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The infeasibility problem in traditional super efficiency models has been well established. A generalization 
of traditional input- or output-oriented super efficiency models, the directional distance function also suffers 
from infeasibility and related problems. The hyperbolic-oriented efficiency measure provides an alternative to 
the input-oriented, output-oriented, and directional efficiency measures in super efficiency models and it has 
the distinct advantage of eliminating the infeasibility problem for positive input/output data. We also show that 
using a hyperbolic orientation in a super efficiency model allows us to find feasible solutions for certain cases 
when the requirement for all data to be positive is relaxed. Further we demonstrate the hyperbolic orientated 
super efficiency method in an outlier detection application. Together, these results establish the use of the 
hyperbolic orientation in super efficiency analysis as a realistic alternative in practice. 
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Introduction 

Performance measurement is an important issue in any enter- 
prise. The ability to distinguish between top performing units 
and poorer performing units is important for a variety of 
reasons. In a public environment or a large company, perfor- 
mance measurement allows resources to be allocated to the 
units that are the most productive. In a competitive environ- 
ment, it allows poor performers to understand the quality of 
their performance and to apply benchmarking techniques to 
guide them toward improvement. However, many industries 
or units operate in multi-input/multi-output environment. To 
understand performance, the set of relevant inputs and outputs 
needs to be considered simultaneously. 

The study of performance measurement has an important 
starting point in Koopmans (1951), where he developed his 
definition of efficiency: 

A possible point in the commodity space is called efficient 
whenever an increase in one of its coordinates (the net output 
of one good) can be achieved only at the cost of a decrease in 
some other coordinate (the net output of another good). 

The term commodity space is more commonly referred to 
as the production possibility set (PPS), meaning a set of all 

* Correspondence: AL Johnson, Department of Industrial and Systems 
Engineering, Texas A&M University, 237 K Zachry Engineering Center, 
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points, representing input (vector) and output (vector) pairs 
such that the input can be used to produce the output. Thus, 
a technically inefficient producer could produce its output 
with less of at least one input, or could use its inputs to 
produce more of at least one output. Based on these ideas, 
Shephard (1953) developed the input distance function in 
which he finds the equiproportional reduction of inputs for 
which the production of a given output set is still feasible. 
Later, Shephard (1970) developed the output-distance func- 
tion in which input levels are fixed and the equiproportional 
increase of outputs is identified. These two measures repre- 
sent two common measures of efficiency. Farrell (1957) intro- 
duced an efficiency measurement independent of Shephard, 
which is the basis for the technique referred to as data envel- 
opment analysis (DEA) (Chaînes et al, 1978). The decision 
to take an input or an output orientation when using the 
distance function or DEA has been a critical decision typically 
made based on an argument of whether the enterprise is cost 
minimizing (input orientation) or revenue maximizing (output 
orientation) (see, eg, Fare and Primont, 1995). Chambers et al 
(1998) introduced the directional distance function (DDF) as 
a generalization of input- and output-oriented distance func- 
tions, that allows for estimates of efficiency in a specified 
directional. 

Fare et al (1985) introduced the hyperbolic distance func- 
tion as an alternative to selecting either an input orientation 
or an output orientation. This measure is a simultaneous 
equiproportionate expansion of output and contraction of 
inputs. Because it requires a non-linear optimization problem, 
rather than the linear optimization problem associated with 
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distance functions and DEA, this measure has been slow to 
gain popularity. Research in the area has been limited. Fare 
et al (1994) further explored the topic, proving a variety of 
properties of the hyperbolic distance function. It should be 
noted, the hyperbolic distance function is a special case of 
the generalized distance function developed by Chavas and 
Cox (1999). Fare et al (2002) related the measure to return 
to the dollar. Cuesta and Zofio (2005) used the hyperbolic 
distance function in a parametric context to extend a translog 
production function to a multi-input/multi-output production 
environment. 

As with other distance functions, hyperbolic distance func- 
tions also can be applied in super efficiency models to measure 
the efficiency of an observation outside the PPS defined by 
the remaining observations. Two important applications of 
super efficiency models are outlier detection and calculating 
the Malmquist Productivity Index. 

