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1. Introduction

Coal power plants generate 47-56% of the electricity consumed in
the U.S since 1989 (EIA, 2010). However, burning coal produces
several byproduct pollutants, notably sulfur oxide (SO,) and nitrogen
oxide (NOy), the major cause of acid rain. To address this problem, the
Clean Air Act Amendments of 1990 (CAAA) set goals to reduce annual
SO, emissions by 10 million tons and NOy by 2 million tons from 1980
levels via a two-phase tightening of the restrictions placed primarily
on coal plants (EPA, 2007). Phase I (1995-1999) regulated 445 boiler
units at mostly coal plants and Phase II (2000-present) regulated
over 2000 boiler units with a capacity greater than 25 MW at all fossil
fuel plants. In 2011, the U.S. Environmental Protection Agency (EPA)
released new environmental regulations requiring coal power plants
to lower emissions of 84 toxic chemical levels within four years
(EPA, 2011a).

An analysis of the effect of these regulations is helpful in under-
standing the impacts in terms of reductions in pollution and the asso-
ciated costs for continued reductions. For this purpose we estimate a
frontier production function, as first proposed by Farrell (1957). Data
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Envelopment Analysis (DEA), a technique named and popularized by
Charnes et al. (1978), is extensively used to characterize firms' inputs
usage to produce maximum level of outputs as well as to measure
firms' technical efficiency. However, the original DEA model con-
structed a production frontier without modeling undesirable outputs
such as pollutants. Consequently, Fdre et al. (1986) extended DEA by
applying Shephard's (1970) concept of weak disposability between
desirable outputs and pollutants to estimate a production frontier
and evaluate the impact of environmental regulations on technical
efficiency. Today, the DEA weak disposability production frontier is
applied to measure the firms' environmental performance. Fire et
al. (1989) introduced a hyperbolic orientation to measure efficiency
relative to DEA weak disposability frontier and applied the method
to measure U.S. pulp and paper mills' technical efficiency and output
losses due to environmental regulations. Yaisawarng and Klein
(1994) measured productivity change of U.S. coal power plants by
computing Malmquist input-based productivity assuming a DEA
weak disposability frontier. Tyteca (1997) measured environment
performance indicators of U.S. fossil fuel power plants based on a
DEA weak disposability frontier. Pasurka (2006) calculated changes
in SO, and NO, associated with technical change, technical efficiency
change and changes in input and output levels of U.S. coal power
plants using an output distance function relative to a DEA weak
disposability frontier. Mekaroonreung and Johnson (2010) used DEA
and compared three approaches (hyperbolic efficiency measure;
directional output distance function; linear transformation of pollutants)
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to estimate the technical efficiency of the U.S. oil refineries. See Zhou et
al. (2008) for a summary of other DEA weak disposability applications
in energy and environmental studies.

Recently, Sueyoshi and Goto (2011) proposed the concept of natural
and managerial disposability and applied the concepts to a DEA frontier.
A non-radial efficiency measure compared environmental perfor-
mances and computed the returns to scale and damages to scale of
national oil companies in several countries and international oil compa-
nies. This paper will focus on the more standard weak disposability
assumption as the frontier for undesirable outputs implied by manage-
rial disposability violates free disposability of inputs.

The implementation of the weak disposability assumption relative
to a variable returns to scale (VRS) frontier has been subject to con-
siderable debate. For instance, Fare and Grosskopf (2003) proposed a
new model to construct a VRS weakly disposable production possibility
set by introducing a single abatement factor across all firms whereas
Kuosmanen (2005) used a non-uniform abatement factor across firms.
In demonstrating that a production possibility set constructed by a sin-
gle abatement factor model does not satisfy convexity, Kuosmanen and
Podinovski (2008), proved that using non-uniform abatement factors
allows the estimation of a VRS weakly disposable production possibility
set that satisfies standard production axioms and the minimum extra-
polation principle.

Many previous studies have estimated the shadow prices of unde-
sirable outputs using distance functions. A ratio of the derivative of
the distance function with respect to desirable output and the deriv-
ative of the distance function with respect to undesirable output char-
acterizes the relative shadow price of the undesirable output, and
parametric or nonparametric approaches can be used to estimate
the distance function. The parametric approach is more widely used,
because functions are everywhere differentiable. Fire et al. (1993)
used an output distance function with the translog functional form
to estimate a shadow price of four undesirable pollutants for 1976
data describing pulp and paper mills in Michigan and Wisconsin.
Coggins and Swinton (1996) took the same approach to estimate
the shadow price of SO, for Wisconsin coal plants in 1990-1992.
Fdre et al. (2005) used a quadratic directional output distance func-
tion to estimate both technical efficiency and a shadow price of SO,
for the U.S. electric utilities in 1993 and 1997.

Despite its common usage, the parametric approach can be biased if
the functional form is misspecified. Alternatively, a nonparametric
approach, specifically DEA, can estimate a production frontier and the
shadow prices of pollutants. Boyd et al. (1996) used a DEA production
function to estimate the shadow price of SO, for coal plants. Lee et al.
(2002) used DEA when accounting for technical inefficiency to derive
the shadow prices of SO,, NO, and total suspend particulates (TSP) for
Korean coal- and oil-burning plants in 1990-1995. Researchers also
acknowledge some major limitations of the alternative approach: greater
sensitivity to outliers, and the use of only a few observations to construct
the production frontier. Moreover, DEA as a deterministic method does
not incorporate statistical noise, and thus the observations of the produc-
tion units must be observed without error and the production model
specified without omitting any inputs or outputs.

