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Regression and linear programming provide the basis for popular techniques for estimating technical effi-
ciency. Regression-based approaches are typically parametric and can be both deterministic or stochastic
where the later allows for measurement error. In contrast, linear programming models are nonparametric
and allow multiple inputs and outputs. The purported disadvantage of the regression-based models is the
inability to allow multiple outputs without additional data on input prices. In this paper, deterministic
cross-sectional and stochastic panel data regression models that allow multiple inputs and outputs are
developed. Notably, technical efficiency can be estimated using regression models characterized by mul-
tiple input, multiple output environments without input price data. We provide multiple examples
including a Monte Carlo analysis.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

In the economics and operations research literature there are
two distinct approaches for estimating technical efficiency. Both
regression and linear programming techniques have been em-
ployed to measure performance relative to an estimated frontier.
The starting point for both literatures is Farrell (1957), which pro-
vided a conceptual framework for efficiency measurement. Farrell
showed that technical and allocative inefficiency could be mea-
sured relative to the observed isoquants with equi-proportional
measures. Farrell also illustrated efficiency using piecewise linear
isoquants.

Aigner and Chu (1968) extended Farrell’s work by applying pro-
gramming models to measure production in deterministic models
where all deviations from the frontier are one-sided and due to
inefficiency. Winsten (1957) suggested and Greene (1980) showed
that OLS could be used to estimate inefficiency relative to a frontier
with one-sided deviations. Since the parameters of the production
function are estimated consistently, one needs to only correct the
intercept term by adding the largest residual to the intercept in a
production environment. This technique is referred to as corrected
OLS (COLS).

COLS is limited due to the nature of regression analysis; only
one output is allowed in the production function. Lovell et al.
(1994) proposed a solution in the multiple output case by specify-
ing a distance function, exploiting homogeneity and rearranging
ll rights reserved.

ggiero).
terms to specify the production process with one output used as
the dependent variable while treating all other outputs as indepen-
dent variables. This method called the stochastic distance function
(SDF) has been popularized by Grosskopf et al. (1997) and Coelli
and Perelman (1999, 2000). The asymmetric treatment of a single
output in SDF has been criticized by Atkinson and Primont (2002)
for creating an endogeneity problem, see also Vinod (1969).

Further, the estimated output isoquants often do not satisfy the
concavity or quasi-concavity properties implied by production the-
ory (Sauer et al., 2006). O’Donnell and Coelli (2005) estimate a
multiple output technology using the SDF with a Bayesian ap-
proach. However, the approach still treats outputs asymmetrically.
The stochastic distance function approach has been widely used
in the production literature; see for example Atkinson et al.
(2003), Fernandez et al. (2005), Smith and Street (2005) and
Kumbhakar et al. (2007), which use the standard stochastic dis-
tance function and Yan et al. (2009) and Feng and Serletis (2010),
which use the O’Donnell and Coelli (2005) approach. As pointed
out by Coelli and Perelman (2000), a maintained advantage of
the SDF approach is the ability to estimate non-separable produc-
tion. However, regression-based approaches have other advanta-
ges such as providing goodness-of-fit and other statistics that
help to evaluate the overall model. One of the contributions of this
paper is a new approach that extends COLS to handle multiple out-
puts. Unlike the SDF approach, our model treats outputs symmet-
rically and satisfies proper curvature in output space.

Another limitation of the COLS model (and all other determinis-
tic models) is the inability to properly account for measurement
error. From an econometrician’s view, attributing all deviations
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mailto:ruggiero@notes.udayton.edu
http://dx.doi.org/10.1016/j.ejor.2010.08.024
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor


154 T. Collier et al. / European Journal of Operational Research 208 (2011) 153–160
to inefficiency in production is not appealing. Instead, deviations
from the frontier can occur not only from inefficient behavior but
also from measurement error and statistical noise. A large body
of research developed based on the pioneering work of Aigner
et al. (1977) and Meeusen and van den Broeck (1977), both of
which laid the foundation for the stochastic frontier approach
(SFA). These papers assumed that the deviation from the frontier
consisted of an overall error composed of inefficiency and statisti-
cal noise.

Jondrow et al. (1982) provided the means to measure observa-
tion specific inefficiency based on the expected value of inefficiency
conditional on the observed overall inefficiency. The conceptual
treatment is well-justified. However, as shown by Ruggiero
(1999) and Ondrich and Ruggiero (2001), the cross-sectional mod-
els do not hold any advantages over deterministic models; the
expected value of inefficiency given the observed overall error is
perfectly correlated with the overall error itself. Using distribu-
tional assumptions to derive efficiency estimates does not allow
noise to effect the ranking of observations.

