
 Electronic copy available at: http://ssrn.com/abstract=2621033 

Working paper

Power Curve Estimation: Functional Estimation
Imposing the Regular Ultra Passum Law

Hoon Hwangbo, Andrew L. Johnson, Yu Ding
Department of Industrial & Systems Engineering, Texas A&M University, College Station, Texas 77840

{hhwangbo@tamu.edu, ajohnson@tamu.edu, yuding@iemail.tamu.edu}

Imposing economic relationships such as the Regular Ultra Passum (RUP) law improves the statistical

efficiency of nonparametric estimators in finite samples. RUP law bears relevance in engineering applications

such as power curve estimation in the wind energy industry. Unfortunately, the few estimators known to

satisfy the RUP law are based on deterministic assumptions that do not allow noise in the modeling. In

most engineering applications, however, data are inevitably noisy, due to equipment calibration, natural

variations, or other issues. Thus, we propose an estimator that satisfies the RUP law while also capable

of handling noisy data. We use Monte Carlo simulations to show that the proposed estimator outperforms

existing deterministic estimators, particularly when the scale of noise is large. We use the proposed method

to estimate a power curve considering approximately 13,000 observations of a wind turbine. The results

demonstrate that the proposed estimator is well suited for engineering applications with a high degree of

noise.
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1. Introduction

The Regular Ultra Passum (RUP) law, first described by Frisch (1965), is critical to modeling

production functions which have increasing marginal rates of productivity followed by decreasing

rates of marginal productivity. Applications for which the RUP law is relevant include those where

worker specialization leads to increasing productivity and functions with engineering principles that

dictate shape restrictions. In our research, we are particularly motivated by studying the power
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curve of a wind turbine that describes the relationship between electricity output and wind speed.

Aerodynamic properties of wind turbines and their control mechanism dictate that this functional

relationship will have a convex shape followed by a concave shape, suggesting that imposing the

RUP law will improve the finite sample performance when estimating a power curve.

Typical nonparametric estimators of production functions do not guarantee that the underlying

structures of the production functions are preserved. Previous work on non-convex estimation such

as Bogetoft et al. (2000) and Park and Simar (1994) allows for the possibility that the function

estimated satisfies the RUP law, but does not impose the RUP law in the estimation procedure.

Very few estimators are known to satisfy the RUP law explicitly. The exception is the determin-

istic or data envelopment analysis (DEA) type estimators developed by Olesen and Petersen (2013)

and Olesen and Ruggiero (2014). Olesen and Ruggiero (2014) (hereafter referred to as O&R),

treating their data as noise free and imposing homotheticity on the input sets, develop a three-step

procedure for producing an RUP-satisfying estimator, which entails 1) estimate a base isoquant;

2) locate the inflection point on the production function; and 3) estimate the convex and concave

regions of the production function assuring that the production function is continuous and has

only a single inflection point.

Our research objective is to develop an estimator that satisfies the RUP law while also capable

of handling noisy data. The motivation of doing so is obvious, as in many applications, data are

imperfect measures of the variables of interest creating noise in measurement. Data noise becomes

unavoidable in engineering applications such as estimating power curves using noisy wind turbine

data.

Our proposed estimator is an extension of O&R and will follow the three-step procedure they

previously developed. This does not mean that our extension is straightforward; on the contrary,

all three steps need to be altered for an estimation procedure that includes a model of noise. Our

estimator also moves beyond standard stochastic frontier analysis (SFA) approaches to incorporat-

ing inefficiency, as our estimator allows for heteroscedasticity in both the inefficiency and random

noise terms.
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Similar to O&R, we still consider the single output case and impose homothetic input sets.

Extension to multiple output settings is possible, if we impose separability between inputs and

outputs; for additional details see Appendix EC.1. We also impose homotheticity on the input sets.

Homothetic functions characterize a wide class of production functions in which the core function,

characterized by constant returns-to-scale (CRS) (homogeneous of degree 1 in mathematical terms),

is made more flexible by transforming the aggregate input (the output from the core function)

using a scaling function that is monotonic. Homotheticity is one of the most common functional

restrictions (Chambers and Mitchell 2001) used in productivity and efficiency analysis.

The remainder of this paper is organized as follows. Section 2 introduces the production frontier

model and the assumptions in our research development. Sections 3, 4 and 5 present, respectively,

the new version of base isoquant estimation, inflection point estimation, and production frontier

function estimation, along with the adaptations needed to make the resulting estimator capable

of modeling noise. Section 6 discusses the Monte Carlo simulation results and demonstrates the

estimator’s improved performance over its deterministic counterpart when modeling noisy data.

Section 7 employs the resulting method to estimate a power curve for a wind turbine. Section

8 concludes the paper. All proofs and supplemental materials are given in the online Appendix

EC.1–EC.3.

2. Model description

We specify the production frontier model under the assumption of homothetic input sets, including

inefficiency and random noise affecting output levels, as:

y= φ(X)−u+ v= F (g(X))−u+ v, (1)

where y is a random variable measuring output, X is an input vector consisting of p inputs, and

u and v are independently distributed random variables modeling inefficiency and random noise,

respectively. We assume u is a non-negative random variable, and v has a symmetric distribution

with a mean of 0. We refer to the expectation of u as the mean inefficiency, denoted by µ, i.e.,
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E(u) = µ. We define production function φ by the composition of two functions: a monotone

increasing scaling function F : <+ →<+ and a core function g : <p+ →<+ which is homogenous

of degree 1, i.e., g(γX) = γ g(X) for some positive scalar γ. The production function φ is to be

estimated by using n pairs of data samples {(X1, y1), · · · , (Xn, yn)}.

We are interested in estimating a production function φ satisfying the RUP law. First, we define

the scale elasticity of the production function, ε(X, y) as
∑p

q=1 (∂φ(X)/∂xq) · (xq/y) where xq is

the qth input. Then, we present the formal definition of the RUP law.

Definition 1 (Førsund and Hjalmarsson 2004). Let a single output y be produced from a

vector of inputs X according to a production function φ(X). The production function obeys the

RUP law if ∂ ε(X, y)/∂xq < 0 for ∀q= 1, . . . , p, and for some point (X1, y1) we have ε(X1, y1)> 1,

and for some point (X2, y2), where X2 >X1, y2 > y1, we have ε(X2, y2)< 1.

Note that since X1 and X2 are vectors, the inequality implies that every component of X2 is

greater than or equal to every component of X1.

Production functions defined over a single (aggregate) input that satisfy the RUP law are often

referred to as “S-shaped function” because of their shape. Figure 1(a) shows an example of an

S-shaped 2-dimensional production function, and Figure 1(b) shows a 3-dimensional production

function (i.e., two inputs) satisfying the RUP law. The power curve used in wind energy application

is a typical S-shaped function like the curve shown in Figure 1(a).

We cannot apply the common methods used to estimate convex sets to estimate a function

satisfying the RUP law, because the region under the production function does not form such a

set. On the other hand, noticing that the S-shaped, 2-dimensional production function comprises

a convex region and a concave region defining convex sets for each, we can use existing methods

for each region separately and combine the two estimates. This idea, however, cannot be applied

directly to the high-dimensional production functions. As illustrated in Figure 1(b), the space

above the production function for low input levels is not a convex set (Frisch 1965). To circumvent

this difficulty, a common treatment, as has been done by O&R, is to assume homotheticity on
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Figure 1 (Color online) Production functions satisfying the Regular Ultra Passum law
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Note. (a) S-shaped 2-dimensional production function that satisfies the Regular Ultra Passum law and has a region

where the production function is convex followed by a region where the function is concave; (b) 3-dimensional

production function with two inputs and a single output where the function is concave above the isoquant containing

the inflection points and the region below the isoquant containing the inflection points is neither convex nor its

complement.

inputs and then aggregate the multi-dimensional inputs into a single-dimensional input, so that

the high-dimensional estimation problem is reduced to a 2-dimensional problem.