Such drawbacks motivated the development of other nonparametric
methods such as Convex Nonparametric Least Squares (CNLS),
Kuosmanen (2006, 2008), which uses all available data to estimate a
piecewise linear production function satisfying production axioms
such as continuity, monotonicity and concavity. Kuosmanen and
Johnson (2010) have shown that DEA is a special case of CNLS with
sign constraints on error terms. To decompose statistical noise and in-
efficiency for cross-sectional data in a semi-parametric fashion,
Kuosmanen and Kortelainen (2011) have proposed a two-stage method
called Stochastic Non-parametric Envelopment of Data (StoNED).! It

! See Johnson and Kuosmanen (2011) or http://www.nomepre.net/stoned/ for fur-
ther discussion of this naming.

applies CNLS in the first stage to estimate an average production func-
tion and estimates the conditional expectation of inefficiency based on
the CNLS residuals in the second stage.

The advantages of CNLS and StoNED over DEA motivated us to
apply them to estimate a weak disposability production frontier.
While DEA with weak disposability is well studied, to the best of
our knowledge we are unaware of research that incorporates weak
disposability with CNLS and StoNED. We describe our proposed
model and apply it to measure the technical efficiency and to jointly
estimate the shadow prices of SO, and NOy for 196 U.S. coal power
plants during Phase II of CAAA. To our knowledge there are no studies
on the productive performance and shadow prices of SO, and NOy
using the U.S. coal power plants during Phase II of CAAA. The paper
is organized as follows: the next section describes a nonparametric
method of estimating a production function under weak disposability
and the associated technical efficiency and shadow prices of SO, and
NO,. Section 3 describes the data set of 336 boilers of the U.S. bituminous
coal power plants in operation from 2000 to 2008. Section 4 presents the
analysis and discusses the results and Section 5 summarizes the
conclusions.

2. Model
2.1. A production possibility set assuming weak disposability

For each firm i=1..., n let xRY be a vector of inputs, y=R5. be a
vector of good outputs and b= R/, be a vector of bad outputs. The pro-
duction possibility set is defined as T={(x,y,b) :x can produce (y,b)}.
The assumptions defining the production possibility set are:

1. Tis convex
2. There are variable returns to scale

Originally proposed by Shephard (1970), the following axioms
regarding production are restated when undesirable outputs are
also produced:

3. Free disposability of inputs
If(x,y,b) €T and X > X, then(x’,y,b) eT.

4. Free disposability of outputs
If(x,y,b)eT andy <y, then(x7y',b) eT.

5. Weak disposability between outputs and pollutants
If (x,y,b) ETand 0 < @ < 1, then (x, ¢y, ob) ET.

Based on the production possibility axioms stated above, the
variable returns to scale weakly disposable production possibility
set T can be written as:

n n
X2 N EXY <Y AV

T—{eyb) = RIS
i=1 i=1

n n
b=>"Nbid (N+p) =1, A =0}
i=1 i=1

where A;s allows the convex combination of observed firms and ps
allows firms to scale down both outputs and pollutants while main-
taining the same level of inputs.

Formulation (1) differs from the Kuosmanen (2005) formulation in
that the inequality sign in the pollutant constraints implies a negative
shadow price on additional pollution and satisfies the economic intu-
ition that pollutants incur costs to firms.
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Using the weak disposable production possibility T in (1), the
variable returns to scale output-oriented weak disposability DEA
estimator can be written as:

max 0,
0, A1
n
S.t.z)‘iyiszeoyos Vs=1,...,§
i1
n
> _Aiby < by, Vi=1,....J
o ®)
n
SN i < X YM =1, M
1711
DN+ =1
i1
A ;20 Vi=1,...n

where Y5, bos, Xom, and 6, are outputs, bad outputs, inputs and the
technical efficiency for specific firm o.

The DEA problem (2) constructs the weak disposability produc-
tion frontier and estimates technical efficiency as the radial expansion
of outputs.

2.2. Production frontier estimation

Consider a single output production function with a multiplicative
disturbance term

yi=fxibj)exp(g)vi=1,....,n 3)

where f(x;,b;) is the production function satisfying continuity, mono-
tonicity, concavity and weak disposability and ¢; is the disturbance
term. Note that the production function in (3) treats pollutants as in-
dependent variables following Cropper and Oates (1992), who de-
fined this treatment as the standard approach to including pollutants
within the environmental economics literature. Treating pollutants
as independent variables has been used in several papers such as
Pittman (1981) and Considine and Larson (2006).

Our motivations to employ a multiplicative disturbance model are
twofold. First, as suggested in Kuosmanen and Kortelainen (2011),
the multiplicative model allows the direct imposition of the assump-
tions of Constant Returns to Scale (CRS), Non-Increasing Returns to
Scale (NIRS) or Non-decreasing Returns to Scale (NDRS). Specifically,
CRS, NIRS and NDRS do not hold after an additive shift of the estimated
frontier production function. Since the assumption of weak dispos-
ability between an output and pollutants requires the origin to be
part of the convex production possibility set similar to the NIRS, the
multiplicative disturbance term model is appealing. Second, the
multiplicative disturbance term model helps to control for heteroske-
dasticity resulting from increased variability in output levels for
production units operating at larger scale sizes.

Applying the log transformation to (3) gives:

ei = In(y;)—In(f(x;, by)). (4)

To estimate the weak disposability production frontier, we apply
the CNLS technique to minimize the sum of the above multiplicative
disturbances squared and assume the composition of ¢; to be

1. Deterministic (all deviations are attributed to inefficiency) or
2. Composite (mixture of inefficiency and random noise) or
3. Random (all deviations are random noise).