Schmidt and Sickles (1984) overcome the problem of assuming
a distributional form for the inefficiency component by extending
the SFA model using a fixed effects panel data model. If one as-
sumes that all variation other than inefficiency is controlled for
by observable variables, then the individual specific fixed effect
is inefficiency. The main drawback to this approach is that it as-
sumes time invariant efficiency. However, this assumption may
hold true for many panel data sets that include only a few years
or measure data at frequent increments such as monthly or
weekly. Pitt and Lee (1981) proposed a random effects panel data
model—similar to the fixed effects model—that can also be used
to estimate efficiency. However, it requires that the individual spe-
cific component be uncorrelated with all control variables and the
error component. It is difficult to justify these assumptions in most
real world situations. Additional panel models have been proposed
to measure technical efficiency; however, most of them suffer from
the same limitation as the cross-sectional models—they require a
distributional assumption for the inefficiency component. See
Battese and Coelli (1995) for a further discussion. The panel data
models are effectively able to separate the effects of noise and inef-
ficiency creating a distinct advantage over the cross-sectional SFA
model which cannot separate these components effectively or
DEA which assumes no noise in the data.

The alternative to the regression-based approaches is data
envelopment analysis (DEA), a nonparametric programming model
that allows multiple outputs and inputs. Popularized by Charnes
et al. (1978) and later extended by Banker et al. (1984), the ap-
proach has become widely used in analyzing technical efficiency
of public sector units. See also Färe and Lovell (1978). There are
two main advantages that DEA has over regression-based ap-
proaches. First, the technique is nonparametric in the sense that
a priori specification of the production function is not required.
Rather, the approach estimates the frontier using the minimum
extrapolation principle under the maintained axioms of monoto-
nicity and convexity of the production possibility set (Banker
et al. (1984)), although this interpretation has been challenged
(see for example Chang and Guh, 1991). Second, and perhaps more
important, DEA easily handles multiple inputs and multiple out-
puts and allows direct comparisons of production possibilities
without requiring additional input price data.

There have been many studies that have analyzed the perfor-
mance of DEA and regression-based approaches. Typically, simula-
tion analysis is employed with a data generating process involving
a production function with only one output. Gong and Sickles
(1992) compared DEA and the stochastic frontier approach with
multiple outputs but relied on input prices. Banker et al. (1993)
analyzed the performance of DEA relative to COLS using cross-
sectional simulated data. The results indicated that COLS did not
properly adjust for measurement error, DEA performed at least
as well, and that both models performed worse as measurement
error increased. Ruggiero (1999) used cross-sectional simulated
data and showed that the stochastic frontier model does not con-
trol for measurement error and deterministic COLS performed as
well. Coelli and Perelman (1999) provided a comparative analysis
of a multiple output and multiple input technologies using DEA
and regression analysis implemented using SDF and found that
SDF worked well.

In contrast, our approach applies a DEA based method in a first
stage to provide a measure of aggregate output which is then
incorporated into a second-stage regression. McDonald (2008) ar-
gues that while Tobit estimation is inappropriate, OLS provides
consistent estimates in the second stage. The primary advantage
of the approach developed in this paper is the use of a nonparamet-
ric output aggregate that conforms to desirable properties of the
output set and treats outputs symmetrically.

The purpose of this paper is to extend the regression-based ap-
proaches to measure efficiency in multiple input and multiple out-
put technologies. The rest of the paper is organized as follows. In
the next section, the mathematical foundations of the technology
are developed. Section 3 extends COLS to multiple output technol-
ogies and Section 4 extends the stochastic frontier models. Sec-
tion 5 contains a Monte Carlo analysis for comparative purposes.
The last section concludes with directions for further research.

2. Description of the technology

Assume that each of n DMUs employ a vector x of s inputs to
produce a vector y of m outputs according to the technology
T ¼ fðx; yÞ : x 2 Rs

þ; y 2 Rm
þ ; x can produce yg. For our purposes,

we define the output set as P(x) = {y: (x,y) 2 T}. The standard prop-
erties on P(x) discussed in Färe et al. (1994) are assumed. Following
Färe et al. (1994) define the isoquant IsoqP(x) as:

IsoqPðxÞ ¼ fy 2 PðxÞÞ : hy R PðxÞ for h > 1g:

This boundary is used to compare observed production possibilities
to the boundary of the output set. DEA uses a piecewise linear
approximation to the estimation of the output set (and the input
set). Färe et al. (1994) prove that the piecewise linear technology
P(x) is closed and bounded, sufficient conditions for the existence
of the efficiency measure.

