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In this article, we examine a novel way of imposing shape constraints on a local polynomial kernel estima-
tor. The proposed approach is referred to as shape constrained kernel-weighted least squares (SCKLS). We
prove uniform consistency of the SCKLS estimator with monotonicity and convexity/concavity constraints
and establish its convergence rate. In addition, we propose a test to validate whether shape constraints are
correctly specified. The competitiveness of SCKLS is shown in a comprehensive simulation study. Finally,
we analyze Chilean manufacturing data using the SCKLS estimator and quantify production in the plastics
and wood industries. The results show that exporting firms have significantly higher productivity.
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1. INTRODUCTION

Nonparametric regression methods, such as the local lin-
ear (LL) estimator, avoid functional form misspecification. To
model production with a production or a cost function, the
flexible nature of nonparametric methods can cause difficulties
in interpreting the results. Fortunately, microeconomic theory
provides additional structure in the form of shape constraints.
Recently, several nonparametric shape constrained estimators
have been proposed that combine the advantage of avoiding
parametric functional specification with improved small-sample
performance relative to unconstrained nonparametric estima-
tors. Nevertheless, the existing methods have limitations regard-
ing either estimation performance or computational feasibility.
In this article, we propose a new estimator that imposes shape
restrictions on local kernel weighting methods. By combining
local averaging with shape constrained estimation, we improve
finite sample performance by avoiding overfitting.
Work on shape-constrained regression first started in the

1950s with Hildreth (1954), who studied the univariate regres-
sor case with a least-squares objective subject to monotonicity
and concavity/convexity constraints. See also Brunk (1955)
and Grenander (1956) for alternative shape constrained esti-
mators. Under the concavity/convexity constraint, properties
such as consistency, rate of convergence, and asymptotic
distribution have been shown by Hanson and Pledger (1976),

Mammen (1991), and Groeneboom, Jongbloed, and Wellner
(2001), respectively. In the multivariate case, Kuosmanen
(2008) developed the characterization of the least-squares
estimator subject to concavity/convexity and monotonicity con-
straints, which we will refer to as convex nonparametric least
squares (CNLS) throughout this article. Furthermore, consis-
tency of the least-squares estimator was shown independently
by Seijo and Sen (2011) and Lim and Glynn (2012).

Regarding the nonparametric estimation implemented using
kernel basedmethods, Birke andDette (2007), Carroll, Delaigle,
and Hall (2011), and Hall and Huang (2001) investigated the
univariate case and proposed smooth estimators that can impose
derivative-based constraints including monotonicity and con-
cavity/convexity. Du, Parmeter, and Racine (2013) proposed
constrained weighted bootstrap (CWB) by generalizing Hall
and Huang’s method to the multivariate regression setting.
Beresteanu (2007) developed a similar type of estimator but for
use with spline-based estimators. Finally, we mention the work
of Li, Liu, and Li (2017), which extended Hall and Huang’s
method to use the k-nearest neighbor approach subject to the
monotonicity constraint.
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In this article, shape constrained kernel-weighted least
squares (SCKLS) estimator is described, which optimizes a
local polynomial kernel criterion while estimating a multi-
variate regression function with shape constraints. Under the
monotonicity and convex/concavity constraints, we prove uni-
form consistency and establish the convergence rate of the
SCKLS estimator. Kuosmanen (2008), Seijo and Sen (2011),
and Lim and Glynn (2012) emphasized the potential advantage
that CNLS does not require the selection of tuning parame-
ters. Our proposed SCKLS estimator sheds further light on this
issue: in the SCKLS framework, CNLS can be seen as the zero
bandwidth estimator; we argue that, compared to unrestricted
kernel methods, the SCKLS estimator is relatively robust to
the bandwidth selected and is able to alleviate well-known
issues such as boundary inconsistency faced by the CNLS
estimator.
Note that with n observations, CNLS imposes O(n2) con-

cavity/convexity constraints, which can lead to computational
difficulties. The number of constraints and the number of vari-
ables in the SCKLS estimator do not depend on the number of
observations, but rather the number of evaluation points which
is arbitrarily defined by the modeler, thereby bring the compu-
tational complexity of the estimator largely under control of the
modeler. In this article, we implement an iterative algorithm that
reduces the number of constraints by building on the ideas in Lee
et al. (2013) to further improve the computational performance.
We then validate the performance of the SCKLS estimator via
Monte Carlo simulations. For a variety of parameter settings,
we find performance of SCKLS to be better or at least competi-
tive with CNLS, CWB, and the local linear estimators. We pro-
vide the first simulation study of CWB with global concavity
constraints. We also investigate the use of variable bandwidth
methods that are a function of the data density1 and propose
variants of a uniform grid as practical ways to further improve
the performance of SCKLS.
Crucially, we also investigate the behavior of SCKLS when

the shape constraints are misspecified and propose a hypothesis
test to validate the shape constraints imposed. Having a test that
validates the shape constraints is critical because otherwise our
estimation procedure would lead to inconsistent estimates.
Finally, we apply the SCKLS estimator empirically on

Chilean manufacturing data from the Chilean Annual Industrial
Survey. The estimation results provide a concise description of
the supply-side of the Chilean plastic and wood industries as we
report marginal productivity, marginal rate of substitution, and
most productive scale size. We also investigate the impact of
exporting on productivity by including additional predictors of
output in a semi-parametric model. We find that exporting cor-
relates with higher productivity, thus supporting international
trade theories that high productivity firms are more likely to
compete in international markets.
Our focus on production functions guides our selection of

the polynomial function used in estimation, the data-generation
processes (DGP) in the Monte Carlo simulations. For the appli-
cation analyzing the Chilean manufacturing data, we are inter-
ested in monotonic and concave shape constraints and use a

1A variable bandwidthmethod allows the bandwidth associated with a particular
regressor to vary with the density of the data.

local linear kernel function. These assumptions are motivated
by standard economic theory for production functions (Varian
1984). However, the methods proposed in the article are general
and applicable for other applications with higher order polyno-
mial functions or alternative shape restrictions, as discussed in
Appendix A.
The remainder of this article is as follows. Section 2 describes

the model framework and presents our estimator, SCKLS.
Section 3 contains the statistical properties of the estimator, and
Section 4 discusses the behavior of SCKLS under misspecifica-
tion, as well as a test for concavity and monotonicity. Monte
Carlo simulation results under several different experimental
settings are shown in Section 5. Section 6 applies the SCKLS
estimator to estimate a production function for both the Chilean
plastics and wood industries. Section 7 concludes and suggests
future research directions. Appendix A provides extensions to
SCKLS and a comparison to CNLS and CWB. Appendix B con-
tains all the technical proofs and Appendix C describes a test for
affinity. Appendix D states the details of the iterative algorithm
for SCKLS, and Appendix E presents a more extensive set of
simulation results. Appendix F describes the details of the par-
tially linear model, and Appendix G gives further details about
the application to the Chilean manufacturing data. All appen-
dices are available as supplemental materials via the Journal of
Business & Economic Statistics website.