To estimate a monotone convex function and a monotone concave function, we use Convex

Nonparametric Least Squares (CNLS). Hildreth (1954) was the first to consider nonparametric

regression subject to monotonicity and concavity constraints in the case of a single input variable x;

see also Holloway (1979) and Hanson and Pledger (1976) for some statistical properties. Banker and

Maindiratta (1992) proposed a Hildreth type function with multiple regressors using a maximum

likelihood estimator. Kuosmanen (2008) proposed the least squares formulation and estimator

and coined the term, Convex Nonparametric Least Squares (CNLS); see Lim and Glynn (2012)

and Seijo and Sen (2011) for some statistical characteristics of CNLS; Aguilera et al. (2011) for

convergence properties of CNLS; and Mammen (1991) and Mammen and Thomas-Agnan (1999),

who showed that CNLS achieved the optimal nonparametric rate of convergence.
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3. Identification and estimation of the base isoquant

We define an input isoquant IsoqL(y) as follows:

IsoqL(y) = {X : φ(X) = y} . (2)

With multi-dimensional inputs, the idea behind identifying an input isoquant is to aggregate the

multivariate input X associated with the corresponding univariate output y, as the monotonicity

implies that more input produces more output. Without noise and inefficiency, there is a one-to-one

mapping between the isoquant IsoqL(y) and the output value y. Once the isoquants are identified,

given the homotheticity assumption, a univariate score θ(X, y) can be used to aggregate the multi-

dimensional inputs, so that the original multivariate problem with data pairs (X, y) can be replaced

by the two-dimensional problem with (θ, y) in the subsequent analysis. Under the deterministic

setting, the univariate input score θ(X, y) is calculated as follows (Olesen and Ruggiero 2014). First

choose a base output level y0 and identify the set of X’s constructing IsoqL(y0). Then, θ(Xk, y0)

for some k is estimated by the ratio of the norm of Xk to the norm of the projection of Xk onto

IsoqL(y0), i.e., θ(Xk, y0) = ‖Xk‖/‖X̃k‖ where ‖·‖ denotes the 2-norm, X̃k = λI1 + (1− λ)I2 for

I1,I2 ∈ IsoqL(y0), λ∈ [0,1], and X̃k = γXk for some γ ∈<+.

In our problem, y is stochastic, differing from the production function φ by the inefficiency and

random noise terms. This raises two questions: 1) what y value to use as the base output level,

and 2) how to estimate the isoquant; both considering the presence of noise and inefficiency.

For the first question, to get the best estimate of the base isoquant we select y to maximize

the number of observations in its neighborhood. For this reason, we choose the output level that

maximizes the density of the output. First, we estimate the density of y, π(y), using a kernel density

estimator (Rosenblatt 1956, Parzen 1962) with Gaussian kernel as

π̂(y) =
1

nh

n∑
k=1

K

(
y− yk
h

)
,

where n is the number of observations and K(·) is the standard normal density function, and h

is the bandwidth parameter in a kernel estimator, controlling the smoothness of the estimated
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density function. We estimate h based on the plug-in method known as Silverman’s rule of thumb

(Silverman 1986). Then, our choice of the base output level is the mode of the estimated density

function, namely, y∗ = argmax π̂(y).

To address the second question, we do not restrict ourselves to consider IsoqL(y∗) as a set of

inputs that exactly produce y∗ as in (2). Instead, we estimate IsoqL(y∗) based on a set of inputs

whose corresponding output values are in the neighborhood of y∗. Therefore, we select a subset

of data (yi,Xi)α constructing the (100 · α)% level set at y∗ in which the set of X’s is defined as

follows:

L(y∗)α =

{
Xk : yl ≤ yk ≤ yu,

∫ yu

yl

π̂(y)dy= α,

∫ y∗

yl

π̂(y)dy=

∫ yu

y∗
π̂(y)dy, k= 1, . . . , n

}
, (3)

where yl and yu are the lower and the upper bounds for the subset selection, respectively, and are

determined by α as shown in (3). The number of data pairs in the selected subset is denoted by

nα.

The pth input xp (or any other input) in IsoqL(y∗) can be represented by a function of other

inputs and y∗, i.e., xp =H(x1, . . . , xp−1, y
∗), and the function H is uniquely identified by (2). For a

given y∗, we can simplify the function specific to y∗ as xp =Hy∗(x1, . . . , xp−1) which is monotone

decreasing and convex consistent with the characteristic of an isoquant. As a result, the problem

of estimating IsoqL(y∗) reduces to estimating the convex function Hy∗ .

We assume that the members of L(y∗)α produce y∗ instead of individual (yi)α’s. Then, the

difference between (yi)α and y∗ vicariously induces errors in inputs, and such errors are common

to all xq’s and applied radially. Under these assumptions, our model to estimate Hy∗ is:

xp =Hy∗ (x1, . . . , xp−1)α · exp(w),

where w is the random error. Assuming E(w) = 0, we apply CNLS minimizing the sum of squares

of log-transformed errors as:

min
β

nα∑
i=1

(lnxip− lnx̂ip)
2
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s.t. x̂ip = βi0 +

p−1∑
q=1

βiqxiq, ∀i= 1, . . . , nα,

βi0 +

p−1∑
q=1

βiqxiq ≤ βi′0 +

p−1∑
q=1

βi′qxiq, ∀i, i′ = 1, . . . , nα,

βiq ≤ 0, ∀i= 1, . . . , nα, ∀q= 1, . . . , p− 1. (4)

nα needs to be large enough to estimate the shape of the isoquant represented by the estimate

{(xi1, . . . , xi,p−1, x̂ip) : i= 1, . . . , nα}. Based on our numerical experiments, we recommend adjust-

ing α so that nα is never smaller than 30(p− 1).

CNLS in (4) results in a conditional mean estimate for the population (yi,Xi)α, hereafter referred

to as IsoqL(y∗)CM where the subscript CM implies “conditional mean”. If there is no inefficiency

in the data, then IsoqL(y∗)CM = IsoqL(y∗) asymptotically. Alternatively, if there is no noise in the

data, the deterministic estimator of O&R using a subset of the full population of data by imposing

the condition yi ≥ y∗ (see Ruggiero 1996) provides an unbiased estimator.

Among the point estimates of IsoqL(y∗)CM, we can identify a unique set of grid points, Ij for

j = 1, . . . , ng; the points where the unique hyperplanes from (4) intersect and the boundary points

of the convex surface of IsoqL(y∗)CM. The grid points correspond to the I’s in the deterministic

setting but with reduced dimensionality. With this knowledge, we can use the norm ratio between

X and X̃, as had been used previously, to calculate the univariate input score θ(X, y∗). The

optimization problem for solving for the norm ratio using the grid points, where Ij = (Ij1, . . . , Ijp),

is as follows:

min
γ,s,λ

zk = γ− δ
p∑
q=1

sq

s.t. γxkq −
ng∑
j=1

λjIjq − sq = 0, ∀q= 1, . . . , p,

ng∑
j=1

λj = 1,

λj ≥ 0, ∀j = 1, . . . , ng,

sq ≥ 0, ∀q= 1, . . . , p, (5)



Hwangbo, Johnson, and Ding: Power Curve Estimation: Functional Estimation Imposing the RUP Law
Working paper 9

where zk is the objective function value of the optimization problem for Xk, δ is a positive small

number, and sq denotes a slack variable for the qth input. Then, using the solutions of (5), the

aggregate input estimate θ̂(Xk, y
∗) = (zk)

−1.