The Banker et al. (1984) output-oriented DEA model to evaluate
the technical efficiency of DMU ‘‘o” under the assumption of vari-
able returns to scale (VRS) is given by:

Foðxo; yoÞ ¼Max ho

s:t:
XN

j¼1

kjykj P hoyko 8k ¼ 1; . . . ; s;

XN

j¼1

kjxlj 6 xlo 8l ¼ 1; . . . ;m;

XN

j¼1

kj ¼ 1;

kj P 0 8j:

ð1Þ

The general set-up is shown in Fig. 1, where two-output sets are
shown. P(x) # P(x1) with x1 P x. Five observed production possibil-
ities A, B, C, D and F are shown. It is assumed that A,C,F 2 P(x) but
A,C,F R P(x1). Production possibilities A, B and D are technically effi-
cient with A 2 IsoqP(x) and B 2 IsoqP(x1). Production possibilities C
and F however, are technically inefficient. Based on the definition
of output-oriented efficiency and the solution of (1), we have
Fo(xC,yC) = y1A/y1C and Fo(xA,yA) = Fo(xB,yB) = 1.
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Fig. 1. Representation of technology.
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As mentioned in Section 1, the purported advantage of DEA over
regression-based approaches is the ability to estimate the produc-
tion technology characterized by multiple inputs and multiple
outputs without relying on input prices. Before providing a regres-
sion-based approach that allows multiple outputs in a determinis-
tic model, we define the aggregate output set.

Definition. PA ¼ [N
j¼1PðxjÞ is the aggregate output set.

Because the aggregate output set is a finite union of compact
sets, it too must be compact. As a result, PA is closed and bounded
thus guaranteeing the existence of a distance function from any
element in PA to the boundary of PA. The boundary is defined by
the isoquant:

IsoqPA ¼ fy 2 PA : hy R PA for h > 1g:

Furthermore, we can appeal to a piecewise linear approximation to
generate IsoqPA. Given the assumptions on each output set P(x), the
aggregate output set PA can be thought of as the output set associ-
ated with the highest IsoqP(x). Of note, the relevant properties (no
free lunch, output disposability, boundedness and convexity) on
the production technology discussed in Färe et al. (1994) hold for
aggregate output set PA.

The linear programming model to measure the distance FA for
DMU ‘‘o” to the aggregate output set is given by:

FAðyoÞ ¼ Max Ho

s:t:
XN

j¼1

Kjykj P Hoyko 8k ¼ 1; . . . ; s;

XN

j¼1

Kj ¼ 1;

Kj P 0 8j:

ð2Þ

Note that this model is similar to the output-oriented DEA model
assuming variable returns to scale with the exclusion of the input
constraints. Model (2) produces an estimated output isoquant
IsoqPA. This model has been used previously to compare observa-
tions based strictly on their multi-criteria output vector; in this
case, the input constraints can be dropped only if the convexity
constraint is included (see Lovell and Pastor, 1999). In this paper
(2) is used to aggregate outputs; because separability is assumed,
it is not necessary to consider inputs in this first stage. The out-
put aggregate proposed is a measure of output relative to the
estimated isoquant IsoqPA.

Returning to Fig. 1, the solution to (2) leads to FA(xB,yB) = FA

(xD,yD) = 1, FA(xC,yC) = y1B/y1C, FA(xA,yA) = y1B/y1A and FA(xF,yF) =
y1D/y1F. Production unit F poses a special problem; the output
constraint for y2 does not hold with equality; excess slack exists
after radial projection leading to a shadow price of zero. This is
a well-known problem in the DEA literature. However, more re-
cently, Johnson et al. (in review) show that the Farrell measure
adequately measures performance even in the presence of slack
if the underlying technology is everywhere substitutable. The
measures can be decomposed into products of efficiency and
distances between isoquants. For example, FA(xC,yC) = y1B/y1C =
Fo(xC,yC) � FA(xA,yA). This distance function captures inefficiency
(comparing C to A) and the distance between frontiers (comparing
A to B).

Production units farther from the aggregate output set produce
lower output aggregates; hence S ¼ F�1

A ¼ 1=FA provides an index
of aggregate observed output. This measure can be used in a sec-
ond-stage regression where aggregate production is regressed on
observed inputs. This second stage approach, like all regression-
based models, requires a priori specification of the production
function. However, a translog model can be used for flexibility. In
the next section, we discuss estimating production and efficiency
and provide some illustrative examples.
3. Estimation of multiple output production using regression

Regression analysis begins by specifying a production function.
We estimate a multiple input, multiple output, production func-
tion in a cross-sectional analysis

hðyiÞ ¼ f ðxiÞ þ ei; i ¼ 1; . . . ;N; ð3Þ

where yi is the output vector for the ith firm, xi is the input vector
for the ith firm, f is an input aggregate function, h is an output
aggregate function, and ei = vi � ui is a composite error term that
captures all deviations from the production frontier. In this paper
we make the axiomatic assumption that the production function
is separable.