The results of estimating (4) by minimizing the sum of squared
deviations is the production function under the assumption of ran-
dom disturbances. If the disturbances are assumed to be determinis-
tic,c, we could apply a one-stage method by solving the CNLS
problem with sign constraints on the disturbances. The results of

applying a one-stage method define an estimated production frontier
and technical efficiencies. If the disturbance terms are assumed to be
a mixture, we could apply the two-stage StoNED method, solving the
CNLS problem with no sign constraint on the disturbances and then
decomposing the CNLS residuals into statistical noises and technical
efficiencies using Jondrow et al. (1982) see also Kuosmanen and
Kortelainen (2011). The estimated averaged CNLS production func-
tion is shifted by the average technical efficiency level to obtain a pro-
duction frontier. Below, we elaborate on these deterministic,
composite and random disturbance term assumptions.

2.2.1. Deterministic disturbance term

We assume that there is no statistical noise in the data; thus, any
deviations from the estimated frontier are due to technical efficiency.
Specifically:

ei:—uiVi:L...,n (5)

where u;>0 is the firm-specific technical inefficiency.

While noting that the CNLS objective function is to minimize the
sum of square disturbances, when all of the disturbances are less
than or equal to zero in the deterministic case, we can replace the
sum of square disturbances by the sum of disturbances, see Kuosmanen
and Johnson (2010). The CNLS problem is then formulated as:

n
min — ¢
awce i
s.t. ei:ln(y,-)—ln(ai+w}xi+c}bi) Vi=1,..,n )
Q; + WiX; + Cib; < ay + WX, + Cpb; Vi,h=1,...,n
a; +wix, >0 Vi,h=1,....,n
W,'7Ci2076i$0 Vl':],...,TL

The objective function maximizes the sum of the disturbance
terms. Intuitively, the CNLS problem (6) estimates a production
frontier that makes all firms look as efficient as possible using the
minimum extrapolation principle of Banker et al. (1984), also
referred to as the benefit of the doubt principle by Moesen and
Cherchye (1998). The first equality constraints define the disturbance
term. The second inequality constraints comprise a system of Afriat
inequalities, Afriat (1972), imposing the underlying production func-
tion to be continuous and concave. The third inequality constraints
impose the weak disposability between desirable and undesirable
outputs. The last constraints enforce monotonicity of both inputs
and the costs associated with additional undesirable outputs.

Solving the CNLS problem (6) obtains the production frontier.
Technical efficiency is obtained from the estimated CNLS residual,
€i,ViZ

TE; = exp(§)Vi=1,....n. )

Proposition 1. In a single output case, the deterministic CNLS
production function (6) is equivalent to the output-oriented weak
disposability DEA production function (2).

Proof. See Appendix.

Proposition 2. The technical efficiency estimates from (7) equal the
reciprocal of the technical efficiency estimates from DEA (2).

Proof. See Appendix.

DEA or CNLS with a deterministic disturbance as described above
can be used to nonparametrically estimate a weak disposability pro-
duction function; however, it is not appropriate if the production
model is imperfectly specified or the data set contains noise. Again,
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CNLS is more advantageous because it can be extended to estimate
weak disposability production functions including a model of statisti-
cal noise.

2.2.2. Composite disturbance term

Similar to Stochastic Frontier Analysis (SFA) by Aigner et al.
(1977), we assume that there is statistical noise in the data; thus
any disturbance terms can be written as:

¢=Vvi—uVi=1,...,n (8)

where v; is a random noise component.

As Kuosmanen and Kortelainen (2011) have pointed out, the
composite disturbance term in (8) violates the Gauss-Markov prop-
erties that E(¢;) = E(—u;) = — u<0 where p is the expected technical
inefficiency. Therefore, we modify the composite disturbance term
in (8). The multiplicative disturbance production model y;=f(x;, b;)
exp(¢) is written as:

Iny;) = [In(f(x;, b)) =) + [e; + pl = In(g(x;, by)) + 9 Vi=1,....n (9)

where 9;=¢;+pu, the modified composite disturbance term. Note
that E(9;) = E(¢; + 1) =0. The CNLS problem is formulated as:

T2
min Y9
aw,cdj—1
st. 9= In(y;)— ln<ai +Wix; +c;»b,») Vi=1,...,n (10)
Q; +Wix; + Cib; < o, + Wyx; + b Viih=1,...n
Q+wx, =0 Vi,h=1,....,n
w;, ¢; =0 Vi=1,...,n.

Because CNLS identifies a production function that minimizes the
sum of squared disturbances among all production functions that
are continuous, monotonic increasing, concave and satisfy the weak
disposability assumptions, it is important to check the following
condition for the objective function.

Proposition 3. The objective function in the CNLS problem (10) is a

Ji >1Vi:1,...7n.

convex function if and only if ———+———>—
o +wixi+cb; e

Proof. See Appendix.

If the CNLS problem (10) has a convex objective function, then a
local optimum to (10) is also a global optimum simplifying the
optimization algorithms needed to find the global optimal solution
to (10).