Remark 1. Homotheticity implies that φ(X) is invariant to y∗. In other words, there exists a

monotone increasing scaling function f such that φ(X) = F (g(X)) = f (θ(X, y∗)). Such function

f can be defined by f(a) := F (a ·κ(y∗)) where κ : <+→<+ is a monotone increasing function of

y∗ such that g(X) = κ(y∗) · θ(X, y∗).

4. Inflection point estimation

Given aggregate input estimate θ̂(X, y∗), we estimate the scaling function f specified in Remark 1

to complete the estimation of the homothetic production frontier function φ. For simplicity, we refer

to aggregate input θ̂(Xk, y
∗) as xk for k = 1, . . . , n. Alternatively, in the single input (regressor)

case, we skip the input aggregation step and simply define xk for k= 1, . . . , n as the single measured

input. Then, from (1) and Remark 1, we have

y= φ(X)−u+ v= f(x)−u+ v.

With subtraction and addition of mean inefficiency µ in the right hand side,

y= [f(x)−µ] + [µ−u+ v] =ψ(x) + e, (6)

where ψ(x) := f(x)−µ is called an average-practice production function and e := µ−u+v denotes

composite error with E(e) = 0. We estimate f by estimating ψ and then shifting ψ upwards with

the estimate of the mean inefficiency µ.

For univariate or aggregate input, an S-shaped function such as ψ and f is estimable after

dividing the support of the function into the convex region and the concave region. The point at

which the function changes from convex to concave is the inflection point. For the inflection point

of a deterministic production frontier, O&R apply DEA and Free Disposal Hull (FDH) to find
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efficient observations and choose, as the inflection point, one of the FDH efficient points which

allows the maximum number of efficient observations on the frontier. In the presence of noise,

however, this approach is no longer appropriate. DEA and FDH are based on models that assume

no noise, thus in the presence of noise the deterministic estimators of DEA and FDH are biased;

the bias increases as the noise level increases. We now present a new procedure to estimate the

inflection point accounting for noise in the stochastic setting.

We define the inflection point on an S-shaped curve as the point on the curve where the second

derivative of the curve is zero and denote it by (x∗,ψ(x∗)). Since the second derivative of the curve is

near zero around the inflection point, the production function is approximately linear in the neigh-

borhood of the inflection point. We generate a set of linear approximations in the neighborhood of

the inflection point. Once the linear approximations of the production function are identified, we

can estimate the inflection point as the averaged measure from the linear approximations. Below,

we explain 1) how to define the neighborhood of the inflection point, and 2) how to estimate the

linear approximations of the production function leading to the inflection point estimate.

4.1. Neighborhood of the Inflection Point

We define the neighborhood of the inflection point as an interval in which we can confidently

detect a change in derivative on the production function. Since we do not know the location of

the inflection point a priori, we will start with partitioning the whole input region into disjoint

bins of equal width; a method known as binning. Subsequently, we will enlarge the bin width (so

effectively reduce the number of bins) and shift back and forth the starting position of the first

bin, so that we can find an interval large enough in which we estimate a single change in the sign

of the derivative. Then this interval captures the inflection point and is the neighborhood we are

seeking.

Suppose we partition the input region into m bins, each of which has size of h. We define the

b th bin by the interval of input [rb, rb +h) for b= 1, . . . , m, where rb is the starting position of the
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b th bin and rb+1 = rb +h for b= 1, . . . , m− 1. We use (ηb, ξb) pair to denote the sample average of

input and output associated with the b th bin, respectively, namely:

(ηb, ξb) =

(
1

nb

n∑
k=1

xk1[rb, rb+h)(xk),
1

nb

n∑
k=1

yk1[rb, rb+h)(xk)

)
, b= 1, . . . , m,

where 1A(x) is an indicator function, returning 1 if x ∈ A; or 0 otherwise, and nb =∑n

k=1 1[rb, rb+h)(xk) is the number of observations in the b th bin.

By connecting the point estimates (ηb, ξb) using linear segments, we generate a piecewise linear

estimate of the average-practice function ψ. If we can find two boundary points, (ηc− , ξc−) and

(ηc+ , ξc+), respectively, such that:

ξb+1− ξb
ηb+1− ηb

− ξb− ξb−1
ηb− ηb−1

> 0, ∀b= 2, . . . , c−, and

ξb+1− ξb
ηb+1− ηb

− ξb− ξb−1
ηb− ηb−1

< 0, ∀b= c+, . . . , m− 1, (7)

where c+ = c−+ 1, then the interval (ηc−−1, ηc++1) asymptotically captures the inflection point, as

formalized in Lemma 1 below.

Lemma 1. As nc−→∞ and nc+→∞, x∗ exists in an open interval (ηc−−1, ηc++1).

To find (ηc− , ξc−) and (ηc+ , ξc+), we start with a small initial bin size h and gradually increase

it by ∆h every time when certain conditions stated below are met. Another parameter to vary is

the starting position of the first bin, denoted by r1. We propose to draw r1 values from a uniform

distribution. Algorithm 1 presents the specific procedure to locate (ηc− , ξc−) and (ηc+ , ξc+) by

varying h and r1. In implementation, we choose both h and ∆h to be a hundredth of the length of

input space. The maximum value of h is restricted by a fourth of the length of input space creating

four bins, as when h is greater than that, and the number of bins fewer than four, it is no longer

possible for us to test if ψ has an S-shape.
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Algorithm 1 (Locating (ηc− , ξc−) and (ηc+ , ξc+))

Require: h: bin size, ∆h: increment of h

1: l← 1

2: while l < nrep do

3: Draw a uniform random number rl1 ∼Unif (mink xk,mink xk +h)

4: Generate bins based on the intervals of [rlb, r
l
b +h) for b= 1, . . . , m− 1, where rlb+1 = rlb +h

5: Obtain point estimates (ηlb, ξ
l
b) for each bin, and find a pair of boundary point candidates(

ηl
c− , ξ

l
c−

)
and

(
ηl
c+
, ξl

c+

)
which satisfy (7)

6: if Such candidates do not exist and h has reached its maximum value then

7: break

8: else if Such candidates do not exist and h has not reached its maximum value then

9: h← h+ ∆h

10: l← 1

11: else

12: l← l+ 1

13: end if

14: end while

15: return
(
ηl
c− , ξ

l
c−

)
and

(
ηl
c+
, ξl

c+

)
for ∀l= 1, . . . , nrep

Since we draw nrep random samples for r1, this consequently produces nrep pairs of (ηc− , ξc−)

as well as nrep pairs of (ηc+ , ξc+). Let C−x =
{
ηl
c− : l= 1, . . . , nrep

}
and C+x =

{
ηl
c+

: l= 1, . . . , nrep
}

be the collection of all ηc− ’s and ηc+ ’s located, and let Cx = C−x ∪ C+x . We can have the following

property.