To describe the data generation process in more detail, vi is a
random disturbance term that includes the effects of omitted fac-
tors, measurement errors, and other stochastic noise. Assume v is a
truncated normal variable with zero-mean and fv is a probability
density distribution consistent with that specification, see Gstach
(1998) and Banker and Natarajan (2008) for further examples of
productivity analysis in the presence of a truncated noise term.
Also, ui P 0 is random inefficiency of firm i. We assume the exis-
tence of well-behaved probability density functions fu with
left-truncation at zero. Variables vi and ui are assumed to be inde-
pendently distributed random variables that are uncorrelated with
the input variables xi, and with each other. Assume that variables x
are randomly sampled from domain Dx. Further, the joint density of
the random model variables is denoted as fd(x,u,v).

A desirable property of any estimator is consistency. Thus for
(2) we show it consistently estimates PA:

Theorem 1. If the following five assumptions are satisfied:

1. The boundary of T is a monotonic and concave function in x,
2. the underlying production function, h(yi) = f(xi), is separable,
3. sequence {(yi, xi), i = 1, . . . ,n} is a random sample of independent

observations,
4. noise terms vi have a truncated distribution: jvj 6 VM1, fv(VM) > 0,
5. the joint density fd satisfies fd(x,0,VM) > 0 "x 2 Dx,

then the estimator (2) is a consistent estimator for the boundary of PA,
in the following sense

lim
n!1

IsoqðxiÞ ¼ IsoqðPAÞ þ VM for all i ¼ 1; . . . ;n:
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Proof. See Appendix. h

Given that (2) is a consistent estimator, with a sufficiently large
sample our measure of aggregate output S ¼ F�1

A can be used in a
subsequent regression. The first two examples we consider are
deterministic and assume no measurement error. For both exam-
ples, we adopt the technology used in Färe et al. (1994). In partic-
ular, technology is represented by a two-input, two-output
transformation function with a constant elasticity of transforma-
tion (CET) output aggregate and a Cobb–Douglas input aggregate.
We use OLS to estimate the model and use COLS to estimate tech-
nical efficiency (example 2). Given that production is separable and
the first stage is estimated consistently as shown above, COLS is
used in the second stage and has been shown to be a consistent
estimator for a production function in Greene (1980).

Example 1 (Färe, Grosskopf and Lovell data). After applying model
(2) above and obtaining our measure of aggregate output S we
apply OLS to estimate production. Here we use the same data set
generated in Färe et al. (1994); these data are reported in Table 1.
Efficient production is given by the function h(y) = f(x), where

hðyÞ ¼ 0:5y2
1 þ 0:5y2

2

� �0:5

and

f ðxÞ ¼ x0:5
1 x0:5

2

� �d
:

The parameter d was used to allow variable returns to scale. We
note that e = 0, leading to efficient production without measure-
ment error.

Four different values for f(x) and h(y) were assumed with d
taking on values of 0.898, 1.0 and 0.927. Applying the technique
from Section 2, we obtain an estimate S of the output aggregate;
these results are also reported in Table 1. As shown, S is a good
index of aggregate output h(y) where S is approximately equal to
h(y) divided by the maximum h(y). The correlation between S and
h(y) is 0.999.

Given our estimate S of h(y), the next step is to estimate the
relationship between S and the inputs. Due to variable returns to
scale, a translog equation was estimated using OLS. The regression
Table 1
Färe, Grosskopf and Lovell example data.

DMU x1 x2 y1 y2

1 36.00 36.00 25.00 25.00
2 28.80 45.00 30.00 18.71
3 21.60 60.00 20.00 29.15
4 19.94 65.00 15.00 32.02
5 43.20 30.00 12.00 33.26
6 50.00 50.00 50.00 50.00
7 45.00 55.56 40.00 58.31
8 60.00 41.67 60.00 37.42
9 30.00 83.33 30.00 64.03
10 70.00 35.71 20.00 67.82
11 75.00 75.00 75.00 75.00
12 45.00 125.00 30.00 101.73
13 60.00 93.75 50.00 93.54
14 105.00 53.57 80.00 69.64
15 85.00 66.18 90.00 56.12
16 144.00 144.00 100.00 100.00
17 115.20 180.00 115.00 82.31
18 86.40 240.00 80.00 116.62
19 172.80 120.00 65.00 125.60
20 201.59 102.86 60.00 128.06

Mean 74.73 85.13 52.35 68.22
St. Dev. 50.66 54.12 30.31 34.15
Min. 19.94 30.00 12.00 18.71
Max. 201.59 240.00 115.00 128.06

Data are taken from Färe et al. (1994). Calculations of the output aggregate and the esti
results are presented in Table 2 and the resulting predicted value bS
is included in Table 1. All parameters are statistically significant at
the 1 percent level and the resulting R2 is approximately 1. These
results are obtained with a small sample size of 20. The correlation
between h(y) and bS is 1.00. Importantly, the results suggest that
regression can be used to estimate multiple output and multiple
input production relationships. While informative, this example is
limited for our purposes because all observations are assumed to
be efficient. In the next example, we allow inefficiency and perform
a comparative analysis of DEA and the multiple output COLS
model.
Example 2 (Multiple inputs, multiple outputs under CRS). In this
example, we assume a Cobb–Douglas input aggregate
f ðxÞ ¼ x0:4