The second stage of CNLS separates the technical efficiency and
statistical noise components using the estimated modified CNLS
residuals 9;Vi from (10). Assuming that technical efficiency is inde-
pendent and identically distributed (i.i.d.) and has a half normal
distribution and that the statistical noise is i.i.d. and normally distributed,
u;~|N(0,02)| and v;~N(0,02), the method of moments can be applied
(Aigner et al. (1977) as in Kuosmanen and Kortelainen (2011)). Specifi-
cally,

My

= {gtisy 4 0y ()0 i

m

where M, =131, (19,——13"(15‘,-))2 andM; =131, (5,——12‘(15}1-))3.
Unlike the deterministic disturbance case, after solving the CNLS
problem (10), the average production function g(x;b;) is obtained

instead of the production frontier. Next, the average production func-
tion is multiplied by the expected technical efficiency to estimate the
production frontier. Specifically,

In(g (x;,by)) = [ In(f(xi, b)) —A] = In(F(x;, by) exp(—f)), thus

! N (12)
S (i, bi) = g(xi, b;) exp(i)
where fl =G, \/%

Given 6, and &, the method introduced in Jondrow et al. (1982)
can be used to estimate firm-specific inefficiency. Specifically,

L2 A 2402
P R O g, 0
E(ule) = ——9%u 4 Zu v

13
2. 52" 62,.452
0,40, 0,40,

where ¢, = 9;—/1, ¢ is the standard normal density function and & is
the standard normal cumulative distribution.

2.2.3. Random disturbance term

Here, the CNLS estimator in (4) is used to obtain the residual
directly. Assuming statistical noise is i.i.d. and normally distributed,
v;~N(0,02), the method of moments is applied in the second
stage of CNLS to estimate o,. Specifically, &, =M, where M, =
on (di—Ewn)>

We note that composite disturbances and random disturbances
differ in that the former is skewed by inefficiency. This skewness
can be used to determine if the neoclassical production function (no
inefficiency) or the frontier production function (with inefficiency)
is the proper model. In Section 4, we use the test proposed by
Kuosmanen and Fosgerau (2009) to select between a neoclassical or
frontier production function based on the skewness of the residuals.
The results provide evidence for the presence of inefficiency.

2.3. Estimating shadow prices of pollutants
Assuming profit-maximizing behavior for each firm, the profit

maximization problem for a production process with outputs and
pollutants is

7(py. Py, Px) = max p,'y—py b—py'x
st. F(x,b,y)=0

(14)

where py,= (py,,...Py,), Pb=(Pb,,---,Pb,) aNd px= (Px,,--- Px,) represent
the price vectors of outputs, pollutants and inputs, respectively. F(x, b,y)
is the transformation function corresponding to a multi-output produc-
tion function. Since we are interested in the shadow prices of pollutants,
we impose the constraint F(x, b,y) =0 so that only the frontier of the
production possibility set is considered. Problem (15) applies the method
of Lagrangian multipliers to (14)

max py'y—py'b—py'x + {F(x, b.y) (15)

where ¢ is a Lagrangian multiplier of the constraint.
The first-order conditions (FOCs) of the problem (15) are:

F(x, b,
Py, +§ (gy y):0
L oFxby)
¢ db =0 (16)
OF(x. b
—py, ¢ (gx Y _ o
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The shadow prices can be written as:

_ (0F(x,b,y) OF(x,b,y)
pr—Pys< ab, / 3. . (17)

In the case of a single output production function (S=1), the
first equality of the FOC (16) can be written as p,—{=0, that
is, the Lagrangian multiplier is equal to the price of the output.
Thus, if the price of the output is known, the shadow prices of
each pollutant can be estimated using the second equality in
(16). The relative shadow prices of pollutants for firm i are esti-
mated as:

a Xi, bi
pr, =L g (18)

where py; is the price of an output for firm i.
Assuming a deterministic disturbance term, solving the CNLS
problem (6) estimates a weak disposability production frontier
of (xi, bi)

f (x;, b;) directly. We obtain the variable —5— for each firm from

ij
the estimated variable ¢;E¢; = (Ci1, Ciz, ..., Cj) in (6) directly.?
Under the composite disturbance term assumption, in the first
stage we estimate the average weak disposability production function
g(x;, b;) by solving the CNLS problem (10). In the second stage,
we decompose the estimated composite CNLS residuals and
calculate the estimated expected inefficiency components fi. We
obtain the relative shadow prices of pollutants for each firm
0g (xi, bi)
ob;
(Ci1,€i2, ..., Cyy) is obtained from solving (10).

as exp(ft) = ¢jexp(it), where the variable ¢;s¢; =

3. Data set

Our balance panel boiler-level data characterizes 336 units of the
U.S. bituminous coal-burning electricity plants in operation from
2000 to 2008. Bituminous coal plants are mostly located in the
eastern states and these power plants produce about 50% of the
total electricity generated from coal. This form of coal has very high
sulfur content. All boilers in the sample are either wall or tangential
fired boilers, sub-groups of pulverized coal-fired boilers, which are
regulated by the Acid Rain Program.

The output is the annual amount of electricity generated (in
Megawatt-hours, MWh). The pollutants are the annual amount of
SO, (tons) and NOy (tons). The two inputs are capital and heat.
The heat input (mmBtu), calculated by multiplying the quantity of
fuel with the fuel's heat content, is the measure of fuel utilization.
Information on electricity generated, amount of pollutants and
heat input quantities are reported by the EPA database (EPA,
2011b).

The boiler size (MW), the maximum rated output of a genera-
tor under specific conditions, is used as an instrumental variable
for capital. The U.S. EPA's database reported the maximum heat
input capacity (mmBtu/h), a unit's maximum designed hourly
heat input rate observed in the past five years, for each boiler
unit. We convert the maximum heat input capacity to estimate
the boilers' sizes. The boilers' sizes in our sample range between
100 and 1426 MW.