Johnson and McGinnis (2008) developed an outlier detec- 
tion model that calculates both the input-oriented and the 
output-oriented super efficiency measures. An observation is 
flagged for further investigation if both the input-oriented 
and the output-oriented measures exceed a specified critical 
value. However, because these measures are calculated using 
linear programming and can return infeasible solutions (as 
discussed later), an observation may be identified as an outlier 
based on only one orientation or might be flagged because 
both orientations return infeasible solutions. Thus, the infea- 

sibility of the input or output orientation causes the outlier 
detection method to make decisions based on incomplete 
information. 

As noted by Zofio and Lovell (2001), using the hyper- 
bolic distance function allowed them to calculate Malmquist 
Productivity Index for their data set. If it could be shown 
that the hyperbolic-oriented measure could always be calcu- 
lated, particularly in the cases when an input-oriented 
or output-oriented distance functions could not, then the 

hyperbolic-oriented measure would provide analysts with a 
more reliable method to calculate the Malmquist Productivity 
Index. 

A hyperbolic-oriented super efficiency measure can be 

developed by applying the hyperbolic-oriented function to 
evaluate the efficiency of an observation relative to a reference 
set that does not include the observation under evaluation. 
This paper will show that hyperbolic-oriented super effi- 

ciency models have advantages over standard super efficiency 
models for two reasons. First, a sufficient condition for feasi- 

bility is for all observation data to be positive. Second, while 
it is still possible to have infeasible solutions when zeros are 
allowed in the data domain, the conditions for infeasibility 
are more limited for the hyperbolic-oriented measure than 
for standard DEA-based super efficiency models. 

The remainder of the paper is structured as follows: we first 

provide descriptions of the standard super efficiency models 
and the super efficiency hyperbolic-oriented model; next we 
show that feasible solutions are possible for a super efficiency 

hyperbolic-oriented model in cases when standard super 
efficiency models cannot provide feasible solutions; we then 
describe the use of the hyperbolic-oriented super efficiency 
measure in an outlier detection application; and we conclude 
with some general observations. 

Standard super efficiency models and a super efficiency 
hyperbolic-oriented model 

Super efficiency models measure the efficiency of an 
observation outside the PPS defined by the remaining obser- 
vations. These models are a special case of DEA models. 

Typically input-oriented DEA efficiency estimates are in 
the range [0, 1] and output-oriented DEA efficiency esti- 
mates are in the range [1, oo]. However, for super efficiency 
models, the range of [0, oo] is possible for either orientation. 
The super efficiency model was first referenced in Banker 
et al (1989) as an outlier detection method developed in a 

separate working paper by the same lead author. The entire 
model later appeared in Anderson and Petersen (1993) as a 
method for developing a full ranking of observations. 

Since then, the method has been used in a variety of situa- 
tions. Charnes et al (1996) and Zhu (1996) used the method 
to study the sensitivity of the efficiency classification (see 
also Seiford and Zhu, 1998). Fare et al (1994) used these 
models to measure productivity and technology change. Thrall 

(1996) used them to identify extreme efficient observations, 
and Wilson (1995) and Johnson and McGinnis (2008) imbed 
the model in computational methodologies to find outliers. 

It has been noted that under various conditions, the standard 

super efficiency model, taking an input or an output orien- 
tation relative to a variable returns to scale (VRS) frontier, 
may not be solvable and is said to have an infeasible solution. 
This has been noted by Thrall (1996), and Zhu (1996) elabo- 
rated by identifying certain zero patterns appearing in the data 
domain that cause infeasibility of the super efficiency model 
with or without the returns to scale assumption. Seiford and 
Zhu (1999) provided the most comprehensive discussion of 
this topic, defining exhaustively the conditions under which 
either an output- or an input-oriented super efficiency model 
would not have a feasible solution. In contrast to the work 

reported here, Zhu (1996) and Seiford and Zhu (1999) only 
studied the infeasibility of the super efficiency models, where 

they assumed that all input and output observation data are 

positively valued. 
The notation used defines n observations and indexing the 

observations (j = 1, 2, . . . , n), a vector of inputs, xj9 and 
a vector of outputs yj, and let **/ be the kth input in the 
set P of inputs and let ytj be the /th output in the set Q of 

outputs. Under the assumption of VRS, two super efficiency 
DEA models can be expressed as shown in Figure 1. 

Note that the super efficiency model differs from a standard 
VRS DEA model in that the observation under evaluation is 
excluded from the reference set. 
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Output-Oriented Input-Oriented 

min0 min# 

» ft 

ZV^^« ZV)^o 
7=1 /=l 
y*0 7*0 

Z4=l Z4=> 
7=1 7=1 
7*0 7*0 

©,/1, > 0,7*0 0,ki > 0,7*0 

Figure 1 Standard output-oriented and input-oriented super effi- 
ciency models. 