2. MODEL FRAMEWORK AND METHODOLOGY

2.1 Model

Suppose we observe n pairs of input and output data,
{X j, y j}nj=1, where for every j = 1, . . . , n, X j = (Xj1, . . . ,

Xjd )′ ∈ R
d is a d-dimensional input vector, and y j ∈ R is an out-

put. Consider the following regression model

y j = g0(X j ) + ε j, for j = 1, . . . , n,

where ε j is a random variable satisfying E(ε j|X j ) = 0. Assume
that the regression function g0 : Rd → R belongs to a class of
functions, G, that satisfies certain shape restrictions. Here, our
estimator can impose any shape restriction that can be mod-
eled as a lower or upper bound on a derivative. Examples are
supermodularity, convexity, monotonicity, and quasi-convexity.
For purposes of concreteness, and in view of the application to
production functions, we focus on imposing monotonicity and
global convexity/concavity, specifically, g0 is concave if:

λg0(x1) + (1 − λ)g0(x2)

≤ g0(λx1 + (1 − λ)x2), ∀x1, x2 ∈ R
d and ∀λ ∈ [0, 1]

Furthermore, saying g0 is monotonically increasing means that

if x1 ≤ x2, then g0(x1) ≤ g0(x2),

where the inequality of x1 ≤ x2 means that every component of
x2 is greater than or equal to the corresponding component of
x1. Here, we denote G2 as the set of functions satisfying these
constraints.
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2.2 Shape-Constrained Kernel-Weighted Least-Squares
(SCKLS) with Local Linear

Given observations {X j, y j}nj=1, we state the (multivariate)
local linear kernel estimator developed by Stone (1977) and
Cleveland (1979) as

min
a,b

n∑
j=1

(y j − a− (X j − x)′b)2K
(
X j − x
h

)
, (1)

where a is a functional estimate, and b is an estimate of the
slope of the function at x with x being an arbitrary point in the
input space, K(X j−x

h ) denotes a product kernel, and h is a vector
of bandwidths (see Racine and Li (2004) for more detail). We
note that the objective function uses kernel weights, so more
weight is given to the observations that are closer to the point x.
We introduce a set of m points, x1, . . . , xm, for evaluating

constraints, which we call evaluation points, and impose shape
constraints on the local linear kernel estimator. In the spirit
of local linear kernel estimator, we define shape constrained
kernel-weighted least squares (SCKLS) estimator, for the case
of monotonicity and concavity, to be the function ĝn : Rd → R

such that

ĝn(x; â, b̂) = min
i∈{1,...,m}

{
âi + (x− xi)′b̂i

}
(2)

for any x ∈ R
d , where â = (â1, . . . , âm)′ and b̂ = (b̂′

1, . . . , b̂
′
m)

′

are the solutions to the following optimization problem

min
a,b

m∑
i=1

n∑
j=1

(y j − ai − (X j − xi)′bi)2K
(
X j − xi

h

)

subject to ai − al ≥ b′
i(xi − xl ), i, l = 1, . . . ,m

bi ≥ 0, i = 1, . . . ,m. (3)

The first set of constraints in (3) imposes concavity and the sec-
ond set of constraints imposes nonnegativity of bi at each eval-
uation point xi. For more details see Kuosmanen (2008). Note
that (2) implies the functional estimate is constructed by tak-
ing the minimum of linear interpolations between the evaluation
points. This makes SCKLS a globally shape constrained func-
tion although it is a non-smooth piecewise linear function.
The SCKLS estimator requires the user to specify the number

and the locations of the evaluation points. A standardmethod for
determining the location of evaluation points, {xi}mi=1, is to con-
struct a uniform grid, where each dimension is divided using
equal spacing. However, we can address the skewness of input
variable distributions common in manufacturing survey data by
using a nonuniform grid method, specifically percentile grid-
ding, to specify evaluation points.
Alternatively, we can deal with the input skewness by apply-

ing the k-nearest neighbor (k-NN) approach (Li, Liu, and Li,
2017). The k-NN approach uses a smaller bandwidth in dense
data regions and a larger bandwidth when the data are sparse.
The analysis in Section 6 uses both a percentile grid and k-
NN approach to define the kernel function. For details of these
extensions, see Appendix A.
As the density of the evaluation points increases, the esti-

mated function potentially has more hyperplane components
and is more flexible; however, the computation time typically

increases. If a smooth functional estimate is preferred, see
Nesterov (2005) and Mazumder et al. (2017), where methods
for smoothing are provided. In practice, we propose to select the
bandwidth vector h via the leave-one-out cross-validation based
on the unconstrained estimator. See Section 5 for the details.
Appendix A proposes several alternative implementations

of the SCKLS estimator: (1) SCKLS with local polynomial
approximation, (2) a k-nearest neighbor (k-NN) approach, and
(3) nonuniform grid method.

3. THEORETICAL PROPERTIES OF SCKLS

For mathematical concreteness, we next consider the statis-
tical properties of SCKLS under monotonicity and concavity
constraints. Recall that G2 is the class of functions which are
monotonically increasing and globally concave, and g0 is the
truth to be estimated from n pairs of observations. We make the
following assumptions:

Assumption 1.

(i) {X j, y j}∞j=1 are a sequence of iid random variables with
y j = g0(X j ) + ε j.

(ii) g0 ∈ G2 and is twice-differentiable.
(iii) X j follows a distribution with continuous density function

f and support S. Here, S is a convex, nondegenerate and
compact subset of Rd . Moreover,

min
x∈S

f (x) > 0.

(iv) The conditional probability density function of ε j, given
X j, denoted as p(e|x), is continuous with respect to both e
and x, with the mean function

μ(·) = E(ε j|X j = ·) = 0

and the variance function

σ 2(·) = Var(ε j|X j = ·)

bounded away from 0 and continuous over S. Moreover,
supx∈S E(ε

4
j |X j = x) < ∞.