2 The CNLS production frontier is piecewise linear. Infrequently observations lie on a
kink of the CNLS production frontier and do not have unique shadow prices. Using the
method proposed by Kuosmanen and Kortelainen (2011), we use the minimum mar-
ginal product of pollutants to estimate shadow prices.

Electricity prices ($/MWh) of each utility are reported in EIA861
(EIA, U.S. Energy Information Administration, 2011b). Some of the
utilities do not generate electricity; thus, we match our power plants
in the sample to those utilities in which they have electricity produc-
tion data and assume that electricity price in those utilities are the
same as in power plants. Following Fare et al. (2005) approach, we
assume that all generating boilers in the same power plants have
the same electricity prices. We derived electricity prices for each boil-
er by the average price of electricity sales for customers and for resale
of each corresponding utility. For some utilities without electric price
information, we use the state average retail electricity price reported
in EIA (2011a).

From the original 491 bituminous coal power plant boilers data
we are able to collect, we construct the 9 years balance panel data
set based on the input output information described above. We
drop 97 boilers for which their size are less than 100 MW, 55 boilers
for which they are not pulverized coal-fired boilers and 3 boilers for
which there are missing data on electricity and pollutants, leaving
336 boilers units in the sample. There was no entry or exit of coal
power plants observed in the data gathered over this time horizon.
The summary statistics are presented in Table 1.

Table 1
Statistics for boiler units in the U.S. coal electricity plants (n=336).
Year Variable?® Mean Std. dev. Min. Max.
2000 Electricity 2141 1640 257 8315
SO, 12.57 1145 0.30 76.28
NOy 4.69 3.55 0.78 18.68
Heat input 20,855 15,672 3201 79,135
Price 52.26 14.51 17.26 113.80
2001 Electricity 2029 1618 236 10,378
SO, 11.64 10.79 0.25 63.57
NOy 431 3.34 0.52 20.89
Heat input 19,741 15,306 2283 86,749
Price 54.13 17.45 20.71 115.50
2002 Electricity 2062 1689 261 10,474
SO, 1133 10.73 0.24 87.59
NOy 4.22 342 0.36 20.97
Heat input 19,945 15,762 2737 88,046
Price 50.44 17.06 2144 111.60
2003 Electricity 2127 1721 242 10,210
SO, 12.02 12.07 0.26 83.56
NOy 3.99 3.19 0.69 20.17
Heat input 20,412 15,854 2291 92,378
Price 52.83 16.60 21.54 124.40
2004 Electricity 2097 1700 251 9940
SO, 11.67 11.38 0.22 75.75
NOx 3.57 2.80 0.40 15.17
Heat input 20,027 15,674 2526 83,167
Price 55.13 17.46 2242 125.50
2005 Electricity 2166 1785 266 11,155
SO, 11.81 11.85 0.19 80.98
NOy 3.48 2.73 0.42 15.15
Heat input 20,605 16,299 2803 92,853
Price 59.65 18.67 24.71 139.50
2006 Electricity 2160 1749 200 10,363
SO, 11.25 11.40 0.20 71.92
NOy 342 2.74 0.38 16.59
Heat input 20,401 15,939 2191 83,026
Price 65.43 19.36 28.58 154.50
2007 Electricity 2187 1765 83 10,094
SO, 10.34 11.40 0.13 92.63
NOy 3.30 2.75 0.31 14.78
Heat input 20,789 16,388 886 95,973
Price 67.53 20.85 23.57 152.20
2008 Electricity 2180 1763 83 10,094
SO, 10.31 1141 0.13 92.63
NOy 3.30 2.75 0.31 14.78
Heat input 20,740 16,388 886 95,973
Price 73.98 22.04 36.06 165.70
Boiler size 336 240 100 1426

@ Unit of electricity, SO,, NOy, heat input, electricity price and boiler size are
10 x MWh, 10> x ton, 10%x ton, 10*> x mmBTU, $/MWh and MW, respectively.
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Table 2

Results of the skewness and kurtosis tests.
Year Test statistics P-values

Vb1 b, Vby b,

2000 —0.084 3.987 0.263 0.003
2001 —0.271 4.022 0.020 0.003
2002 —0.382 4.069 0.002 0.002
2003 —0.546 4,004 0.000 0.003
2004 —0.496 4.738 0.000 0.000
2005 —0.168 3.334 0.102 0.095
2006 —0.618 4.785 0.000 0.000
2007 —0.560 5.334 0.000 0.000
2008 —0.488 5.318 0.000 0.000

4. Empirical results

To test whether the assumption of the frontier production func-
tion is more appropriate than the neoclassical production function,
we apply the skewness and kurtosis tests proposed in Kuosmanen
and Fosgerau (2009). The null hypothesis Hp is: disturbances that
are normally distributed are tested against an alternative hypothesis

Table 3
Statistics of the estimated shadow prices of SO, and NOy ($/ton) and technical ineffi-
ciency for the deterministic disturbance term case.