Using the same notation, a super efficiency hyperbolic- 
oriented model can be expressed as shown in Equation 1.1. 

min 0 

n 

s.t. ^ kjXj ^ 0jcn (Set of Input Constraints) 

/=> 
7*0 

n 

^ Ajyj ^ 1 /Ovo (Set of Output Constraints) 

/=' 
7*o 

/i 

^ kj = 1 (Convexity Constraint) 

/=' 
7*0 

0>O, /.7^0, 7/0 (1.1) 

Further, this model will be slightly adapted by substituting 
z = 1/0 in the set of output constraints and adding a single 
additional non-linear constraint, z ^ 1/0. This adaptation is in 
a similar spirit as the reformulation suggested by Fare et al 

(1985). The new formulation is: 

min 0 
(U.Z 

n 

S.t. ^/7*7^0*0 (1) 

7 = > 

7*0 

X^.Vy^ZVo (2) 
/ = • 
7>» 
n 

£;., = i (3) 
7 = ' 

7><> 

z>,\ (4) 

0>O, /7^0, 7/0 (1.2) 

Note the use of z ̂  1 /0 is a relaxation of ( 1 . 1 ) and increases 
the size of the set of feasible decision variables. This slight 
modification has the benefit that the feasible set is the inter- 
section of a finite number of convex sets and the condition 

Figure 2 Super efficiency illustrated in two dimensions. (This 
figure is adapted from Sei ford and Zhu, 1999). 

z^ 1/0. For values of z and 0 greater than zero, O 1/0 is 
also convex, thus the solution space for (1.2) is a convex set. 
Since the objective function is linear and the solution space 
convex, a local optimal solution will be globally optimal. 
However, because (1.2) is a relaxation, the equivalence of the 

optimal value of the two formulations (1.1) and ( 1 .2) may not 
be obvious. This will be shown in Theorem 1 . 

Theorem 1 The optimal solution ro (1.1), 0*, and ( 1 .2), Ô, 
are equal. 

Proof See Appendix. D 

The infeasibility problem in two dimensions is illustrated 
in Figure 2. Here, for a standard DEA model, the efficient 
frontier is constructed using points A, B, and C. The frontier 
used to measure the super efficiency of A uses only B and 
C to construct the frontier. The super efficiency for B can be 
calculated by either orientation (for now we leave aside the 

DDF); however, the super efficiency can only be calculated 
from an input orientation for A and from an output orientation 
forC. 

Feasibility of hyperbolic-oriented efficiency measure 

In their Theorems 2 and 7, Seiford and Zhu (1999) recog- 
nized that infeasibility occurs when the input constraints in an 

output-oriented model or the output constraints in an input- 
oriented model are not satisfiable. Further, Zhu (1996) shows 
several results regarding infeasibility related to input- and 

output-oriented measures, but does not discuss the simulta- 
neous expansion of inputs and contraction of outputs. We 
now show for the hyperbolic orientation that both sets of 
constraints are always satisfiable and thus infeasibility is not 
an issue when the hyperbolic orientation is used. 

Theorem 2 When the values for all inputs in set P and 
all outputs in set Q are positive for all observations, the 

hyperbolic-oriented super efficiency model under a VRS 

production frontier always has a feasible solution. 
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Proof For any k satisfying the convexity constraint, the 
input constraints can be satisfied by selecting 6^U(P) where 

U(P)= max ^- (2.1) 
kePJ=\..M Xko 

Clearly, for any k, U(P)xko is larger than jc*,, for all j, and 
thus larger than any convex combination of the xy. By a 
similar argument, for any k satisfying the convexity constraint, 
the output constraints can be satisfied by selecting 6 ̂  1 /L ( Q) 
where 

L(Q)= min ^- (2.2) 
ieQJ=\...n yi0 

It is possible to find a 6 satisfying both conditions simultane- 
ously, from 

0 = maxO/(/>), \/L(Q)) (2.3) 

This means a feasible value of 6 always exists. D 

As long as all input and output values are positive, a 
hyperbolic-oriented super efficiency model always has a 
feasible solution. Even if this assumption is relaxed, the 
hyperbolic-oriented super efficiency model may have a 
feasible solution. 