Theorem 1. Suppose that xk’s are uniformly distributed in
[
inf l r

l
c−−1, supl r

l
c++1

+h
)
. Then, as

nb→∞ and nrep→∞, x∗ exists in (inf Cx, sup Cx), and ψ satisfies the RUP law on the support

[inf Cx, sup Cx].
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Theorem 1 effectively says that [inf Cx, sup Cx] is the neighborhood we try to identify around

the inflection point. We want to note that the conditions in Theorem 1 are not restrictive, as

these conditions just require us to have large enough samples around the inflection point and large

enough replication resulting from the random draws of r1.

4.2. Linear Approximations of a Production Function in the Neighborhood of the Inflection

Point

Once the neighborhood is identified and if ψ can be well approximated within the neighborhood

by a linear function, then, the position of the inflection point can be reasonably estimated by the

middle point on the linear approximation. Theorem 1, however, does not guarantee that ψ can be

approximated by a linear function within the entire support of the neighborhood. So our approach

is to contract, respectively, from each boundary of the neighborhood forming a subinterval of

[inf Cx, sup Cx], over which linear approximation can be justified.

We consider a set of boundary point candidates resulting from Algorithm 1 which by construc-

tion are random samples from ψ having an S-shape on the interval [inf Cx, sup Cx]. Define C ={
(ηl
c− , ξ

l
c−) : l= 1, . . . , nrep

}
∪
{

(ηl
c+
, ξl
c+

) : l= 1, . . . , nrep
}

, so that the data pair summarizing the

boundary point candidates can be expressed as (ρt, τt) for t= 1, . . . , d, where (ρt, τt)∈ C for ∀t and

d= 2nrep is the cardinality of C. Using these candidates, we fit a convex curve and a concave curve

separately over the whole neighborhood. To fit the convex and concave curves, we use the CNLS

estimators, as follows:

min
βcvx

d∑
t=1

(τt− τ̂ cvxt )
2

s.t. τ̂ cvxt = βcvxt,0 +βcvxt,1 ρt, ∀t= 1, . . . , d,

βcvxt,0 +βcvxt,1 ρt ≥ βcvxt′,0 +βcvxt′,1ρt, ∀t, t′ = 1, . . . , d,

βcvxt,1 ≥ 0, ∀t= 1, . . . , d, (8)
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min
βccv

d∑
t=1

(τt− τ̂ ccvt )
2

s.t. τ̂ ccvt = βccvt,0 +βccvt,1 ρt, ∀t= 1, . . . , d,

βccvt,0 +βccvt,1 ρt ≤ βccvt′,0 +βccvt′,1ρt, ∀t, t′ = 1, . . . , d,

βccvt,1 ≥ 0, ∀t= 1, . . . , d. (9)

The optimization problem in (8) is solved using the Afriat inequality (Afriat 1967) and it fits a

monotone increasing and convex curve, while the optimization problem in (9) is solved by changing

the direction of Afriat inequalities in its second set of constraints, and it fits a monotone increasing

and concave curve.

Once we fit the convex and concave curves, we also fit a linear function over the same support,

[inf Cx, sup Cx]. We contract the right boundary point to the position where the slope of the concave

curve is no longer smaller than that of the fitted line. We also contract the left boundary point

to the position where the slope of the convex curve is no longer smaller than that of the fitted

line. We repeat the above curve fitting and boundary retreating procedure iteratively until either

the right boundary becomes smaller than the left boundary or the number of observations in the

subinterval is fewer than a preset threshold.

Algorithm 2 presents the detailed steps for estimating the inflection point. While implementing

the algorithm, C̃ =∅ occurs when the right boundary is smaller than the left boundary. The number

of observations required in the subinterval, denoted by K, is chosen to be 30.

Algorithm 2 (Estimating the inflection point from the set of candidates)

Require: K: preset threshold, d: cardinality of C

1: repeat

2: Apply CNLS to fit a convex function (8) and a concave function (9) using the points in C

3: Fit a linear function of τt = βlin0 +βlin1 ρt + εt for t= 1, . . . , d using ordinary least squares

4: Find a subset C̃ of C such that C̃ =
{

(ρt, τt) : β̂cvxt,1 ≥ β̂lin1 , β̂ccvt,1 ≥ β̂lin1 , t= 1, . . . , d
}

5: Set d to be the cardinality of C̃
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6: if d>K then

7: C ← C̃

8: end if

9: until d≤K

10: Estimate the inflection point (x̂∗, ψ̂(x̂∗)) as the mean values of the ρt’s and τt’s in C, i.e.

(x̂∗, ψ̂(x̂∗)) =
(∑d

t=1 ρt/d,
∑d

t=1 τt/d
)

11: return (x̂∗, ψ̂(x̂∗))

5. Estimation of a production function consistent with the regular
ultra-passum law

Given the inflection point estimate (x̂∗, ψ̂(x̂∗)) resulting from Algorithm 2, we divide the data set

into two parts: {(xk, yk) : xk <x
∗} defining the convex region and {(xk, yk) : xk >x

∗} defining the

concave region. Simply applying CNLS to each region and integrating the estimates from both

regions does not ensure continuity of the production function estimate at the inflection point.

Thus, we explicitly impose the inflection point estimate to be a point on the production function

and solve the CNLS problems for both regions in a unified optimization problem. In what follows,

we present a method to estimate the average-practice curve in Section 5.1, to estimate the mean

inefficiency in Section 5.2, and to estimate the frontier curve in Section 5.3.

5.1. Average-Practice Curve Estimation Using CNLS

We add the inflection point estimate (x̂∗, ψ̂(x̂∗)) to the observed data set. As a result, this aug-

mented set is expressed as {(xk′ , yk′) : k′ = 1, . . . , n+ 1} := {(xk, yk) : k= 1, . . . , n} ∪ (x̂∗, ψ̂(x̂∗)).

We also rearrange the data set in non-decreasing order of the input values, and index the inflection

point estimate by k∗, so that the observations in the convex region are indexed as from 1 to k∗−1

and those in the concave region from k∗+ 1 to n+ 1. Using the augmented data set, we solve the

extended CNLS problem as:

min
β

n+1∑
k′=1

(yk′ − ŷk′)2 (10a)
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s.t. ŷk′ = βk′,0 +βk′,1xk′ , ∀k′ = 1, . . . , n+ 1, (10b)

βk′,1 =
ŷk′+1− ŷk′
xk′+1−xk′

, ∀k′ = 1, . . . , k∗− 1, (10c)

βk′,1 =
ŷk′ − ŷk′−1
xk′ −xk′−1

, ∀k′ = k∗+ 1, . . . , n+ 1, (10d)

βk′,1 ≤ βk′+1,1, ∀k′ = 1, . . . , k∗− 1, (10e)

βk′−1,1 ≥ βk′,1, ∀k′ = k∗+ 1, . . . , n+ 1, (10f)

βk′,1 ≥ 0, ∀k′ = 1, . . . , n+ 1, (10g)

ŷk∗ = yk∗ , (10h)

βk′,0 ≤ 0, ∀k′ = 1, . . . , k∗, (10i)

ŷk′ ≥ 0, ∀k′ = 1, . . . , n+ 1. (10j)

The constraints in (10c) – (10f), equivalent to the constraints used by Hildreth (1954), makes use

of the data ordering information to improve computational efficiency (see Lee et al. 2013 for the

details). In fact, the constraints in (10b), (10c), (10e), and (10g) are equivalent to those of CNLS

fitting a monotone increasing and convex function with a single input, whereas (10b), (10d), (10f),

and (10g) alternate the constraints of CNLS modeling for the concave part. Constraint (10h) forces

the production function estimate from both regions to share the same βk∗,1 and subsequently, the

same βk∗,0 as well. Note, having (10h) also ensures that the inflection point estimate is on the

estimated production function and that the production function estimate is continuous.