(v) K(·) is a nonnegative, Lipschitz second-order kernel with
a compact and convex support. For simplicity, we set the
bandwidth associated with each explanatory variable, hk,
for k = 1, . . . , d, to be h1 = · · · = hd = h.

(vi) h = O(n−1/(4+d) ) as n → ∞.

Here, (i) states that the data are iid; (ii) says that the con-
straints we impose on the SCKLS estimator are satisfied by
the true function; (iii) makes a further assumption on the
distribution of the covariates; (iv) states that the noise can be
heteroscedastic in certain ways, but requires the change in the
variance to be smooth; (v) is rather standard in local polynomial
estimation to facilitate the theoretical analysis; and (vi) assures
the bandwidths become sufficiently small as n → ∞ so that
both the bias and the variance from local averaging go to zero.
For details of the consistency of local linear estimator and a
discussion of some of these conditions, see Masry (1996), Li
and Racine (2007), and Fan and Guerre (2016).
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We consider two scenarios: let the number of evaluation
points (denoted by m) grow with n, or fix the number of eval-
uation points a priori. For simplicity, we also assume that the
evaluation points are drawn independent of {X j, y j}nj=1.

Assumption 2.

(i) The number of evaluation points m → ∞ as n → ∞. For
simplicity, we assume that the empirical distribution of
{x1, . . . , xm} converges to a distribution Q that has sup-
port S (i.e., as defined in Assumption 1(iv))) and a con-
tinuous differentiable density function q : S → R satisfying
minx∈S q(x) > 0.

(ii) The number of evaluation points m is fixed. All the evalu-
ation points lie in the interior of S. Moreover,

supx∈Smini=1,...,m ‖x− xi‖
mini
= j;i, j∈{1,...,m} ‖x j − xi‖ ≤ κ

for some κ ≥ 1 (i.e., {x1, . . . , xm} are reasonably well
spread across S).

Our main results are summarized below. A short discus-
sion on our proof strategy and the proofs are available in
Appendix B.

Theorem 1. Suppose that Assumption 1(i)–1(vi) and
Assumption 2(i) or 2(ii) hold. Then,

1

m

m∑
i=1

{ĝn(xi) − g0(xi)}2 = Op(n
−4/(4+d) log n).

Theorem 2.

1. (The case of an increasing m) Suppose that Assumption
1(i)–1(vi) and Assumption 2(i) hold. Let C be any fixed
closed set that belongs to the interior of S. Then with prob-
ability one, as n → ∞, the SCKLS estimator satisfies

sup
x∈C

∣∣ĝn(x) − g0(x)
∣∣ → 0.

2. (The case of a fixed m) Suppose that Assumption 1(i)–1(vi)
and Assumption 2(ii) hold. Then, as n → ∞, with proba-
bility one, the estimates from SCKLS satisfy

âi → g0(xi) and b̂i → ∂g0
∂x

(xi)

for all i = 1, . . . ,m.

Note that this convergence rate is nearly optimal (differing
only by a factor of log n). However, in the above, we only man-
age to show that the SCKLS estimator converges at the evalu-
ation points or in the interior of the domain. It is known that
shape-constrained estimators tend to suffer from bad boundary
behaviors. For instance, the quantity supS |ĝCNLSn (x) − g0(x)|
does not converge to zero in probability, where ĝCNLSn is the
CNLS estimator. Though for SCKLS, if we let the number of
evaluation points, m, grow at a rate slower than n, we argue that
we can both alleviate the boundary inconsistency and improve
the computational efficiency.

Assumption 3. The number of evaluation points
m = o(n2/(4+d)/ log n) as n → ∞.

Theorem 3. Suppose that Assumption 1(i)–1(vi), Assumption
2(i) and Assumption 3 hold. Then, with probability one, as n →

∞, the SCKLS estimator satisfies

sup
x∈S

|ĝn(x) − g0(x)| → 0.

We also note that CNLS can be viewed as a special case of
SCKLSwhenwe let the set of evaluation points be {X1, . . . ,Xn}
and the bandwidth vector ‖h‖ → 0. See Appendix A for the
proof of the relationship between CNLS and SCKLS, together
with a further discussion on the relationship between SCKLS
and alternative shape constrained estimators such as CWB.

4. SHAPE MISSPECIFICATION: THEORY AND
TESTING

4.1 Misspecification of the Shape Restrictions

So far we have assumed in our estimation procedures that g0 ∈
G2, where G2 is the class of functions which are monotonically
increasing and globally concave. To understand the behavior of
SCKLS, we are interested in its performance when g0 /∈ G2.
LetQ be a distribution on S (as in Assumption 2(i)) and define

g∗ : S → R as

g∗
0 := argmin

g∈G2

∫
S
{g(x) − g0(x)}2Q(dx).

The existence and Q-uniqueness of g∗
0 follows from the well-

known results about the projection onto a cone in the Hilbert
space. When g0 ∈ G2, it is easy to check that g∗

0 = g0. See also
Lim and Glynn (2012). The following result can be viewed as a
generalization of Theorem 2.

Theorem 4. Suppose that Assumption 1(i), 1(iii)–1(vi) and
Assumption 2(i) hold. Furthermore, suppose that g0 is twice-
differentiable. LetC be any compact set that belongs to the inte-
rior of S. Then with probability one, as n → ∞, the SCKLS
estimator satisfies

sup
x∈C

∣∣ĝn(x) − g∗
0(x)

∣∣ → 0.

Theorem 4 assures us that the SCKLS estimator converges
uniformly on a compact set to the function g∗

0 that is closest in
L2 distance to the true function g0 for which our estimator is mis-
specified. Consequently, as long as g0 is not too far away from
G2, our estimator can still be used as a reasonable approxima-
tion to the truth, especially when the sample size is moderate.
See Appendix E for a numerical demonstration.

4.2 Hypothesis Testing for the Shape

Admittedly, the SCKLS estimator can be inappropriate if the
shape constraints are not fulfilled by g0. Thus, we propose a
procedure based on the SCKLS estimators for testing

H0 : {g0 : S → R} ∈ G2 against H1 : {g0 : S → R} /∈ G2.

