart, 2009; Kurt and Kharoufeh, 2010; Desai et al., 2012b).
The trade-off in the case of optimal stopping is whether the decision maker should
accept the reward now (e.g., sell a house), or wait until a future period (e.g., wait
for a higher offer). Similarly, optimal replacement problems model the trade-off
between the cost of replacement now versus the possibility of failure in the future.
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Although such problems do not feature convex value functions, they often con-
tain many exogenous information states, which impose significant computational
challenges. Fortunately, monotonicity can sometimes hold. For example, Kurt
and Maillart (2009) and Kurt and Kharoufeh (2010) showed that under certain
conditions, the value function of an optimal replacement model was nondecreasing
in both the system state (health of the system to be replaced) and the environmen-
tal state, i.e. an opportunity for monotone shape constraints to be utilized was
provided. Jiang and Powell (2015), who applied the monotone-ADP algorithm
to problems of this type, showed significant empirical improvements when mono-
tonicity was enforced.

3.3 Policy Structure

The final goal of sequential decision making problems is to discover the opti-
mal policy. Computing the optimal value function is one approach, but it is also
possible to directly search for the optimal policy 7} (s). Consider the well-known
policy gradient methods of reinforcement learning (Sutton et al., 2000). In op-
erations research, the structure of optimal policies are often known a priori for
many foundational models. Below, we give an example of using shape constraints
in the policy space.

It is well-known that the optimal policy to the inventory control application
discussed above is of basestock form (for example see Porteus (2002)), meaning
that optimal basestock levels {r;} exist such that if the current inventory level
is s¢, then it is optimal to place an order for x; = [r; — s units of inventory.
In other words, if s; is below 7, the decision maker orders up to ¢, and if s; is
above r¢, it does not order.

Kunnumkal and Topaloglu (2008b) proposed an algorithm that directly searches
within the class of all basestock policies, in effect imposing a “basestock shape
constraint” throughout the search. The authors considered a stochastic approxi-
mation approach, where {rf} denotes the estimated basestock levels at iteration
k. The two steps are as follows.

(1) Demand Observations. Observe either from data or within a simulated set-
ting, a trajectory of demand realizations

Dk = (D§7‘D’2€7 A 7D§)'

Note that demand is exogenous to the inventory system.

(2) Basestock Update. Using the current basestock levels {rf'} and the demand
observations D¥, compute an estimated basestock adjustment Af to im-
prove the performance of the basestock policy. The update is given by

rf“ = rf — akAf

for some stepsize or learning-rate ok,

Because no value function approximation is stored, the calculation of AF is non-
trivial and requires a novel recursive computation derived from the Bellman equa-
tion (Kunnumkal and Topaloglu, 2008b, Section 3).

THEOREM 3.5 (Kunnumkal and Topaloglu (2008b)).  Under various technical
conditions, the sequence of basestock policies generated by the method above is
asymptotically optimal: ¥ — 1y almost surely for each t.
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A basestock shape constraint was also used in the online convex optimization
approach of Huh and Rusmevichientong (2009). A related paper by Zhang et al.
(2017), used the basestock shape constraint in a perishable inventory setting to
discover good, but not necessarily optimal, policies.

4. DISCUSSION

The economics and operations research communities continue to propose, test,
and debate new applications of shape constrained estimation. This paper briefly
surveys several significant applications of shape constraints, including revealed
preferences, production economics, and several operational problems that involve
sequential decision making. To our knowledge, this survey is the first to review
the operations research literature on shape constraints.

Shape constraints, including monotonicity, convexity /concavity, and S-shapes,
have attracted research from both practical and theoretical perspectives. The ad-
ditional structure provided by imposing shape constraints allows for estimation
with smaller samples, and in the case of sequential decision making applications,
structured versions of approximate dynamic programming algorithms enables
practitioners to address large-scale problems. We expect that new methodolo-
gies will be developed to address other important problem structures, which will
in turn facilitate the growth of the fields of economics and operations research.
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