Meanwhile, production functions must satisfy weak essentiality (Chambers 1988), meaning

f(0) = 0, where 0 is the null vector of inputs of proper dimensions. To be consistent with this

requirement, we postulate that our production function goes through the origin. It can be proven

that including (10i) and (10j) ensures the production function estimate goes through the origin

(see Proposition EC.1 in Appendix EC.3 for the statement of sufficiency and proof).
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5.2. Mean inefficiency Estimation

Before we set forth to estimate the mean inefficiency term, we want to explicitly allow heteroscedas-

ticity in the composite error term. To do that, we write the mean inefficiency as µk instead of a

constant µ, so that the model in (6) is expressed as,

yk = [f(xk)−µk] + [µk−uk + vk] =ψ(xk) + ek, k= 1, . . . , n, (11)

and f(xk) =ψ(xk) +µk.

The reason to allow heteroscedasticity in error modeling is the following. Imposing the RUP

law implies the production function starting with a convex region, so that the production function

may not deviate much from zero over the low value region of x. What this implies for the variance

of the output is that the variance at places close to the origin is likely small, but this small level

of variance is not constant throughout the production function, as the observations show larger

variations at large output levels.

To model the heteroscedasticity of the composite error, we use a cluster strategy. The strategy

starts with binning the input data into a number of disjoint intervals. Each input is paired with

an output data point, and naturally, for all the inputs falling in the same bin, the corresponding

input-output data pairs form a cluster. Subsequently, we assume that the errors are homoscedastic

or identically distributed within a cluster. In implementation, we define clusters with a uniform

number of observations, nf . Understandably, the last bin may include less than nf observations. If

there are fewer than 4 observations in the last bin, we merge the last bin into the nearest preceding

bin.

The choice of nf is such that it creates as many clusters as possible but should maintain enough

number of observations in each cluster. A good choice, in our experience, is to base nf on the result

of the average-practice function estimation. Specifically, we let nf be the largest integer such that

nf ≤ n/mf , where mf is the number of hyperplanes in the average-practice function estimate. If

n/mf is less than the minimum threshold (set as 4 observations per cluster), we then set nf to the

minimum threshold value.
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If we index the clusters by b and the observations in each cluster by o, from (11), we have

eb, o = (µb−ub, o) + vb, o, o= 1, . . . , nf , b= 1, . . . , mf .

Note that ub, o and vb, o are i.i.d. within the b th cluster. Since ub, o a non-negative random variable,

the density of (µb−ub, o) has jump discontinuity at µb, and the density is zero if (µb−ub, o) is

greater than µb. With this variable specification, we apply the Hall and Simar (2002) producer to

estimate the cluster-wise mean inefficiency µb. Hall and Simar (2002) indicate that their estimator

is biased and that the bias diminishes as the scale of noise tends towards 0. Through numerical

experiments they find this bias is small. Our experiments indicate similar results. According to Hall

and Simar (2002), if the density of eb, o has jump discontinuity, the first derivative of the density

of eb, o achieves its greatest absolute value at the point where the jump discontinuity occurs. We

assume that the jump discontinuity of the density of eb, o is induced by that of (µb−ub, o) when the

variance of vb, o is quite small. Then we estimate µb by finding a point where the first derivative

of the density of eb, o is maximized in absolute terms. Algorithm 3 explains how to apply Hall and

Simar’s method for each cluster.

Algorithm 3 (Estimating cluster-wise mean inefficiency)

Require: hHS: bandwidth parameter, ∆hHS: decrement of hHS, T : stopping criterion

1: µ̂b←maxo êb, o

2: repeat

3: Estimate the density of the residuals êb, o for ∀o= 1, . . . , nf applying kernel density

estimation with bandwidth hHS.

4: Compute µ̃b by finding a point where p̂′′(e) is zero in a neighborhood of µ̂b where p̂(e) is

the density estimate of the residuals

5: if |µ̃b− µ̂b| ≤ T then

6: hHS← hHS −∆hHS

7: T ← |µ̃b− µ̂b|

8: µ̂b← µ̃b
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9: end if

10: until |µ̃b− µ̂b|>T

11: return µ̂b

We set the initial value of the bandwidth parameter hHS, introduced in Hall and Simar (2002),

to (max êk−min êk)/3. For Gaussian kernels, our choice implies that we assume the minimum

residual is 3σ away from the maximum residual. The initial stopping criterion T can be any number

greater than the maximum of |eb, o| for ∀b and ∀o, which is typically bounded by maxyk−minyk.

For our experiments, we set ∆hHS to one hundredth of the initial value of hHS and use T = 10,000.

The iterative search stops when there is a significant change on the shape of the density estimate.

5.3. Production Frontier Curve Estimation Using CNLS Smoothing

Using the relationship f(xk) =ψ(xk) +µk, we construct a frontier function estimate, ζ, employing

cluster-wise mean inefficiencies, such as ζ(xk) =ψ(xk) +
∑mf

b=1 µb1Ib(xk), where Ib is a set of input

values in the b th cluster. The values of ζ, shifted upward from ψ with different constants, no longer

satisfy the RUP law and the shape constraints. Therefore, we need to refit the shifted cluster-wise

production function segments ζ by using an extended CNLS in (10) so as to obtain a continuous

frontier function estimate satisfying the shape constraints.

To use the extended CNLS in (10), one needs to know which point to use as the inflection point

on the frontier curve. Under the assumption of heteroscedastic errors, the shape of f differs from

that of ψ, and the location of the inflection point on f differs from that on ψ, too.

Our treatment here is to find the inflection point among the data pairs (xk, ζ(xk)). Spe-

cially, we identify a point that minimizes the sum of squared errors objective function in (10).

But we only want to consider the mid-points of the clusters as our candidate points, namely

({rb + rb+1}/2, ζ ({rb + rb+1}/2)) for b= 2, . . . , mf −2. Had we picked the boundary point of a clus-

ter as the inflection point, the extended CNLS in (10) cannot guarantee that the resulting function

is smooth at the inflection point. By contrast, this problem will not occur, if we use the mid-point
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of a cluster as the candidates for the inflection point, as the smoothness of this point was ensured

when the cluster-wise ζ’s were initially estimated. Given that the number of mid-points of the

clusters is limited, it is then easy to solve (10). In fact, one can simply perform exhaustive search

of all inflection point candidates and pick the one resulting in the smallest sum of squared errors.

6. Monte Carlo simulation results

In this section, we use Monte Carlo simulations to compare the performance of our proposed

estimator, referred to as HJD hereafter, to O&R’s estimator based on the data generation process

(DGP) proposed in O&R and its variants.

The O&R DGP generates 100 observations with two inputs and one output. For the two-

dimensional input, the O&R DGP 100 draws random samples of modulus ω ∼ Unif(0,2.5) and

angles η ∼Unif(0.05, π/2− 0.05) and converts them to the Cartesian coordinates, X = (x1, x2) =

(ω cosη, ω sinη). It then calculates the output values before perturbation by inefficiency and noise

according to y= F (g(x1, x2)), where g(x1, x2) =
(
βx

(σ−1)/σ
1 + (1−β)x

(σ−1)/σ
2

)σ/(σ−1)
with β = 0.45

and σ = 1.51, and F (z) = 15/(1 + exp(−5 lnz)). Finally, the O&R DGP draws 100 samples of

inefficiency u from N+(0, σ̃2
u) and applies it to input vectors, i.e., X ′ = exp(u) ·X. Note that the

actual variance of u is σ2
u = σ̃2

u (1− 2/π). We use data (X ′, y) to estimate φ(X).