Denote by

r̃2
({X j, y j}nj=1, {xi}mi=1

)
= min

a,b

m∑
i=1

n∑
j=1

(y j − ai − (X j − xi)′bi)2K
(
X j − xi

h

)
;
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the value of the objective function that is minimized by the local
linear kernel estimator. And denote by

r̂2
({X j, y j}nj=1, {xi}mi=1

)
= min

a,b

m∑
i=1

n∑
j=1

(y j − ai − (X j − xi)′bi)2K
(
X j − xi

h

)
,

subject to ai − al ≥ b′
i(xi − xl ) and bi ≥ 0, i, l = 1, . . . ,m.

Here, r̂2(·, ·) is the value of the objective function that is mini-
mized by SCKLS.
We focus on the test statistic

Tn := T
({X j, y j}nj=1, {xi}mi=1

)
=

[
1

mnhd
{
r̂2

({X j, y j}nj=1, {xi}mi=1

) − r̃2
({X j, y j}nj=1, {xi}mi=1

)}]1/2

,

which is a rescaled version of the difference between the val-
ues of the same objective function (with the same bandwidth
h), optimized either with or without the shape constraints. Intu-
itively, the value of this statistic should be small if g0 ∈ G2. This
statistic can also be viewed as a smoothed and rescaled version
of the goodness-of-fit statistic.
Here, we focus on the boundary case when g0 is constant

(i.e., g0 = 0) because it is hardest to evaluate the null hypothesis
when g0 is both nonincreasing and nondecreasing and both con-
cave and convex, intuitively and theoretically and it allows us to
control the size of our test statistic. Since the noise here might
be non-homogeneous, we use the wild bootstrap to approximate
the distribution of the test statistic underH0. SeeWu (1986), Liu
(1988), Mammen (1993), and Davidson and Flachaire (2008)
for an overview of the wild bootstrap procedure.
Our testing procedure has three steps:

(1) Estimate the error at each X j by ε̃ j = y j − g̃n(X j ) for
j = 1, . . . , n, where g̃ is the unconstrained local linear esti-
mator with kernel and bandwidth satisfying Assumptions
1(v)–(vi).

(2) The wild bootstrap method is used to construct a critical
region for Tn. LetB be the number ofMonte Carlo iterations.
For every k = 1, . . . ,B, let uk = (u1k, . . . , unk )′ be a ran-
dom vector with components sampled independently from
the Rademacher distribution, that is, P(ujk = 1) = P(u jk =
−1) = 0.5. Furthermore, let y jk = u jk ε̃ j. Then, the wild
bootstrap test statistic is

Tnk = T
({X j, y jk}nj=1, {xi}mi=1

)
.

(3) Define the Monte Carlo p-value as2

pn = 1

B

B∑
k=1

1{Tn≤Tnk}.

For a test of size α ∈ (0, 1), we reject H0 if pn < α.

2Since we underestimate the level of the errors in Step 1 by a factor of
roughly n−2/(4+d), for the theoretical development, we address this bias issue
by modifying the p-value to be pn = 1

B

∑B
k=1 1{Tn≤Tnk+�n}, where �n =

O(n−2/(4+d) log n). Note that if we fixm and pick h = O(n−η ) for η ∈ ( 1
4+d , 1

d ),
then �n/Tnk = op(1) as n → ∞, that is, this correction has a negligible effect.
Indeed, our experience suggests that this modification offers little improvement
in terms of finite sample performance in our simulation study.

A few remarks are in order.
First, here we conveniently implemented the simplest wild

bootstrap scheme to simplify our analysis, in line with the
work of Davidson and Flachaire (2008). Instead of imposing
the Rademacher distribution on uk j, we can also use any distri-
bution with zero-mean and unit-variance. One popular choice
suggested by Mammen (1993) is

u jk =
{

−
√
5−1
2 with probability 5+√

5
10√

5+1
2 with probability 5−√

5
10

.

Second, note that the definition of y jk in Step 2 makes this
a test of the residuals, that is, when drawing bootstrap sam-
ples, we use y jk = u jk ε̃ j instead of y jk = ĝn(X j ) + u jk ε̃ j. From
this perspective, our test is similar to the univariate monotonic-
ity test in Hall and Heckman (2000). One reason behind this
choice is to avoid the boundary inconsistency of the bootstrap
procedure. See Andrews (2000) and Cavaliere, Nielsen, and
Rahbek (2017) who addressed this issue in a much simpler
setup. Generally speaking, testing the null hypothesis becomes
harder when g0 is on the boundary of G2. In practice, we could
use y jk = ĝn(X j ) + u jk ε̃ j in certain scenarios (e.g., when testing
g0 is a strictly increasing and strictly concave function against
g0 /∈ G2), and slight improvements are observed in terms of
finite-sample performance.
We now look into the theoretical properties of our procedure

under both H0 and H1. See Appendix B for the proof.

Theorem 5. Suppose that Assumptions 1(i), (iii)–(v) and 2(i)
hold, and the conditional error distribution (i.e., ε j|X j) is sym-
metric. Furthermore, assume that g0 is continuously twice-
differentiable and let h = O(n−η ) for some fixed η ∈ ( 1

4+d ,
1
d ).

Let B := B(n) → ∞ as n → ∞. Then, for any given α ∈
(0, 1),

– Type I error: for any g0 ∈ G2, lim supn→∞ P(pn < α) ≤ α;
– Type II error: for any g0 /∈ G2, lim supn→∞{1 − P(pn <

α)} = 0.

In addition, if we replace Assumption 2(i) by Assumption
2(ii), the same conclusions hold for sufficiently large m.

See also Section 5 for the finite-sample performance of our
test in a simulation study, where we demonstrate that the pro-
posed test controls both Type I and Type II errors reasonably
well. Additionally, Appendix C describes our procedure for test-
ing affinity using SCKLS.