1 x0:6
2 . This input aggregate is similar to the one used in

Färe et al. (1994) with d = 1 imposing constant returns to scale.
Input data were generated for 100 DMUs with x1,x2 � N(100,25).
Further, inefficient behavior is allowed where g(x) = e�uf(x), and
u � jN(0,0.2)j. Three additional extraneous inputs (labeled x3, x4

and x5) were generated using the same distribution as the
appropriate inputs. Inappropriate inclusion of these irrelevant
inputs will allow sensitivity of the estimators to model
misspecification.

Two output variables, y1 and y2, are generated using the follow-
ing procedure. Two random variables z1, z2 were generated assum-
ing z1, z2 � N(60,10). Using the output aggregate

hðyÞ ¼ 0:5y2
1 þ 0:5y2

2

� �0:5 recommended by Färe et al. (1994), we

construct hðzÞ ¼ 0:5z2
1 þ 0:5z2

2

� �0:5. Variables z1 and z2 are scaled

by c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðXÞ2

z2
1þz2

2ð Þ

r
to obtain observed outputs y1 = cz1 and y2 = cz2.

We obtain hðyÞ ¼ 0:5y2
1 þ 0:5y2

2

� �0:5 ¼ e�uf ðxÞ. Descriptive statis-
tics of the observed inputs and outputs are provided in Table 3.
Given that constant returns to scale were assumed, the CCR DEA
model, i.e., model (1) without the convexity constraint, is used.
The DEA model is applied to four scenarios depending on variable
selection. The first scenario is the correctly specified model based
on the data generating process. Three other models are considered;
all scenarios include the appropriate inputs x1, x2 while scenarios
h(y) f(x) d S bS
25 36 0.898 0.25 0.25
25 36 0.898 0.26 0.25
25 36 0.898 0.25 0.25
25 36 0.898 0.25 0.25
25 36 0.898 0.26 0.26
50 50 1.000 0.50 0.51
50 50 1.000 0.50 0.51
50 50 1.000 0.52 0.52
50 50 1.000 0.50 0.51
50 50 1.000 0.53 0.52
75 75 1.000 0.75 0.76
75 75 1.000 0.79 0.77
75 75 1.000 0.75 0.76
75 75 1.000 0.75 0.77
75 75 1.000 0.78 0.76

100 144 0.927 1.00 1.00
100 144 0.927 1.00 1.00
100 144 0.927 1.00 1.01
100 144 0.927 1.00 1.00
100 144 0.927 1.00 1.00

62.50 76.25 0.96 0.63 0.63
28.68 42.61 0.05 0.29 0.29
25.00 36.00 0.90 0.25 0.25

100.00 144.00 1.00 1.00 1.01

mated output aggregate are by the authors.



Table 2
Example 1: Regression results.

Variable Coefficient

Intercept �5.89
(0.27)

Lnx1 1.34
(0.07)

Lnx2 1.23
(0.08)

Lnx1 Lnx1 �0.05
(0.001)

Lnx2 Lnx2 �0.04
(0.01)

Lnx1 Lnx2 �0.14
(0.02)

Adj. R2 0.998

Data for the regression can be obtained from Table 1. The
dependent variable is LnS.
Standard errors are reported in parentheses. All parame-

ters are significant at the 1% level.

Table 3
Example 2: Data descriptive statistics.

Variable Mean Standard deviation Minimum Maximum

Inputs
x1 103.30 26.92 35.56 170.88
x2 100.13 24.85 30.76 154.86

Outputs
y1 78.87 31.19 30.36 167.09
y2 83.54 35.18 28.98 172.40

Add. variables
x3 101.72 27.22 45.22 164.99
x4 101.95 24.63 47.44 154.86
x5 101.53 27.94 39.98 175.39
Eff. 0.85 0.09 0.62 1.00

Descriptive statistics for example 2 data are calculated by the authors.

Table 4
Example 2: Regression results.

Variable Coefficient under scenario

1 2 3 4

Intercept �4.85* �5.15* �5.44* �5.42*

(0.23) (0.30) (0.36) (0.40)
Lnx1 0.35* 0.35* 0.35* 0.35*

(0.04) (0.04) (0.04) (0.04)
Lnx2 0.62* 0.63* 0.63* 0.63*

(0.04) (0.04) (0.04) (0.04)
Lnx3 – 0.06 0.06 0.06

(0.04) (0.04) (0.04)
Lnx4 – – 0.06 0.06

(0.04) (0.04)
Lnx5 – – – �0.01

(0.04)

Adj. R2 0.80 0.80 0.80 0.80

Data generation and estimation by the authors. The dependent variable is LnS.
Standard errors are reported in parentheses.
No other parameter was significant.