For our first set of experiments, we use O&R’s deterministic DGP. Since noise is present in wind

turbine operations and the scale of the noise is often unknown, we compare the two estimators

for scenarios where the standard deviation of random noise σv varies in magnitude. Specifically,

for a given σ̃u, we consider five different σv’s: 0.2σ̃u, 0.4σ̃u, 0.6σ̃u, 0.8σ̃u, and 1σ̃u, corresponding

to the signal-to-noise ratios σu/σv of 8.29, 4.15, 2.76, 2.07, and 1.66, respectively. For these cases,

unlike in O&R, we include the random noise term v, where v ∼N(0, σ2
v), and apply the noise to

input as X ′ = exp(u−v) ·X. We also consider three different levels of σ̃u, 0.05, 0.1, and 0.15 which

allows us to explore how different scales of the composite error affect the performance of the two

estimators. In total, we compare 18 scenarios, including the scenario where σv = 0.
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We define two stages: aggregate input estimation and S-shaped scaling function estimation

including the inflection point estimation. HJD and O&R differ in both stages. We compare the two

estimators in both stages as well as their overall performance. To measure the performance, we use

the root mean squared error (RMSE),

RMSE =

√√√√ 1

n

n∑
k=1

(
φ(Xk)− φ̂(Xk)

)2

.

In the O&R DGP, the mode of output density estimate, y∗, is often close to zero. For small

sample sizes, such as 100 observations, α is relatively large (α=0.3) because we impose a minimum

on the number of observations used to estimate the base isoquant. This can lead to yl being less

than zero. In fact the O&R DGP generations many observations with small output levels, but large

input values. Using this data leads to poor estimates of the shape of the base isoquant. To improve

the estimation, we set yl = y∗/2 and determine yu such that
∫ yu
yl
π̂(y)dy = α, when yl is calculated

to be less than zero. However, asymmetrical selection of the subset does not significantly influence

frontier function estimate because when estimating the scaling function the output level of the

isoquant is assigned to improve the functional fit. In our experiments, a negative lower bound, yl,

occurs more frequently in the experiments with fewer than 350 observations.

Figure 2 demonstrates 90% credential intervals of RMSE for the second stage scaling function

estimators. For this comparison, we estimate the scaling function over true univariate input g(X)

to avoid any bias introduced by the first stage estimator. As expected, O&R, a deterministic

Figure 2 (Color online) Result of scaling function estimation based on true univariate input.
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estimator, performs well when the scale of noise is small, or equivalently, when the signal-to-noise

ratio is quite large. However, when the signal-to-noise ratio is less than or equal to 4.15 (σv = 0.02

for σ̃u = 0.05), HJD becomes competitive. As the scale of composite error keeps increasing, O&R’s

performance deteriorates quickly.

Figure 3 compares O&R’s aggregate input estimator, the true univariate input g(Xk)’s, and

HJD’s aggregate input estimator, all applied with HJD’s scaling function estimator used in the

second stage. Evidently, HJD’s aggregate input estimator performs comparably with, but slightly

better than, O&R’s aggregate input estimator.

When an aggregate input estimator is followed with using O&R’s scaling function estimator in

the second stage, however, using HJD’s aggregate input estimator performs significantly better than

Figure 3 (Color online) Comparison of the aggregate input estimations using HJD’s scaling function estimator

in the second stage.
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Figure 4 (Color online) Comparison of the aggregate input estimations using O&R’s scaling function estimator

in the second stage.
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using O&R’s aggregate input; this is shown in Figure 4. This comparison outcome suggests that

using HJD’s scaling function estimator appears to account for errors introduced in the aggregation

input estimation. From Figure 3 and 4, we also notice that the credential intervals of HJD’s

aggregate input estimator are comparable to those of the true univariate input; both of them are

noticeably smaller than the credential intervals of O&R’s aggregate input estimator, illustrating

HJD’s robustness.

Finally, Figure 5 presents the comparison results of the overall HJD estimator (both stage HJD)

to the O&R estimator (both stage O&R), demonstrating the superior performance of HJD over

O&R, when the noise level is not zero. As the signal-to-noise ratio decreases, the advantage of HJD

becomes more and more pronounced.

Figure 5 (Color online) Comparison of O&R and HJD production function estimators.
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7. Application to the estimation of the power curve for a wind turbine

We apply the proposed estimator to the estimation of the power curve of a single wind turbine. The

power curve is a classic example of a production function that satisfies the RUP law. Figure 6(a)

shows a typical nominal power curve provided by the turbine’s manufacturer, which characterizes

a turbine’s power output responding to wind speeds. Starting with the cut-in wind speed Vci, the

blades start rotate and the turbine begins generating electricity. As the wind speed increases, the

rates of marginal power productivity increase up to some point and then start decreasing, due to the
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Figure 6 Wind turbine data: (a) nominal power curve and (b) scatter plot of the data used in this example.
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use of pitch control mechanism (which turns the turbine blades to reduce the energy absorption).

Eventually, the power production levels off at the nominal power capacity of the turbine, Pr, known

as the rated power. Equivalently, the rate of marginal power productivity becomes zero beyond the

rated power. The corresponding wind speed is known as the rate speed and denoted by Vr. Energy

production is halted when the wind speed reaches the cut-out speed Vco for safety reasons.

While wind speed is widely accepted as the predominant factor affecting the power production

of a turbine, other factors such as air density, humidity, turbulence or dusting affect the power

output as well. When plotting on the wind speed-versus-power coordinates, one can observe that

the actual measurements scatter broadly around the nominal curve; see Figure 6(b). Much of the

randomness is attributed to the other factors that are not accounted for as well as unknown factors

that also affect a turbine’s power production.

The power curves are commonly used to characterize a turbine’s power production performance.

Upon the availability of the wind speed and power output, one naturally wonders how much

systematic inefficiency there is in addition to random noise. Fitting the model in (6) can provide

insights.

In this study, we use the data from one offshore wind turbine. The cut-in and cut-out speeds

are 3.5m/s and 25m/s, respectively. The turbine has a rated wind speed around 15 m/s and the

corresponding rated power is in the magnitude of megawatts, but the specific quantity cannot be
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disclosed due to a confidentiality agreement. In Figure 6 and 7, we normalize the power response

(vertical axis) by setting the rated power to be 100%.

We have a one year worth of the wind speed and power data, measured in 2007. In the wind

industry standard practice, wind speed and power data used are the averages of 10-minute obser-

vation intervals. We have approximately 13,000 observations of both wind speed and power output

after preprocessing (eliminating missing data, etc.). Even though we do not have observations for

every 10-minute time interval in the year, the missing values in our sample seem to randomly occur

due to measurement issues, so we do not expect any sample selection biases.