Relaxing the assumption that all input data are positive, 
allowing zero values for some inputs. Theorem 3 states the 
conditions under which hyperbolic-oriented super efficiency 
model has a feasible solution. 

Theorem 3 Assume that all output values are positive. Let 
P' Ç P, 3 Vfc G P\ JCfco = 0. A necessary and sufficient 
condition for the hyperbolic-oriented super efficiency model 
to have a feasible solution is that there is at least one obser- 
vation, say s, in the reference set, such that xks = 0, Vk e P'. 

Proof Sufficiency. A feasible solution can be found by 
setting ks = 1 to satisfy the input constraints corresponding 
to P'\ and applying the proof of Theorem 1 to determine a 
sufficiently large 9. 
Necessity: Suppose there is a feasible solution and $xs 3 
xks = 0 VA: G P', that is, Vxs, 3k G P' 3 xks > 0. In order to 
satisfy the kth input constraint, we must have ks =0. However, 
if ks = 0 for all s, then Ylj^j - 1 cannot be satisfied. Thus 
the initial assumption is contradicted, and if there is a feasible 
solution, there must be at least one JCy 3 jc^ = 0 VA: G P' . D 

Further, now consider the case when all inputs are positive 
but outputs are allowed to take on zero values. Theorem 4 
states the conditions under which the hyperbolic-oriented 
super efficiency model has a feasible solution. 

Theorem 4 Assume that all input values are positive. Let 
0! ^ Ö, 3 Vi G ß', j/o # 0. A necessary and sufficient 
condition for the hyperbolic-oriented super efficiency model 
to have a feasible solution is that for each non-zero output i 

there is at least one observation, say s, in the reference set, 
such that y is ^ 0 indicating the ith output of observation s 
is not zero. 

Proof Sufficiency: A feasible solution can be found by 
setting ks. = \/t for all st associated with each t, where t 
is the number of outputs for which yj0 ^ 0, to satisfy the 
output constraints corresponding to Q', and applying the 
proof of Theorem 1 to determine a sufficiently large 6. 
Necessity: Suppose there is a feasible solution and $ySj 3 

yjSj z£ 0, that is, V^, yis. = 0. In order to satisfy the ith 
output constraint, we must have ks = 0. However, if ks = 0 
for all s, then Ylj^j = 1 cannot be satisfied. Thus, the initial 
assumption is contradicted, and if there is a feasible solution, 
for every i g Q there must be at least one ys. 3 yiSi > 0. D 

It should be noted that a common definition of peer group, 
that is, that all inputs are used by all members of the group, 
leads to the scenario of Theorem 4 where inputs are all posi- 
tive; however, some outputs can take on zero output values. 
This was recently observed in an online analysis of ware- 
houses called iDEAs described in Johnson et al (2009). In 
this case, all warehouses used labor, space, and capital, but 
different warehouses produced different mixes of outputs. 

Theorem 3 addresses the case when the positivity restriction 
on input data is relaxed, and Theorem 4 addresses the case 
when the positivity restriction on the output data is relaxed. 
When the positivity restriction is relaxed on both the input data 
and the output data, the hyperbolic-oriented super efficiency 
model still can be solved except for two cases: (1) yt>0 
for only one observation in the data set; or (2) there is an 
observation with a unique input usage set (the set of x for 
which Xk > 0). 

Note relative efficiency assessment requires the careful 
matching of input-output models and a set of data to be 
analyzed. There are several common problems in relative effi- 
ciency analysis, such as lack of data to accurately estimate 
a nonparametric production frontier, improper specification 
of the input-output model, and heterogeneous observations 
in the data set. The infeasibility of the hyperbolic-oriented 
super efficiency model may be an indication that one of these 
common problems is of concern for a given model and data 
set. For example if a single observation produces a unique 
output that none of the other observations produce this may 
be an indication of any of the common problems identified. 
Further if an observation uses a unique input set no other 
observation uses, this may indicate a lack of data in a partic- 
ular orthant or it may indicate a heterogeneous observation. 