5. SIMULATION STUDY

5.1 Numerical Experiments on Estimation

5.1.1 The Setup. We now examine the finite-sample per-
formance and robustness of the proposed estimator through
Monte Carlo simulations. We run our experiments on a com-
puter with Intel Core2 Quad CPU 3.00 GHz and 8 GB RAM.
We compare the performance of SCKLS is compared with that
of CNLS and LL. See Appendix E for a comparisons of SCKLS
with CWB. For the SCKLS and the CNLS estimator, we solve
the quadratic programming problems with MATLAB using the
built-in quadratic programming solver, quadprog. We run two
sets of experiments varying the number of observations (n), the
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number of evaluation points (m), and the number of the inputs
(d).
We also run additional experiments to show the robust per-

formance of the SCKLS estimator under alternative conditions.
See Appendix E for the results.
We measure the estimator’s performance using root mean

squared errors (RMSE) based on two criteria: the distance from
the estimated function to the true function measured (1) at the
observed points and (2) at the evaluation points constructed on
an uniform grid, respectively. As CNLS estimates hyperplanes
at observation points, we use linear interpolation to obtain the
RMSE of CNLS3. We replicate each scenario 10 times and
report the average and standard deviation.
5.1.2 Tuning Parameter Selection. For the SCKLS

estimator, we use the Gaussian kernel function K(·) and leave-
one-out cross-validation (LOOCV) for bandwidth selection.
LOOCV is a data-driven method, and has been shown to
perform well for unconstrained kernel estimators such as local
linear (Stone 1977). We apply LOOCV procedure on uncon-
strained estimates (i.e., local linear) to select the bandwidth
for SCKLS to reduce the computational burden and because
SCKLS is relatively insensitive to the bandwidth choice (see for
example Experiment 1. Fixed Number of Evaluation Points).
For further computational improvements, we apply the iterative
algorithm described in Appendix D .
5.1.3 Results.
5.1.3.1 Experiment 1. Fixed Number of Evaluation Points.

We consider a Cobb–Douglas production function with d-

inputs and one-output, g0(x1, . . . , xd ) = ∏d
k=1 x

0.8
d
k . For each

pair (X j, y j ), each component of the input,X jk, is randomly and
independently drawn from uniform distribution uni f [1, 10], and
the additive noise, ε j, is randomly sampled from a normal dis-
tribution, N(0, 0.72). We consider 15 different scenarios with
different numbers of observations (100, 200, 300, 400 and 500)
and input dimensions (2, 3, and 4). The structure and data gen-
eration process of Experiment 1 follows Lee et al. (2013). We
fix the number of evaluation points at approximately 400 and
locate them on a uniform grid.
For this experiment, we compare the following four estima-

tors: SCKLS, CNLS, local linear kernel (LL), and parametric
Cobb–Douglas estimator. The latter estimator serves as a base-
line because it is correctly specified parametric form. Tables 1
and 2 show for Experiment 1 the RMSE measured on observa-
tion points and evaluation points, respectively. The number in
parentheses is the standard deviation of RMSE values computed
by 10 replications. Note the standard derivations are generally
small compared to the parameter estimates, which indicates low
variability even after only 10 replications. A more extensive
set of results for this experiment is summarized in Appendix E.
The SCKLS estimator has the lowest RMSE in most scenarios
even when RMSE is measured on observation points (note
that the SCKLS estimator imposes the global shape constraints
via evaluation points in Equation (3)). Also as expected, the
performance of SCKLS estimator improves as the number of
observation points increases. Moreover, the SCKLS estimator

3The CNLS estimates include the second stage linear programming estimation
procedure described by Kuosmanen and Kortelainen (2012) to find the mini-
mum extrapolated production function.

Table 1. RMSE on observation points for Experiment 1

Average of RMSE on observation points

Number of observations 100 200 300 400 500

2-input SCKLS 0.193 0.171 0.141 0.132 0.118
(0.053) (0.047) (0.032) (0.029) (0.017)

CNLS 0.229 0.163 0.137 0.138 0.116
(0.042) (0.037) (0.010) (0.027) (0.016)

LL 0.212 0.166 0.149 0.152 0.140
(0.079) (0.042) (0.028) (0.028) (0.028)

Cobb–Douglas 0.078 0.075 0.048 0.039 0.043

3-input SCKLS 0.230 0.187 0.183 0.152 0.165
(0.050) (0.026) (0.032) (0.019) (0.031)

CNLS 0.294 0.202 0.189 0.173 0.168
(0.048) (0.035) (0.020) (0.014) (0.020)

LL 0.250 0.230 0.235 0.203 0.181
(0.068) (0.050) (0.052) (0.050) (0.021)

Cobb–Douglas 0.104 0.089 0.070 0.047 0.041

4-input SCKLS 0.225 0.248 0.228 0.203 0.198
(0.038) (0.020) (0.037) (0.042) (0.028)

CNLS 0.315 0.294 0.246 0.235 0.214
(0.039) (0.027) (0.024) (0.029) (0.015)

LL 0.256 0.297 0.252 0.240 0.226
(0.044) (0.057) (0.056) (0.060) (0.038)

Cobb–Douglas 0.120 0.073 0.091 0.067 0.063

Table 2. RMSE on evaluation points for Experiment 1

Average of RMSE on evaluation points

Number of observations 100 200 300 400 500

2-input SCKLS 0.219 0.189 0.150 0.147 0.128
(0.053) (0.057) (0.034) (0.030) (0.021)

CNLS 0.350 0.299 0.260 0.284 0.265
(0.082) (0.093) (0.109) (0.119) (0.078)

LL 0.247 0.182 0.167 0.171 0.156
(0.101) (0.053) (0.030) (0.030) (0.034)

Cobb–Douglas 0.076 0.076 0.049 0.040 0.043

3-input SCKLS 0.283 0.231 0.238 0.213 0.215
(0.072) (0.033) (0.030) (0.029) (0.034)

CNLS 0.529 0.587 0.540 0.589 0.598
(0.112) (0.243) (0.161) (0.109) (0.143)

LL 0.336 0.340 0.360 0.326 0.264
(0.085) (0.093) (0.108) (0.086) (0.042)

Cobb–Douglas 0.116 0.098 0.080 0.052 0.046

4-input SCKLS 0.321 0.357 0.329 0.308 0.290
(0.046) (0.065) (0.049) (0.084) (0.044)

CNLS 0.845 0.873 0.901 0.827 0.792
(0.188) (0.137) (0.151) (0.235) (0.091)

LL 0.482 0.527 0.483 0.495 0.445
(0.115) (0.125) (0.146) (0.153) (0.074)

Cobb–Douglas 0.146 0.091 0.115 0.081 0.080
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Figure 1. The histogram shows the distribution of bandwidths selected by LOOCV. The curves show the relative performance of each
estimator.