The power curve is an example of a univariate production function with only one input, namely

x = wind speed and y = power output, so we do not need to aggregate inputs. Figure 7(a) shows

the results of our inflection point estimation. With a large number of observations, the boundary

point candidates form a smooth curve. In addition, the wind turbine data exhibits strong linearity

in a wide range of input around the inflection point. The inflection point estimate is located almost

at the center after discarding the boundary point candidates indicating slight curvatures near both

Figure 7 Power curve estimation: (a) set of boundary point candidates and inflection point estimate, (b) produc-

tion function estimates.
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Note. No real data are observed in the range of wind speed from 0 m/s to approximately 2 m/s. Note that both the

average-practice function estimate and frontier function estimate extend to (0,0) in this range.
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ends of the support. Figure 7(b) shows the estimation of an average-practice production function

and the frontier production function.

The average-practice and frontier function estimates can be used to evaluate turbine perfor-

mance. For example, efficiency can be measured by the ratio of the area under the average-practice

function estimate to the area under the production frontier estimate. In this particular example,

the efficiency measure is 0.882, which implies 11.8% of systematic inefficiency on average.

Since it is difficult to estimate σ̃u and σ̃v directly from the wind turbine data without making

distribution assumptions on them, we next simulate a set of data similar to the wind turbine

data. We revise O&R’s DGP that is used in Section 6 in order to allow heteroscedasticity in the

simulated data. This way, the variance pattern of the residuals of the simulated data is consistent

with that of the actual wind turbine data. The detailed procedure of the revised DGP is presented

by Procedure 1.

Procedure 1 (Revised Data Generation Process)

1: Obtain X and φ(Xk) for k= 1, . . . , 100 similar to O&R’s DGP, but now with ω ∼Unif(0,4)

and F (z) = 15/(1 + exp(−3.5 lnz)).

2: Assume that σ̃u and σ̃v are given. Sample inefficiency uk from truncated normal with

mean 0, variance σ̃2
u, minimum of 0, and maximum of φ(x1k, x2k). For noise vk, use ran-

dom samples from N(0, σ2
vk), where σvk varies depending on g(x1k, x2k). If g(x1k, x2k) <

0.35, σvk = σ̃v · F (g(x1k, x2k))/F (0.35). On the other hand, if g(x1k, x2k) ≥ 1.5, σvk = σ̃v ·

{15−F (g(x1k, x2k))}/{15−F (1.5)}. Otherwise, let σvk = σ̃v.

3: Obtain the output values according to ỹk = φ(x1k, x2k)−uk+vk. To ensure the observed outputs

are in the range of [0, 15] which is the bounded range of φ, let yk = |ỹk|/5 if ỹk < 0, yk =

15− |ỹk− 15|/5 if ỹk > 15, and yk = ỹk otherwise.

With the simulated data, we can adjust σ̃u and σ̃v values used so that the simulated mean and

standard deviation of the composite error match, respectively, those of the real wind data. This
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allows us to have an idea about how much the two types of randomness are there in the system. The

mean and standard deviation of the composite error in the real data are 2.09 and 1.61, respectively,

after rescaling for similarity to the O&R’s DGP.

Figure 8(a) shows the scatter plot of a set of simulated data. If we choose σ̃u = 2.2 and σ̃v = 1.1

in our simulation, we produce a data set of which the averaged mean inefficiency and the standard

deviation of composite errors are similar to those of the wind data, respectively. We then keep

σ̃u = 2.2, while varying σ̃v from zero to 2.2 (so that the signal-to-noise ratio is 1). The comparison

results, when applying both HJD and O&R, are shown in Figure 8(b). The dotted line corresponds

to σ̃v = 1.1, indicating where the characteristics of our wind turbine data would fall in this analysis.

Figure 8 shows that HJD is much more effective for the frontier estimation considering the noise

level observed in the wind data. In fact, the data used in the previous example were measured

during the first year of operation of that particular wind turbine. As a wind turbine operates for a

longer period of time, the noise level in data tends to increase (see Figure 9b in Staffell and Green

2014), suggesting that HJD is better suited for estimating future power curves also.

Figure 8 Simulation results: (a) scatter plot of simulated data mimicking wind turbine data and (b) comparison

results using the simulated data with various scales of noise.
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8. Conclusions

This paper presents a new RUP law-satisfying estimator, which also allows heteroscedasticity in

both the random noise and inefficiency modeling. This new estimator is a major extension of the

existing deterministic RUP law-satisfying estimators that assume data as noise free. Our studies

using simulated data substantiate our claim that as soon as observations become noisy, the new

stochastic estimator outperforms its deterministic counterpart. The advantage of the stochastic

estimator becomes clear when the scale of noise is large.

We apply the resulting estimator to wind turbine data and estimate the average-practice power

curve as well as its frontier function. Fitting these production functions sheds lights on the relative

scale of the systematic inefficiency of a wind turbine and the random noise in its power production

data. It turns out that the noise scale in the turbine data is relatively high; in the particular

example we study, the signal-to-noise ratio is about two, a circumstance apparently demanding

the use of the stochastic estimator developed in this paper. Bear in mind that our turbine data

came from a turbine during its first year’s operation. For turbines further into their service life, it

is anticipated that the noise level will only go higher, resulting in even poorer performance of the

deterministic estimators.

Finally, we feel that future research is needed to relax the input homotheticity assumption. The

use of this assumption significantly simplifies the structure of the production function. Making

no assumptions about the structure of inputs is not desirable because the estimation procedures

become extremely flexible. To make the resulting methodology broadly applicable, a potentially

better compromise between flexibility and efficiency may be the adaptation of the ray-homothetic

structure described in Fare and Shephard (1977). Developing the ray-homothetic structure into a

stochastic estimator represents a considerable improvement.
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Supplementary Material

EC.1. Extension to the Multiple Outputs Setting

By assuming separability between inputs and outputs, multiple outputs can be represented by one

dimensional aggregate output. As we aggregate multiple inputs into an aggregate input, similar

approaches can be applied to obtain an aggregate output: 1) select subset of population based on

the density estimate of inputs and 2) apply CNLS to estimate a level set of base input. Then, the

subsequent procedures of inflection point estimation and production frontier function estimation

can be applied based on this two dimensional aggregate input-aggregate output space.

EC.2. Proofs

EC.2.1. Proof of Lemma 1

Proof of Lemma 1 Suppose that x∗ ∈ [mink xk, ηc−−1]. According to the RUP law, ψ is (strictly)

concave in [ηc−−1, maxk xk] (excluding ηc−−1). By the concavity of ψ and the conditions in (7),

ψ′(ηc−)≤ ξc− − ξc−−1
ηc− − ηc−−1

<
ξc+ − ξc−
ηc+ − ηc−

(EC.1)

Furthermore, because ψ is concave in [rc− , rc+ +h), as nb→∞ for b= c−, c+, ξc+ and ξc− under-

estimate ψ(ηc+) and ψ(ηc−), respectively, i.e. ξc+ = ψ(ηc+) − δc+ and ξc− = ψ(ηc−) − δc− where

δc+ , δc+ > 0 are the errors of the estimator ξc+ and ξc− , respectively. Note that stronger curvature

of ψ in [rc+ , rc+ +h) than in [rc− , rc− +h) due to the decreasing second derivative of ψ leads to

δc+ > δc− . Then, (EC.1) becomes

ψ′(ηc−)<
ψ(ηc+)−ψ(ηc−)

ηc+ − ηc−
− δc+ − δc−
ηc+ − ηc−

<
ψ(ηc+)−ψ(ηc−)

ηc+ − ηc−

indicating that ψ is convex at least in the interval of [ηc− , ηc+ ]⊂ (ηc−−1, maxk xk]. This contradicts

the assumption that ψ is strictly concave in (ηc−−1, maxk xk]. Therefore, x∗ /∈ [mink xk, ηc−−1].