* Significant at the 1% level.
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2–4 also include the extraneous ‘‘inputs”. The scenarios considered
are:

Scenario 1: correct specification;
Scenario 2: incorrectly specified with inputs x1 � x3;
Scenario 3: incorrectly specified with inputs x1 � x4; and
Scenario 4: incorrectly specified with inputs x1 � x5.

This analysis will allow a sensitivity analysis with respect to
variable selection. It is expected that DEA will perform well under
scenario 1 with performance declining as the model becomes
increasingly mis-specified.

In addition to DEA, our COLS approach is applied with an output
aggregate obtained via solution to model (2). In this case, model (2)
is used only once for each DMU. The different scenarios considered
require a separate regression but not generation of the output
aggregate. Given the data generating process for the input aggre-
gate, a Cobb–Douglas regression model is considered in the second
stage. The regression results are reported in Table 4.

The results indicate that the two-stage model performs well in
estimating the production process. The only parameters that are
statistically significant are the coefficients on the correctly speci-
fied variables. All other slope parameters are statistically insignif-
icant. The consistent R2 of approximately 0.80 indicates that
unobserved inefficiency accounts for approximately 20% of the var-
iation in aggregate output. Given these results, it is expected that
the multiple output COLS model developed here will perform well
under all scenarios. Notably, regression weights the independent
variables; inclusion of extra variables that are uncorrelated with
the appropriate independent variables and the output aggregate
should result in statistically insignificant parameter estimates.

As per the suggestion of an anonymous reviewer, we also con-
sider the SDF popularized by Coelli and Perelman (1999, 2000).
Consistent with their approach, we assume a distance function
and estimate the flexible translog functional form. Given that the
generating process assumes separability, we implement their ap-
proach for enforcing separability. Three criteria are used for evalu-
ating the methods: the mean absolute difference (MAD), the
correlation and the rank correlation between true efficiency and
estimated efficiency. A lower MAD indicates that the estimate is
closer on average to the true efficiency. The correlation and rank
correlation coefficients provide evidence of the strength of associ-
ation between true and estimated efficiency. The results of the
simulation analysis are reported in Table 5.

The results indicate that our multiple output COLS approach
developed in this paper performs better than both DEA and the
SDF in this example. Notably, the multiple output COLS measure
achieves lower MADs and higher correlation and rank correlation
coefficients than both DEA and the SDF. For all performance mea-
sures across all scenarios, our multiple output COLS approach out-
performs both other multiple output approaches. Interestingly, the
SDF achieves lower MADs than DEA but DEA achieves higher cor-
relations and rank correlations across scenarios. In scenario 1,
where the models are correctly specified, our COLS approach has
a slightly higher correlation and rank correlation coefficient and
a MAD that is more than half that of DEA. As more irrelevant vari-
ables are added to the analysis, the performance of all methods de-
clines; however, the decline is notably worse for DEA and the SDF.
In the case of DEA, the MAD increases from 0.048 in scenario 1 to
0.082 in scenario 4; the correlation drops from 0.96 to 0.86 and the
rank correlation decreases from 0.93 to 0.87. The results for the
SDF are similar. The COLS approach, on the other hand, maintains
a MAD below 0.027 and correlations above 0.925 under all scenar-
ios. Notably, the results for our multiple output COLS are similar
for scenarios 3 and 4.

4. Multiple outputs and the stochastic frontier

In order to extend our approach to measure efficiency in the
stochastic case, we now represent the technology by a transforma-
tion function

hðyitÞ ¼ f ðxit ;ui;v itÞ; ð4Þ



Table 5
Example 2: Simulation results.

Scenario MAD Correlation Rank correlation

DEA COLS SDF DEA COLS SDF DEA COLS SDF

1 0.048 0.022 0.039 0.955 0.961 0.863 0.928 0.953 0.832
2 0.063 0.023 0.047 0.926 0.953 0.829 0.874 0.945 0.797
3 0.072 0.027 0.048 0.880 0.938 0.772 0.803 0.928 0.710
4 0.082 0.027 0.049 0.856 0.938 0.765 0.768 0.928 0.708

Randomly generated data for a two-output, two-input production process were used for the simulation. All calculations by authors. SDF is the approach popularized by Coelli
and Perelman (2000). COLS is the multiple output corrected OLS approach developed in this paper.

158 T. Collier et al. / European Journal of Operational Research 208 (2011) 153–160
where vt represents measurement error and other statistical noise
and u measures firm specific, time invariant inefficiency. Unlike
the inefficiency term, measurement error is allowed to vary across
time. Applying (2) to our simulated data with a technology repre-
sented by (4), we obtain an observed aggregate measure of output
S that is contaminated by measurement error and inefficiency.