performs better than the LL estimator particularly in higher
dimensional functional estimation. This provides empirical
evidence that the shape constraints in SCKLS are helpful in
improving the finite-sample performance as compared to LL.
Note that LL appears to have larger RMSE values on eval-
uation points which are located in input space regions with
sparse observations. This implies that the SCKLS estimator has
more robust out-of-sample performance than the LL estimator
due to the shape constraints. We also observe that the perfor-
mance of the CNLS estimator measured at the evaluation points
is worse than that measured at the observations. CNLS often
has ill-defined hyperplanes which are very steep/shallow at the
edge of the observed data, and this over-fitting leads to poor
out-of-sample performance. In contrast, the SCKLS estimator
performs similarly for both the observation points and evalua-
tion points, because the construction of the grid that completely
covers the observed data makes the SCKLS estimator more
robust.
We also conduct simulations with different bandwidths to

analyze the sensitivity of each estimator to bandwidths. We
compare SCKLS and LL with bandwidth h ∈ [0, 10] with an
increment by 0.01 for the 1-input setting, and we use bandwidth
h ∈ [0, 5] × [0, 5] with an increment by 0.25 in each coordinate
for the 2-input setting. We simulate 100 datasets to compute
the RMSE for each bandwidth as well as for the bandwidth via
LOOCV. Figure 1 displays the average RMSE of each estimator.
The histogram shows the distribution of bandwidths selected by
LOOCV. The instances when SCKLS and LL provide the lowest
RMSE are shown in light gray and dark gray, respectively. For
the one-input scenario, the SCKLS estimator performs better
than the LL estimator for bandwidth between 0.25 and 2.25 as
shown in (a). For the two-input scenario, the SCKLS estimator
performs better for most of the LOOCV values as shown by the
majority of the histogram colored in light gray. This indicates
that LOOCV, calculated using the unconstrained estimator,
provides bandwidths that work well for the SCKLS estimator.
Importantly, the SCKLS estimator does not appear to be very
sensitive to the bandwidth selection method since, heuristi-
cally, the shape constraints help reduce the variance of the
estimator. Finally, we note that similar results can be obtained

in experimental settings with lower signal-to-noise level, or
with non-uniform input. See Appendix E for more details.
5.1.3.2 Experiment 2. Different Numbers of Evaluation Points.

The setting is the same as Experiment 1. However, now we con-
sider 9 different scenarios with different numbers of evaluation
points (100, 300, and 500) and input dimensions (2, 3, and 4).
We fix the number of observed points at 400.
We show the performance of SCKLS. Tables 3 and 4 shows

for Experiment 2 the RMSEmeasured on observations and eval-
uation points respectively. Both tables show that empirically
even if we increase the number of evaluation points, the RMSE
value does not change significantly. This has important implica-
tions for the running time. Specifically, we can reduce the calcu-
lation time by using a rough grid without sacrificing too much
in terms of RMSE performance of the estimator.

Table 3. RMSE on observation points for Experiment 2

Average of RMSE on
observation points

Number of evaluation points 100 300 500

2-input SCKLS 0.142 0.141 0.141
3-input SCKLS 0.198 0.203 0.197
4-input SCKLS 0.239 0.207 0.206

Table 4. RMSE on evaluation points for Experiment 2.

Average of RMSE on evaluation
points

Number of evaluation points 100 300 500

2-input SCKLS 0.181 0.164 0.158
3-input SCKLS 0.304 0.267 0.257
4-input SCKLS 0.383 0.296 0.270
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5.2 Numerical Experiments on Testing the Imposed
Shape

Experiment 3. We test monotonicity and concavity for data gen-
erated from the following single-input and single-output DGP:

g0(x) = xp (4)

and

g0(x) = 1

1 + exp(−5 log(2x))
. (5)

With n observations, for each pair (Xj, y j ), each input, Xj, is
randomly and independently drawn from uniform distribution
unif [0, 1]. In this simulation, we use the following multiplica-
tive noise to validate whether the wild bootstrap can handle non-
homogeneous noise.

y j = g0(Xj ) + (Xj + 1) · ε j,

where ε j, is randomly and independently sampled from a normal
distribution, N(0, σ 2). We use three different DGP scenarios A,
B, and C. For scenarios A and B, we use function (4) where
the exponent parameter p defines whether the function g0 is an
element of the class of functions G2 or not. We use p = {0, 2}
for scenarios A and B, respectively, where g0 ∈ G2 if p = 0,
and g0 /∈ G2 if p = 2 since g0 is strictly convex. For scenario
C, we consider an “S”-shape function defined by (5) which vio-
lates both global concavity and convexity. We consider different
sample sizes n = {100, 300, 500} and standard deviation of the
noise σ = {0.1, 0.2}, and perform 500 simulations to compute
the rejection rate for each scenario. We assume that we do not
know the distribution of the noise in advance and use the wild
bootstrap procedure described in Section 4.2 with B = 200.
Table 5 shows the rejection rate for each DGP. For high

signal-to-noise ratio scenarios (σ = 0.1), the test works well
even with a small-sample size. Our test is able to control the
Type I error, as illustrated in scenario A. In addition, the Type
II error of our test is small for the scenarios B and C where
shape constraints are violated by the DGP. Furthermore, for low
signal-to-noise ratio scenarios (σ = 0.2), the rejection rate for
scenarios B and C significantly improves when the sample size

Table 5. Rejection rate (%) of the test for monotonicity and concavity

Power of the Test (α)

Sample size 0.05 0.01 0.05 0.01
(n) DGP Scenario σ = 0.1 σ = 0.2

100 A (H0) 5.8 2.0 8.0 2.6
B (H1) 98.6 94.6 55.0 36.2
C (H1) 98.6 94.4 42.6 24.2

300 A (H0) 6.8 1.8 6.6 3.0
B (H1) 100.0 100.0 92.0 83.2
C (H1) 100.0 100.0 97.0 86.8

500 A (H0) 5.4 1.6 5.6 1.4
B (H1) 100.0 100.0 99.4 97.2
C (H1) 100.0 100.0 99.8 99.4

is increased from 100 to 300. Indeed, for larger noise scenar-
ios more data is required for the test to have power. Thus, our
test seems informative enough to guide users to avoid impos-
ing shape constraints on the data generated from misspecified
functions.