The directional-oriented efficiency measure 

The hyperbolic-oriented efficiency measure is not the only 
efficiency measure that simultaneously contracts inputs and 
expands outputs. An alternative efficiency measure not tradi- 
tionally used in outlier detection or super efficiency models 
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Figure 3 Infeasibility of the directional distance function. 
Source: This figure is adapted from Briec and Kerstens (2009). 

is the directional-oriented efficiency measures based on the 
DDF. The directional-oriented efficiency measures also suffer 
from the infeasibility problem. Briec and Kerstens (2009) 
have investigated the infeasibility problem in the general DDF 
approach. Notably, an infeasible direction is shown to always 
exist when the number of output dimensions is greater than or 
equal to 2 and the output direction vector is non-zero, meaning 
all components of the gY are non-zero. Further Figure 3 in 
Briec and Kerstens demonstrates that even if all data are posi- 
tive and all components of the g vector are positive, it still is 
possible to have infeasibility. 

We specify the super efficiency DDF as the LP: 

max 0 
<U.j 

N 

s.t. v/o + Ogio ̂ ^ kjyij V/ = 1 , . . . , Q 

N 

Xko - 0gko^ J2*JXkJ V* = l 
			 P 
/=> 

n 

/ij^O V/ = l 
			 N. (2.4) 

However, recognizing that the DDF is a generalization of the 
output-oriented distance function, if the directions, gx and gy 
are selected without consideration for the specific data set 
under analysis, the DDF model may not identify a benchmark 
in the PPS. This can be formalized in a theorem. 

Theorem 5 When measuring the super efficiency of an 
observation outside of the PPS, if gkj and gtj are selected 
such that gio > - yio/[mink(xko - minjXkj/gko)]for at least 

one i e \ 
			 Q then the super efficiency DDF will identify 
a benchmark not in the PPS. 

Proof See Appendix. D 

Identifying a benchmark outside of the PPS does not cause 
infeasibility for the DDF because of its additive formulation. 
We can see that Theorem 5 is closely tied to the infeasibility 
of the output-oriented efficiency measure. Namely if gkj is 
selected to be too large relative to g,7 then the projection ray 
for observation j will intersect the yt = 0 hyperplane before 
intersecting the production frontier. In the output-oriented 
model, this is the infeasibility problem; however, in the addi- 
tive formulation it is the inability to identify a benchmark in 
the PPS. In addition the DDF can suffer from the problem 
of identifying benchmarks outside the PPS when all data are 
positive and the directional vectors are positive. 

Theorems 3, 4, and 5 shows that the hyperbolic-oriented 
super efficiency measure can be calculated in some cases 
where the input, output, or directional-oriented super effi- 
ciency measure cannot. The hyperbolic distance function 
avoids the infeasibility with an exception for the case that 

ytj > 0 for only one observation in the data set or there is an 
observation with a unique input usage set (the set of compo- 
nents of the x vector for which xk > 0). Further it does not 
require the determination of directional vectors dependent on 
the data set to ensure an appropriate benchmark. 

Application 

In this section, we demonstrate the use of the hyperbolic- 
oriented measure in super efficiency models used for outlier 
detection. The results are compared to the input- and the 
output-oriented super efficiency models. It will be shown 
that the hyperbolic-oriented efficiency measure always has a 
feasible solution, while both the input- and the output-oriented 
measures have infeasible results for at least one observation 
in the data set. 

The classic Banker and Morey (1986) data set for phar- 
macies in the state of Iowa is used. This data set consists of 
69 observations, each with two outputs (number of prescrip- 
tions and dollar levels of sales for prescriptions) and three 
inputs (labor costs, other operating costs, and average value 
of inventory). For more information about the data set, see 
Banker and Morey (1986). 

Automated outlier detection methods flag unusual obser- 
vations for further inspection. When super efficiency models 
are used for outlier detection, a critical value must be speci- 
fied. For a further discussion of how to specify this value, see 
Johnson and McGinnis (2008). Using an input-oriented model 
(output-oriented model), observations with super efficiency 
estimates higher (lower) than the critical level are flagged as 
possible outliers. Simar (2003) suggests that an observation 
should require both a significant expansion of inputs and a 
significant contraction of outputs to be flagged as a possible 
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Table 1 The input-, output-, and hyperbolic-oriented super 
efficiency estimates for a subset of the 69 pharmacies. 

Observation Orientation 

Input Output Hyperbolic 

1 1.02 0.97 1.01 
2 0.86 1.20 0.92 
3 0.72 1.49 0.83 
4 1.19 0.72 1.12 
5 1.56 *** 1.36 
6 1.25 *** 1.37 
7 1.19 *** 1.14 
8 1.10 *** 1.48 

17 *** 0.81 1.23 

68 0.55 1.86 0.73 
69 2.56 *** 3.89 

*** indicates the model was infeasible. 

outlier. Using traditional orientations, this suggestion makes 
it necessary to calculate both an input-oriented and an output- 
oriented super efficiency estimate to make this determination. 