We use a fixed effects panel data model (see Schmidt and
Sickles, 1984) and a random effects panel data model to estimate
the efficiency of each DMU. Maximum likelihood models must as-
sume a parametric distribution for the inefficiency term (usually
half-normal or exponential). Assuming a Cobb–Douglas functional
form and including subscripts for observation and time, the fixed
effects panel data model can be written as

Sit ¼ aþ b0xit � ui þ v it ; ð5Þ

where all variables are defined as before. Consistent with the inter-
pretation of ui as an inefficiency term, it is assumed that ui > 0 for all
i. Grouping the intercept and the technical inefficiency term, Eq. (4)
may be re-written as

Sit ¼ ða� uiÞ þ b0xit þ v it ¼ ai þ b0xit þ v it : ð6Þ

Given the above assumption concerning the error term, Eq. (6)
may be estimated using the standard fixed effects (‘within’) esti-
mator. Estimates of ui that are strictly non-negative are then given
by the deviation between each DMU-specific intercept and the
maximum intercept:

ûi ¼max
j
fâjg � âi: ð7Þ

The technical efficiency measure is defined as expð�ûiÞ, which is
bound by zero and unity. By construction, the DMU with the high-
est individual intercept is deemed technically efficient. To assure
the input aggregate is estimated consistently we simply recognize
that production is assumed to be separable and Sit is estimated
consistently as shown above. Then the arguments presented in
Schmidt and Sickles (1984) regarding consistency can be used
directly.

The random effects panel data model takes the same form as Eq.
(6); however, additional assumptions are made. The random ef-
fects model assumes that u is a random variable and uncorrelated
with the input variables and v. This model is estimated using a
standard two-stage generalized least squares approach. Once we
obtain estimates of the DMU-specific random effect, we can trans-
form it into a measure of technical efficiency just as we did with
the fixed effects model; the resulting estimator of technical effi-
ciency is consistent (see Cornwell et al., 1990). See Kumbhakar
and Lovell (2000) for more on estimating efficiency with fixed
and random effects models.
5. Stochastic frontier Monte Carlo analysis

The starting point for our simulated analysis is the specification
of production function. In order to interpret the performance of our
two-stage approach, we consider first a baseline case where one
output is produced:

Lnyit ¼ 0:4Lnx1it þ 0:6Lnx2it � ui þ v it ; ð8Þ

where constant returns to scale prevail and individual specific inef-
ficiency ui does not vary across time. Data were generated randomly
from the following distributions:

xs � Nð100;25Þ; s ¼ 1;2;
u � jNð0;0:2Þj;

v � Nð0;rvÞ:
For the ineffeciency component, a standard deviation for the normal
of 0.2, results in a standard deviation for the half-normal of 0.12. In
all cases, we have rv > ru; the ratio r2

v
r2

u
of measurement error vari-

ance to inefficiency variance varies from 1.56 to 4.34. Three mea-
sures are used to evaluate the performance of the estimators: the
correlation, rank correlation and mean absolute deviation (MAD)
between true and estimated efficiency.

For the case of the single output, we estimate technical effi-
ciency using both random and fixed effects models. Since the data
generating process is consistent with the random effects specifica-
tion, we expect that the random effects model will perform better.
However, because the fixed effects model provides consistent esti-
mates, the improvement should be minimal. We replicate this pro-
cess 100 times. Summary results for the random effects model are
reported in Table 6. Fixed effects results are reported in Table 7.
The results are as expected. The average correlation between true
and estimated efficiency is slightly higher for the random effects
model while the rank correlation results are nearly identical. Inter-
estingly, the fixed effects model performed better with respect to
MAD criteria than the random effects model while performing sim-
ilarly on the basis of the other criteria.

The extension to the multiple output case required specification
of the output aggregate. We assumed a constant elasticity of trans-
formation output aggregate:

gðyitÞ ¼ 0:5yq
1it þ 0:5yq

2it

� �1=q
: ð9Þ

Here, for our application, we choose q = 2.5. Data for the outputs
were generated as follows:

ym � Nð100;25Þ; m ¼ 1;2:

Similar to the procedure used in the COLS example 2, the generated

outputs were scaled by dit ¼
2x0:4

1it
x0:4

2it

y2:5
1it
þ0:5y2:5

2itð Þ1=2:5 to ensure that

LngðdityitÞ ¼ 0:4Lnx1it þ 0:6Lnx2it � Lnui þ Lnv it: ð10Þ

Data generation for all variables other than output followed the
same distribution used in the one output case. Given the output
data, we employed linear program (2) for each time period to obtain
an index of aggregate output. The index was then used in a second
stage panel model using both fixed and random effects. Average re-
sults for 100 replications are reported in Tables 6 and 7.