Variable Mean? Std. dev.? Min Max

2000

Priceso 743 11,140 0 368,805
Pricenox 7536 9053 0 130,271

TE 0.884 0.077 0.674 1.000
2001

Pricesos 1291 16,816 0 391,923
Pricenox 9234 11,713 0 58,875

TE 0.879 0.077 0.665 1.000
2002

Priceso 507 1041 0 18,176
Pricenox 4597 6425 0 52,715

TE 0.888 0.072 0.685 1.000
2003

Pricesos 691 2712 0 79,618
Pricenox 6187 11,262 0 80,503

TE 0.886 0.073 0.637 1.000
2004

Priceso 734 4296 0 125,749
Pricenox 7799 11,272 0 75,287

TE 0.883 0.073 0.612 1.000
2005

Priceso, 1033 11,274 0 358,869
Pricenox 11,679 13,692 0 75,962

TE 0.892 0.066 0.697 1.000
2006

Pricesoz 954 9457 0 331,175
Pricenox 9994 13,356 0 81,886

TE 0.902 0.063 0.700 1.000
2007

Pricesos 780 8074 0 229,204
Pricenox 4044 7367 0 83,184

TE 0.875 0.075 0.684 1.000
2008

Priceso 2020 20,215 0 458,105
Pricenox 3671 5583 0 73,031

TE 0.869 0.077 0.618 1.000

2 Weighted average by the amount of pollutants.

Table 4
Statistics of the estimated shadow prices of SO, and NO, ($/ton) and technical ineffi-
ciency for the composite disturbance term case.

Variable Mean? Std. dev.? Min Max
2000

Priceso, 201 255 0 2573
Pricenox 1354 1281 0 8035
TE N/A N/A N/A N/A
2001

Priceso 293 388 0 3218
Pricenox 848 1649 0 11,955
TE 0.943 0.036 0.818 1

2002

Priceso, 318 453 0 4899
Pricenox 811 1542 0 16,542
TE 0.938 0.042 0.801 1
2003

Priceso 230 418 0 3338
Pricenox 691 2047 0 17,648
TE 0.927 0.049 0.743 1

2004

Priceso, 219 410 0 3215
Pricenox 1211 3344 0 30,712
TE 0.934 0.044 0.740 1

2005

Pricesoz 246 1467 0 37,648
Pricenox 1352 3703 0 19,071
TE N/A N/A N/A N/A
2006

Priceso, 343 3097 0 108,436
Pricenox 1301 3687 0 32,640
TE 0.935 0.043 0.757 1
2007

Priceso 237 421 0 4907
Pricenox 409 1456 0 16,775
TE 0.937 0.042 0.777 1
2008

Priceso, 239 666 0 11,572
Pricenox 609 2082 0 28,770
TE 0.931 0.046 0.745 1

¢ Weighted average by the amount of pollutants.

H,: disturbances are negative skewed.> Table 2 reports the \/b; and
b, test statistics and the relevant p-values of the normality tests. As
expected, the \/b; statistics are negatively signed. At the 5% signifi-
cance level, normality is rejected in favor of skewness in 2001-2004
and 2006-2008, which supports the frontier model, and cannot be
rejected in 2000 and 2005, which supports the neoclassical assump-
tion. Thus, in these two years we use the neoclassical production
model in which the disturbances contain only noise.

Table 3 reports the estimated shadow prices of SO, and NO, tech-
nical inefficiencies and related statistics, assuming a deterministic
disturbance. The estimated average prices of SO, over the 9-year
time horizon, range between 509 and 2020$/ton and the estimated
average prices of NO, are between 3671 and 11,679%/ton. The esti-
mated average technical inefficiencies range between 0.883 and 0.902.

Table 4 shows the estimated shadow prices of SO, and NO, using
StoNED and related statistics. The values in parentheses represent the
statistics excluding zero shadow price firms. The estimated average
shadow prices of SO, range between 201 and 343 $/ton and the esti-
mated average shadow prices of NO, between 409 and 1352 $/ton.

3 The simulated distribution of the skewness test statistic, \/b, and the kurtosis test
statistic, b,, are constructed by a simple Monte Carlo simulation using M= 10,000
Pseudo-samples of n =336 observations from N(0,1).
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Fig. 1. Comparison of the estimated average shadow prices of SO, and NOy.

The estimated average technical inefficiencies range between 0.927
and 0.943. For all data sets, the estimated second and third moments
of the residual, M, and M3, have the correct signs; thus, the expected
inefficiency terms can be calculated and used to estimate the
shadow prices of both pollutants. The convexity condition,
Y 1
Q; +W'x; + é;b, e
year of data, which indicates that the objective function is globally
convex. Therefore, a global optimal solution can always be found
using standard nonlinear programming methods.

We find that applying the deterministic methods results in higher
shadow price estimates than when assuming a composite disturbance
term. Moreover, the estimated shadow prices in the deterministic
case have a wider range. Weak disposability production frontiers
constructed in the deterministic case are more sensitive to variation.
If outliers are present in the data set, the estimated frontier tends to

of (xi, bi)

0bj
shadow prices are higher. In general, when only a few extreme obser-
vations are used to construct a frontier, the result is more variation in
the estimated shadow price.

Fig. 1 shows the average shadow price estimates compared with
previous studies; note that every study uses different data sets and
estimation methods as summarized in Table 5. From Fig. 1, three
conclusions can be drawn. First, average shadow price estimates for

0.368Vi, in proposition 3 is satisfied for each

have larger steep regions, thus is large and the estimated

Table 5
Data set comparisons of the electricity price used to estimate shadow prices of the
pollutants.

SO, from previous studies ranges between 76 to 3107 $/ton, is consis-
tent with the previous literature and EPA auction prices. For the com-
posite disturbance model, our average shadow price estimates for
SO,, ranging from 201 to 343 $/ton, contain the estimates of Coggins
and Swinton (1996) and are close to Fdre et al. (2005). More impor-
tantly, our estimates from the composite disturbance model are in
the range of EPA's SO, allowance auction prices.