6. APPLICATION

We apply the proposed method to estimate the production
function for two large industries in Chile: plastic (2520) and
wood manufacturing (2010), where the values inside the paren-
theses indicate the CIIU3 industry code. There are some existing
studies which analyze the productivity of Chilean data; see, for
example, Pavcnik (2002), who analyzed the effect of trade liber-
alization on productivity improvements. Other researchers have
analyzed the productivity of Chilean manufacturing including
Benavente (2006), Alvarez and Görg (2009), and Levinsohn
and Petrin (2003). However, the above-cited work use strong
parametric assumptions and older data. Most studies use the
Cobb–Douglas functional form which restricts the elasticity of
substitution to be 1. When diminishing marginal productivity
of inputs characterizes the data, the Cobb–Douglas functional
form imposes that the most productive scale size is at the ori-
gin. We relax the parametric assumptions and estimate a shape
constrained production function nonparametrically using data
from 2010.We examine the marginal productivity, marginal rate
of substitution, and most productive scale size (MPSS) to ana-
lyze the structure of the industries. We also investigate how pro-
ductivity differs between exporting and nonexporting firms, as
exporting has become an important source of revenue in Chile4.
See Appendix G for the details of estimation and comparison
across different estimators.

6.1 The Census of Chilean Manufacturing Plants

We use the Chilean Annual Industrial Survey provided by
Chile’s National Institute of Statistics5. The survey covers man-
ufacturing establishments with ten or more employees. We
define Capital and Labor as the input variables and Value Added
as the output variable of the production function6. Capital and
Value Added are measured in millions of Chilean peso while
Labor is measured as the total man-hours per year.We use cross-
sectional data from the plastic and the wood industries.
Many researchers have found positive effects of exporting for

other countries using parametric models. See for instance, De
Loecker (2007) and Bernard and Jensen (2004). Here, we use
SCKLS to relax the parametric assumption for the production

4Note that firms’ decisions, that is, selecting labor and capital levels with con-
siderations for productivity levels or whether to export, are potentially endoge-
nous. Solutions to this issue are to instrument or build a structural model based
on timing assumptions. Our estimator can be embedded within the estimation
procedures such as those described in Ackerberg, Caves, and Frazer (2015) to
address this issue.
5The data are available at http://www.ine.cl/estadisticas/economicas/
manufactura .
6The definition of Labor includes full-time, part-time, and outsourced labors.
Capital is defined as a sum of the fixed assets balance such as build-
ings, machines, vehicles, furniture, and technical software. Value added is
computed by subtracting the cost of raw materials and intermediate con-
sumption from the total amount produced. Further details are available at
http://www.ine.cl/estadisticas/economicas/manufactura .

http://www.ine.cl/estadisticas/economicas/manufactura
http://www.ine.cl/estadisticas/economicas/manufactura
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Table 6. Statistics of Chilean manufacturing data

Non-exporters (n = 173) Exporters (n = 72)

Plastic (2520) Labor Capital (million) Value Added (million) Labor Capital (million) Value Added (million) Share of Exports

mean 92155 725.85 546.93 240890 2859 1733.9 0.147
median 55220 258.41 247.05 180330 1329.1 1054.9 0.0524
std 106530 1574 1068.1 212480 3840.2 1678.8 0.201
skewness 3.301 5.2052 5.9214 1.3681 2.4594 1.0678 − 0.303

Non-exporters (n = 97) Exporters (n = 35)

Wood (2010) Labor Capital Value Added Labor Capital Value Added Share of Exports

mean 76561 364.93 334.83 501470 3063.4 4524.1 0.542
median 44087 109.48 115.39 378000 2195.4 2673.5 0.648
std 78057 702.35 555.87 436100 2510.3 4466.3 0.355
skewness 2.243 3.5155 3.432 0.81454 0.63943 1.0556 − 0.303

Figure 2. Labor and Capital of each industry.

function. To capture the effects of exporting, we use a semi-
parametric modeling extension of SCKLS. The partially linear
model is represented as follows:

y j = Z′
jγ + g0(X j ) + ε j, (6)

where Z j = (Zj1,Zj2)′ denotes contextual variables and γ =
(γ1, γ2)′ is the coefficient of contextual variables. We model
exporting with two variables: a dummy variable indicating the
establishments that are exporting and the share of output being
exported. For more details see Appendix F.
Table 6 presents the summary of statistics for each industry

by exporter/non-exporter. We find that exporters are typically
larger than nonexporter in terms of labor and capital. Input vari-
ables are positively skewed, indicating there exist many small
and few large establishments. Since SCKLS with variable band-
width (k-nearest neighbor) and non-uniform grid performed the
best in our simulation scenarios with non-uniform input data
(as indicated in Appendix E), we use these options. We choose
the smoothing parameter k via leave-one-out cross-validation.
Appendix A explains the details of our implementation of
K-NN for the SCKLS estimator.
Figure 2 shows a plot of labor and capital for each indus-

try and shows input data is sparse for large establishments.

Beresteanu (2005) proposed to include shape constraints only
for the evaluation points that are close to the observations. Thus,
in addition to using a percentile grid of evaluation points, we
propose to use the evaluation points that are inside the convex
hull of observed input {X j}nj=1. See Appendix G for details.

We begin by testing if the Cobb–Douglas production function
is appropriate for our data. We use the hypothesis test for correct
parametric specification described in Henderson and Parmeter
(2015)7. The resulting p-value is 0.092 for the plastic indus-
try and 0.007 for the wood industry, respectively. Therefore, the
Cobb–Douglas parametric specification is likely to be wrong,
particularly applied to the wood industry.
Next, we apply the test proposed in Section 4.2 to determine if

imposing global concavity and monotonicity shape constraints
is appropriate. We estimate a p-value of 0.302 for the plastic
industry and 0.841 for the wood industry, respectively. For both
industries, the estimated p-value is not small enough to reject
H0.

7We apply a Cobb–Douglas OLS to the second stage data {X j, y j − Z jγ}nj=1
which removes the effect of contextual variables from observed output. See
Appendix F for details.
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Table 7. SCKLS fitting statistics for cross-sectional data

Industry Number ofobservations R2

Plastic 245 71.1%
Wood 132 43.8%

6.2 Estimated Production Function and Interpretation

We estimate a semiparametric model with a nonparametric
shape constrained production function, a linear model for
exporting share of sales, and a dummy variable for exporting.
Table 7 shows the goodness of fit (R2) of the production func-
tion: 71.1% of variance is explained in the plastic industry, while
43.8% of variance is explained in the wood industry.
Table 8 reports additional information characterizing the pro-

duction function: the marginal productivity and the marginal
rates of substitution at the 10, 25, 50, 75, and 90 percentiles
are reported for both measures. Here, the rate of substitution
indicates how much labor is required to maintain the same level
of output when we decrease a unit of capital. When comparing
the two industries, we find that the wood industry has a larger
marginal rate of substitution than the plastic industry. This indi-
cates that capital is more critical in the wood industry than the
plastic industry.
We also compare the estimated production function by the

local linear and the SCKLS estimators. Figures 3 and 4 show
the estimated production function within the convex hull of
observations for plastic and wood industries, respectively.