Similarly, we can show that x∗ /∈ [ηc++1, maxk xk]. These together prove the desired statement. �
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EC.2.2. Proof of Theorem 1

Proof of Theorem 1 Since xk’s are uniformly distributed in [inf
l
rl
c−−1, sup

l

rl
c++1

+ h) and nb→

∞, we have ηlb→ rlb+h/2 for b= c−(l)−1, c−(l), c+(l), c+(l)+1 and for ∀ l. Note that by construc-

tion, |rl
c−−1− r

l′

c−−1| ≤ h, so |ηl
c−−1− η

l′

c−−1| ≤ h for ∀ l and ∀ l′. This also implies that ηl
c− ≥ η

l′

c−−1

for ∀ l, l′.

Consider a sequence
(
sup

{
ηl
c−−1 : l= 1, . . . , nrep

}
− inf

{
ηl
c−−1 : l= 1, . . . , nrep

})
nrep

, which is

increasing and bounded above by h. Thus, as nrep→∞, the sequence converges to h. Thanks to

the fact that ηl
c− − η

l
c−−1→ rl

c− +h/2−
(
rl
c−−1 +h/2

)
=
(
rl
c−−1 +h

)
− rl

c−−1 = h,

(
inf
{
ηlc− : l= 1, . . . , nrep

}
− sup

{
ηlc−−1 : l= 1, . . . , nrep

})
nrep

→
(
h+ inf

{
ηlc−−1 : l= 1, . . . , nrep

}
− sup

{
ηlc−−1 : l= 1, . . . , nrep

})
nrep
→ 0.

Similarly, (
inf
{
ηlc++1 : l= 1, . . . , nrep

}
− sup

{
ηlc+ : l= 1, . . . , nrep

})
nrep
→ 0.

Then, by Lemma 1, we have

x∗ ∈
nrep⋂
l=1

(
ηlc−−1, η

l
c++1

)
=
(
sup

{
ηlc−−1 : l= 1, . . . , nrep

}
, inf

{
ηlc++1 : l= 1, . . . , nrep

})
=
(
inf
{
ηlc− : l= 1, . . . , nrep

}
, sup

{
ηlc+ : l= 1, . . . , nrep

})
=
(
infC−x , supC+x

)
. �

EC.3. The Argument to Demonstrate (10h) and (10j) are Sufficient for
Imposing the Weak Essentiality Axiom

We define production function estimate ψ̂. Since the fitted output ŷk′ ’s are point estimates, any

continuous function passing (xk′ , ŷk′) pairs can represent ψ̂ with an equivalent objective function

value to (10). To address the non-uniqueness issue, Kuosmanen (2008) has constructed an explicit

representor function, so for the concave region,

ψ̃(x) = min
k′∈{k∗,...,n+1}

{
β̂k′,0 + β̂k′,1x

}
.
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Kuosmanen has also established the tightest possible lower bound and upper bound of the explicit

representor function ψ̃(x). Kuosmanen and Kortelainen (2012) show that the tightest possible lower

bound minimizes the sample variance of deviations and suggest using the tightest possible lower

bound as CNLS estimate:

ψ̃min(x) = min
β0∈<, β1∈<+

{β0 +β1x : β0 +β1xk′ ≥ ŷk′ , k′ = k∗, . . . , n+ 1} . (EC.2)

In (EC.2), the parameters β0 and β1 are reestimated, so they can be distinct from β̂k′,0 and

β̂k′,1 obtained from (10). However, note that ψ̃min(xk′) = ψ̃(xk′) = ŷk′ for the observed xk′ ’s. The

discrepancy between ψ̃(x) and ψ̃min(x) only occurs between two successive observations xk′ and

xk′+1 where β̂k′,0 6= β̂k′+1,0 and β̂k′,1 6= β̂k′+1,1. In this case, ψ̃(x) extends the two hyperplanes,

(β̂k′,0, β̂k′,1) and (β̂k′+1,0, β̂k′+1,1), up to the point where they meet while ψ̃min(x) imposes another

hyperplane passing through both of (xk′ , ŷk′) and (xk′+1, ŷk′+1). So, ψ̃min(x) can be interpreted as

a function connecting all (xk′ , ŷk′)’s and extending at the boundaries of support of the function.

For the convex region, we can reverse the direction of inequalities in (EC.2) and take the max-

imum instead of the minimum. Then, our estimator ψ̂(x) for the S-shaped production function

is

ψ̂(x) =


max

β0∈<−, β1∈<+

{β0 +β1x : β0 +β1xk′ ≤ ŷk′ , k′ = 1, . . . , k∗} , if x≤ xk∗

min
β0∈<, β1∈<+

{β0 +β1x : β0 +β1xk′ ≥ ŷk′ , k′ = k∗, . . . , n+ 1} , if x≥ xk∗ .
(EC.3)

With the production function estimate ψ̂ defined on (EC.3), we show sufficiency of (10h) and (10j)

for the imposition of the origin.

Proposition EC.1. Production function estimate ψ̂ passes through the origin if β̂k′,0 ≤ 0 for

k′ = 1, . . . , k∗ and ŷk′ ≥ 0 for ∀k′ = 1, . . . , n+ 1, in addition to other constraints in (10).

Proof of Proposition EC.1 (i) Assume that ŷ1 = 0, i.e. the minimum of point-wise functional

estimate is zero. If x1 = 0, the statement always holds. Thus, consider the case of x1 > 0. Note that

0<x1 <xk∗ , otherwise xk∗ cannot be an inflection point estimate. Then,

ψ̂(x1) = max
β0∈<−, β1∈<+

{β0 +β1x1 : β0 +β1xk′ ≤ ŷk′ , k′ = 1, . . . , k∗}= ŷ1 = 0
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which implies there exist β0 = β1 = 0 such that β0 +β1xk′ ≤ ŷk′ for k′ = 1, . . . , k∗. So,

ψ̂(0) = max
β0∈<−, β1∈<+

{β0 : β0 +β1xk′ ≤ ŷk′ , k′ = 1, . . . , k∗}= 0

because β0 is bounded above by 0.

(ii) Suppose that ŷ1 > 0. Because β̂1,0 ≤ 0, x1 > 0 and β̂1,1 > 0 whenever ŷ1 > 0. If β̂1,0 = 0, there

exist β0 = 0 and β1 = β̂1,1 > 0 such that β0 +β1xk′ ≤ ŷk′ for k′ = 1, . . . , k∗. Thus, ψ̂(0) = 0.

Now, the only case left is when β̂1,0 < 0. Let β̃0,1 = (ŷ1 − 0)/(x1 − 0). Then, β̃0,1x1 = ŷ1 =

β̂1,0+ β̂1,1x1. Since β̂1,0 < 0, β̃0,1 < β̂1,1. Connecting (0,0) and all (xk′ , ŷk′)’s, thus, form a piece-wise

linear and convex curve. We can write

ŷk′ ≥ ŷ1 + β̃0,1(xk′ −x1) = ŷ1− β̃0,1x1 + β̃0,1xk′ = 0 + β̃0,1xk′ , for k′ = 1, . . . , k∗.

Therefore, β0 = 0 and β1 = β̃0,1 satisfies β0 +β1xk′ ≤ ŷk′ for k′ = 1, . . . , k∗, so ψ̂(0) = 0. �
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