The results also confirm that the shadow price estimates from
composite disturbance models are generally lower than those from
deterministic models, and are likely better estimates of the prices
from the EPA's allowance markets. Excluding Coggins and Swinton
(1996),* the average shadow price for SO, from deterministic models
(including DEA) are 509-3107 $/ton compared to 76-343 $/ton for
the composite models. Table 6 shows that the SO, market prices are
130-1550 $/ton and the allowance auction price is 126-860$/ton.”
We conclude that the weak disposability StoNED method provides
more consistent estimates of market prices compared to weak dispos-
ability DEA. Third, the shadow prices of NO, are higher than the
shadow prices of SO,. Using a composite disturbance term, the NOy
average shadow prices of 409-1352$/ton are higher than the SO,
shadow prices of 201-343 $/ton. This conclusion coincides with the
observed prices in the SO, and NOy allowance markets.

Table 6 shows the comparison of average shadow price estimates
in the present study to the pollutants' market prices. Our average SO,
prices are slightly over-estimated between 2000 and 2003, within the
range for 2004 and 2008 and under-estimated between 2005 and
2007, because our average SO, price estimates are relatively stable
year to year while the SO, market prices starts to increase in 2003,

Study Country Year Sample Price of electricity
size ($/MWh)

Boyd et al. (1996) us. 1989 62 50.00

Coggins and Swinton (1996) U.S. 1990-1992 42 36.38-65.87

Fére et al. (2005) us. 1993, 1997 209 10.39-100.42

Lee et al. (2002) Korea 1990-1995 43 66.67

Present study uUs. 2000-2008 336 17.26-165.70

4 Compared to other studies, this paper considers a limited number of boilers in Wis-
consin all facing similar state regulations. The boilers in this study tend to have similar
production characteristics; thus, if the data was collected carefully, the assumption a
deterministic disturbance is more appropriate than in other studies with more hetero-
geneity and noise.

5 Allowance auction price is the price for which the allowance is sold to the highest
bidder in the annual EPA auction until no allowances remain. Market price is the price
for which the allowance is traded on the open market.
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Table 6
Comparison between pollutants market prices® ($/ton) and the average shadow price
estimates from the present study using composite disturbance case ($/ton).

Year SO, prices NO, prices®
Market Present study Market Present study

2000 130-155 201 1354
2001 135-210 293 600-1700° 848
2002 130-170 318 811
2003 150-220 230 2500-8000 691
2004 215-700 219 2100-3700 1211
2005 700-1550 246 2000-3500 1352
2006 430-740 343 900-2725 1301
2007 500-600 237 500-1000 409
2008 179-509 239 592-1400 609

2 Information on SO, allowance market prices is reported in EPA Acid Rain Program
2000-2008 Progress Reports, information on NOx allowance market prices is reported
in EPA OTC NOy Budget Trading Program 1999-2002 Progress Reports and EPA NOy
Budget Trading Program 2003-2008 Progress Reports. All reports are available at:
http://www.epa.gov/airmarkt/progress/progress-reports.html.

b For 2003, 2004 and 2005, the range of NO, market prices are approximated from
graphs; for the other years, the range of NOx market prices are explicitly stated in
the EPA reports.

¢ For 2000, 2001 and 2002, EPA published three years of progress in a single OTC NOy
budget program report.

spikes during 2004-2005 and declines after 2005. Our average NOy
prices are within the range or close to NO, market prices except in
2003, 2004 and 2005. During this time, our estimates are lower
than the market price because the NO, market price increases sharply.
However, our NOy price estimates have a similar trend of rising prices
in 2004, 2005 and 2006 and dropping prices in 2007 and 2008. Figs. 2
and 3 illustrate the average shadow price estimates and the market
prices.

Recall that the shadow prices of pollutants are estimates of the
marginal abatement costs which should reflect the market prices for
EPA's pollutant allowances. Our shadow price estimates are derived
based solely on the plants' production data; however, several other
factors can affect the market allowance price. By allowing plants to
buy, sell and bank allowances, the allowance prices reflect the cost
of compliance with future regulation. The sharp increase in SO, and
NOy prices resulting from EPA's Clean Air Interstate Rule (CAIR)
which requires further SO, and NOy reduction from coal boilers
beginning in 2010, caused an increase in the expected pollutant
control costs in the future and provided incentives for plants to buy
allowances and bank them for future use. Thus, allowance prices
rose due to increased demand for allowances. After 2005, emission
levels fell due to the increased use of gas-fired boilers and pollution
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Fig. 2. SO, market prices and the average shadow price estimates ($/ton).
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Fig. 3. NOx market prices and the average shadow price estimates ($/ton).

control equipment. Thus, a sufficient supply of allowances in the
market caused allowance market prices to fall.

5. Conclusions

This paper proposed a nonparametric methodology to estimate a
production frontier when pollutants are a result of the production
process. We assumed that the traditional production axioms such as
continuity, monotonicity and concavity with weak disposability
between an output and the pollutants characterized the shape of an
underlying production frontier. To estimate the production frontier
empirically, we extended the two-stage CNLS method to incorporate
the weak disposability assumption. In deterministic cases assuming
no noise in the data and an exact model specification, we modified
CNLS to minimize the sum of firms' one-sided deviations. In compos-
ite disturbance cases where noise was explicitly modeled, we extend-
ed the StoNED method to include the weak disposability axiom. The
composite CNLS residuals were decomposed into noise and technical
inefficiency terms and the estimated expected inefficiency was used
to multiplicatively shift an average CNLS production function to
obtain the weak disposability production frontier. The proposed
methodology was applied to derive the technical efficiencies of 336
boilers for the U.S. coal power plants and the shadow prices of SO,
and NOy.