The results of the analysis are encouraging. The performance re-
sults found between the fixed effects and random effects models in



Table 6
Random effects model results.

Scenario MAD Correlation Rank correlation

One output
rv = 0.15 0.119 0.928 0.916

(0.06) (0.01) (0.01)
rv = 0.20 0.124 0.890 0.868

(0.07) (0.01) (0.02)
rv = 0.25 0.121 0.844 0.816

(0.07) (0.02) (0.02)

Two outputs
rv = 0.15 0.121 0.922 0.908

(0.07) (0.01) (0.01)
rv = 0.20 0.120 0.882 0.860

(0.07) (0.01) (0.02)
rv = 0.25 0.113 0.836 0.807

(0.07) (0.02) (0.03)

Results reported are averages from 100 replications. Standard deviations are
reported in parentheses. All calculations by authors.

Table 7
Fixed effects model results.

Scenario MAD Correlation Rank correlation

One output
rv = 0.15 0.071 0.926 0.916

(0.04) (0.01) (0.01)
rv = 0.20 0.096 0.880 0.868

(0.05) (0.01) (0.02)
rv = 0.25 0.121 0.829 0.816

(0.06) (0.02) (0.02)

Two outputs
rv = 0.15 0.074 0.918 0.908

(0.04) (0.01) (0.01)
rv = 0.20 0.100 0.872 0.860

(0.05) (0.01) (0.02)
rv = 0.25 0.124 0.821 0.807

(0.06) (0.02) (0.03)

Results reported are averages from 100 replications. Standard deviations are
reported in parentheses. All calculations by authors.
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the one output model hold true in the two-output model. In addi-
tion, while the correlation and rank correlation results are lower on
average, the difference is less than 0.01 in all cases. In addition, the
average MAD across replications were nearly identical.

6. Conclusions

One of the main advantages of DEA over regression-based ap-
proaches is the ability to handle multiple inputs and multiple out-
puts. In this paper, a new regression-based approach was
developed that overcomes this limitation. In particular, a two-stage
model was developed that employs a modified DEA model to esti-
mate the output aggregate, which is then used in regression to
measure efficiency. Notably, the output aggregate is obtained via
a nonparametric specification. Returns to scale assumptions are
then incorporated in the second-stage regression where a translog
model allows variable returns to scale. The model was tested
against DEA using a variable returns to scale model using data pub-
lished in Färe et al. (1994) and a simulation where constant returns
to scale prevailed. The results of the simulation show that regres-
sion based approaches can be used to measure efficiency in multi-
ple output/multiple input deterministic production environments
without additional information on input prices. In the simulation
example, the results illustrate that our multiple output COLS ap-
proach outperforms DEA and the SDF approach.

We also introduced a new two-stage approach for measuring
technical efficiency for multiple input and multiple output produc-
tion technologies in the presence of measurement error. In the first
state, a modified DEA model was employed to obtain a measure of
observed aggregate output. The resulting index is then incorpo-
rated into a second stage stochastic frontier model. We allow flex-
ibility in the second stage by employing either random effects or
fixed effects. The models were tested using Monte Carlo analysis;
the results indicate that this approach works as well as its single
output counterpart. This contribution is important because one
of the purported disadvantages of using the stochastic frontier ap-
proach is its inability to handle multiple outputs.

Appendix

Proof of Theorem 1. The logic of the proof is similar to Proposition
5 by Banker (1993) which established consistency of the DEA
estimator and Theorem 3.1 of Johnson and Kuosmanen (2009). By
assumption (i) isoquants are nested and by assumption (ii) output
sets can be analyzed for a given aggregate input level. Consider an
arbitrary randomly drawn observation (yi,xi). For any arbitrary
input level xi, there is a positive probability pi > 0 of randomly
drawing to the sample an observation k such that: f(xk) = W,
vk = VM. For this observation yk = W + VM. Note that since the
boundary of T is a globally concave function, it is not possible to
achieve a higher output level than yk by using input vector xk. Thus,
if an observation k characterized by the equations above is
randomly drawn, then yk is a member of the set Isoq(xi). Otherwise,
if the observation k is not drawn to the sample, yk is not a member
of PA. Consistency requires that the probability of drawing unit k
approach unity as the sample size approaches infinity.

The probability that unit k is not observed in a sequence of n
independent random draws is equal to (1 � pi)n. Asymptotically,
this probability converges to zero: limn?1(1 � pi)n = 0. Thus,
observation k is almost surely observed as the sample size
approaches to infinity. Hence limn?1Isoq(xi) = Isoq(Pa) + VM. As
the argument was made for an arbitrary xi, the same argument
can be made for any observation i = 1, . . . ,n. This shows the true
isoquant augmented by a noise component can be consistently
estimated. The true isoquant can be recovered by subtracting
VM. h
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