The super efficiency estimates are calculated for each obser- 
vation in the Banker-Morey data set using the input, output, 
and hyperbolic orientations. In the interest of space, only a 
subset of the results is shown in Table 1. 

Note that for five observations, the output-oriented model 
was infeasible, and for one observation, the input-oriented 
model was infeasible. This indicates that for six observations, 
there were insufficient data to determine if these observations 
should be flagged as possible outliers using Simar's criteria. 
However, for all observations, the hyperbolic distance func- 
tion gives information about the distance from the frontier. 
Automated outlier detection techniques allow researchers to 
explore data sets and identify suspicious observations quickly. 
When infeasibility arises, it becomes necessary to inspect not 
only the observations flagged as possible outliers but also 
the observations with infeasible super efficiency values. In 
this example, if the critical value was 1.1, nine observations 
would have been flagged as possible outliers. Six additional 
observations would have to be inspected because infeasible 
results were returned. This is a 67% increase in the inspec- 
tion process. In this data set, the use of the input and output 
orientations would significantly increase the work required in 
the inspection process, and for larger data sets, this increase 
in inspection could be prohibitive. 

Conclusion 

We studied the use of the hyperbolic-oriented super efficiency 
measure and its benefits relative to the more traditional input- 
, output-, or directional-oriented super efficiency measures. 
The hyperbolic-oriented efficiency measure has been slow to 
gain popularity, in part because of its increased computational 

burden. It requires solving a non-linear program rather than 
a linear program. 

Super efficiency has been used for sensitivity analysis, 
productivity and technology change (such as the Malmquist 
Productivity Index), and outlier detection. The benefits of 
using the hyperbolic-oriented super efficiency measure could 
be realized for each of these applications. Our results indi- 
cate it is still possible to have infeasible hyperbolic-oriented 
measures when the observation under consideration has values 
of zero for a set of inputs for which no observation in the 
reference set has zeros for the same set inputs or in the case 
that yij > 0 for only one observation in the data set. However, 
these are rather weak conditions, and if these are not satis- 
fied, the analyst may question if the necessary assumptions 
for relative performance assessment are met. The hyperbolic- 
oriented efficiency measure has two benefits: it can be 
calculated for cases when the input-, output-, and directional- 
oriented measures are not feasible, and it allows the compar- 
ison of a broader group of observations by allowing zeros as 
input and output values in some cases. These results make the 
hyperbolic-oriented efficiency measure a desirable option. 
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Appendix 

Proof of Theorem 1 

The optimal solution to (1.1) notated (0*,/l*) along with 
z* = I/o* is a feasible solution to (1.2) because (1.2) is 
a relaxation of (1.1), thus 0*^0. Consider the optimal 

solution to (1.2) notated (0, X, z), taking only (0, 1) is a 
feasible solution to (1.1). This can be seen by noting the 
input constraints, convexity constraint, and restrictions on the 
variables are identical thus any solution to (1.2) should also 
satisfy these constraints for (1.1). Thus it is only necessary 
to show that the output constraint in (1.1) is not violated. 
Recognizing y0 is non-negative and z must be positive because 
0 > 0,_then constraint (2) and (4) of (1.2) can be combined, 
£%i ^jyj^zyo^yo(l/0)' Regardless of the value of z, the 

0 value must satisfy the output constraint of (1.1) indicating 
the optimal solution to (1.2) is a feasible solution to (1.1) and 
hence 0* ̂  0. Finally combining 0* < 0 and 0* > 0 we have 
0* = 0. D 

Proof of Theorem 5 

The input constraints are all satisfied when 0O^ 

Xk°-^U^jXkJ , k=h • - - , P. This implies, with an unknown 
data distribution, this condition could not possibly hold 
unless contracting input level jc*o made it larger than 
some observation in the data set. Referencing the smallest 
input level for each input 0O^**°~™V*/ and all input 
constraints must be satisfied, thus the constraint can be 
rewritten as 0O = min* (XkD~^jXkJ\ Substituting this equa- 
tion into the left hand-side of the output constraint we have 

v,o + [min.(^-g7^)]g/0^0, V/ = 1,...,Q. Solving 
for gio, recognizing if this condition does not hold, we have 
a nonsensical benchmark, we see the result. 
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