The main finding of this study is that, applying the StoNED method
with a composite disturbance term, average shadow prices estimates
of SO, are between 201 and 343 $/ton and average shadow prices of
NO, are between 409 and 1352$/ton. Both SO, and NO, shadow
price estimates are in reasonable ranges comparing to allowance
market prices. The proposed method can be applied to estimate
shadow prices of other pollutants which can be used as references
for marginal abatement costs for the industry. This marginal abate-
ment cost is solely derived from production data so that it is not
affected by market complexity.

From the results in this study, we recommend the use of weak dis-
posability StoNED method over weak disposability DEA which is like-
ly to overestimate shadow prices due to extreme observations.
Further cost analysis tools, such as the ones proposed in this paper,
will allow the EPA to investigate the outcomes of their on-going pol-
lution control policies.
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Appendix A

Proof of Proposition 1. In a single output case, we can transform the
problem (2) into an additive form:

n
_Z]:)\iyi = Yo+ ®o
i=

Y Nb; < by
e

=

Vi=1,...]

max, Dol & 19
Bk} 0 X%(Ai+ui)xim3xom vm=1,...M (19)
i=
n
2()\i+“i):1
i=
A ;=0 Vi=1,...,n

where 6, =1+ %’.
Applying duality theory of linear programming, the LP problem
(19) has a dual problem:

_ , , a+wx;+cbh >y VYi=1,..n
ming (a+wx0+cb0)—y0 OLJrW’XiZO Vi:l,...,n
w,c>0 Vi=1,...,n

(20)

We remove y, from the objective function since it is a constant.
Then we take the logarithm of the objective function and the first
set of constraints, because the logarithm is a monotonic transforma-
tion for values greater than or equal to 1. Next we add the negative
of In y, to the objective function since it is a constant. Problem (20)
becomes:

) ) In a+w'x,~+c'bi) > Iny,Vi=1,...,n
min,,, .4 In (oz +wx,+cC bo) —Iny,

a+w'xi20 Vi=1,...,n
w,c>0 Vi=1,...,n
(21)

Introducing a new variable ¢,=Iny,—In(a+w'x,+c’b,) and
adding an additional constraint, problem (21) can be equivalently
written as:

€ = Iny,—In (a +Wx, + c'bo)

Minge { —¢ ln(a-,i-wx,--s-cb,-) >1Iny; Vi=1,..,n\ (22)
a+wx; >0 Vi=1,...,n
w,c>0 Vi=1,...,n

Instead of solving (22) separately for each firm, we combine n
optimization formulations and solve simultaneously for all firms.
Since ¢, 04, w; and ¢; are estimated independently for each firm, we
minimize the sum of ¢; as:

¢ = Iny;—In(oy; + wy'x; +¢;’b;) Vi=1,....,n

. _sn | In(oy +wy'x; +¢y’'by) = Iny;  Vioh=1,....n
mingy, ¢ 216 oy, +wy'x; >0 Vih=1,...n
w;, ¢; =0 Vi=1,...n
(23)

By construction, ¢<0; we add this constraint to the problem.
Moreover, we add the inefficiency term ¢; to the right side of the
second set of constraints because of the monotonicity assumption.
Note that the constraints are binding if i=h, and inequality

otherwise:
¢ = Iny;— In(og + wy'x; + ¢;'b;) Vi=1,..,n
: N In(a, + wy'x; +¢,'by) +¢ = Iny; Vih=1,.., n
MiNg e = 2im o +Wy/'x; >0 Viih=1,...n
Wi, ¢;>0,6<0 Vi=1,..,n
(24)

Since In y; — ¢;=In(o; + w;’ X; + ¢;’ b;), the second set of constraints
can be written as In(ay,+wy’x;+cp’b;) >In(oy+w;'x;+ ¢’ b;) Vi,
h=1,...,n. Removing the logarithm from this second set of con-
straints allows the problem (24) to be equivalently written as:

¢ = Iny;— In(o; + wy'x; + ¢;'b;) Vi=1,...n
. o, + WX+ ¢'b; = o + wy'x; +¢'b; Vioh=1,....n
min -2 ¢ :
W e ,-;61 ap +wp'x; =0 Vi,h=1,...,n
w;, 6; >0, <0 Vi=1,...n

(25)
which is the formula (6).

Proof of proposition 2. By construction, 6,y;=y;+ &, thus 6;=1+
@ i/yi. By duality between the problem (19) and (20), @ ;= (o + w;’x; +
¢;' b;) — . This gives 6;= (o +w;' x; + ¢;’ b;) /y:. By construction the var-
iable ¢;=1Iny; —In(c; +w;’x; +¢;’b;), thus e =y;/(c +w;' x; +¢;' b;) =
1/6.

Proof of proposition 3. Let the function

A1, .eesp) =

n 2 . 20 2 .
1 (Iny;—In¢;)°.  Since @ =— (1—In¢; + Iny;)Vi and
i i
62797 ovi,j=1 n, all non-diagonal elements in the Hessian
a¢la¢j ) EERERR L)
matrix of the function Q are equal to zero. Thus, the function Q is

convex if and only if aZ—Q = 2

0 &
is equivalent to ¢;<ey;Vi. Since the objective function of the CNLS
problem (10) is a composition with an affine function ¢;=a;+w;’
x;+c;'b;Vi, it is convex if the function Qis convex if and only if

a;+wi’xi+c;’bi£eyiVi.

(1—1In¢; + Iny;)>0Vi. This condition
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