Table 8. Characteristics of the production function

Plastic (2520)

Marginal productivity

Labor (= bl)
(million peso/man

hours)
Capital (= bk)
(peso/peso)

Marginal rate of
substitution
(= bk/bl)

10th percentile 0.00396 0.111 23.3
25th percentile 0.00523 0.139 23.9
50th percentile 0.00579 0.139 24.0
75th percentile 0.00579 0.139 35.3
90th percentile 0.00579 0.260 44.8

Wood (2010)

Marginal productivity Marginal rate of
substitution

Labor (= bl) Capital (= bk) (= bk/bl)

10th percentile 1.46 ×10−18 0.816 760
25th percentile 8.55 ×10−16 0.816 760
50th percentile 0.00133 1.01 760
75th percentile 0.00133 1.01 9.73 ×1014

90th percentile 0.00133 1.01 5.59 ×1017

Visually, the production function estimated by the LL estimator
is difficult to interpret and the values of important economic
quantities such as marginal products and marginal rates of

Figure 3. Production function estimated by LL and SCKLS for the plastic industry (2520).

Figure 4. Production function estimated by LL and SCKLS shape constraints for the wood industry (2010).
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Table 9. Coefficient of contextual variables from a two-stage model

Plastic (2520) Wood (2010)

Dummy of
exporting

Share of
exportingin

sales
Dummy of
exporting

Share of
exportingin

sales

Point estimate 334.5 303.7 −763.0 4114
95% lower
bound

148.7 −334.3 −1944 2568

95% upper
bound

520.3 941.8 417.7 5660

p-value 4.70 ×10−4 0.3493 0.2033 5.64 ×10−7

substitution are also hard to interpret. In particular, it is not
possible to identify most productive scale size.
Table 9 reports the estimated coefficients for the exporting

variables. In the plastic industry, the dummy variable for export-
ing is significant and positive while exports’ share of sales is not.
This indicates that the plants that export tend to produce more
output than plants that do not export regardless of the export
quantity. In contrast, the coefficient on the exports’ share of
sales is significant and positive in the wood industry, while the
dummy variable for exporting is not significant, indicating that
establishments in the wood industry tend to be more productive
the more they export. Thus, in both industries we find evidence
of increased productivity for exporting firms.
Table 10 reports the most productive scale size for the 10,

25, 50, 75, 90 percentiles of Capital/Labor ratio distribution of
observed input. In both industries, the observed value added out-
put is the largest for establishments with high capital to labor
ratios, indicating that capital-intensive establishments have
increased actual output. Furthermore, labor-intensive establish-
ments have smaller most productive scale size in both industries.
This is consistent with the theory of the firm, that is, firms grow

Table 10. Most productive scale size for each capital/labor ratio

Plastic (2520)

Capital/Labor
percentile MPSS Labor MPSS Capital

Output
(value added)

10th percentile 619580 519.1 3290
25th percentile 529980 1344 3010
50th percentile 529980 2604 3185
75th percentile 529980 5617 3602
90th percentile 529980 10270 4248

Wood (2010)

Capital/Labor
percentile MPSS Labor MPSS Capital

Output
(value added)

10th percentile 2531100 741.6 1659
25th percentile 1045000 1200 2142
50th percentile 867250 2712 3470
75th percentile 662700 4179 4682
90th percentile 458150 5644 5893

and becomemore capital intensive over time by automating pro-
cesses with capital and using less labor.

7. CONCLUSION

This article proposed the SCKLS estimator that imposes
shape constraints on a local polynomial estimator. We show the
consistency and convergence rate of this new estimator under
monotonicity and concavity constraints, as well as its relation-
ship with CNLS and CWB. In applications where out-of-sample
performance is less critical and the boundary behavior is of less
concern, such as regulation applications, the CNLS estimator
may be preferable because of its simplicity. In contrast, in cases
where out-of-sample performance is important, such as survey
data, the SCKLS estimator appears to be more robust. Simula-
tion results reveal the SCKLS estimator outperforms CNLS and
LL in most scenarios. We propose and validate the usefulness
of several extensions, including variable bandwidth and non-
uniform griding, which are important to estimate functions with
non-uniform input dataset which is common in manufacturing
survey and census data. We also propose a test for the imposed
shape constraints based on SCKLS. Finally, we demonstrate
the SCKLS estimator empirically using Chilean manufacturing
data. We compute marginal productivity, marginal rate of sub-
stitution, most productive scale size and the effects of exporting,
and provide several economic insights.
One limitation of the proposed SCKLS estimator is its com-

putation efficiency due to the large number of constraints. The
algorithm we proposed for reducing constraints performs well,
and we demonstrate the ability to solve large problems instances
within a reasonable time. Furthermore, our simulation results
show good functional estimates even with a rough grid. Con-
sequently, we can make use of the flexibility of the evaluation
points to reduce the computational time of the estimator.
Potential future research could focus on the bandwidth selec-

tion methods. Typically, optimal bandwidth selection meth-
ods without shape constraints try to trade bias and variance to
find the best estimator in terms of RMSE. Since the imposed
shape restrictions already constrain the variance of the estima-
tor to some extent, we expect that the optimal bandwidth in
the SCKLS estimator will be smaller than the optimal uncon-
strained estimator. Further, if systematic inefficiency is present
in the data, deconvoluting the residuals following the stochastic
frontier literature would allow the investigation of a production
frontier.

SUPPLEMENTARY MATERIALS

Appendix: The document contains: (A) extensions and the
relationship between estimators; (B) technical proofs of the
theoretical results; (C) a test of affinity using SCKLS; (D) an
algorithm for SCKLS computational performance; (E) com-
prehensive results of existing and additional numerical exper-
iments; (F) semiparametric model to integrate contextual
variable; and (G) details of the application to the Chilean
manufacturing data.



12 Journal of Business & Economic Statistics, 2018

ACKNOWLEDGMENTS

We thank two anonymous reviewers and the Associate Editor for providing
useful suggestions that helped improve this article. We also thank Chris Parme-
ter, Jeff Racine, and Qi Li for their helpful comments.

[Received May 2016. Revised January 2018.]

REFERENCES

Ackerberg, D. A., Caves, K., and Frazer, G. (2015), “Identification Properties
of Recent Production Function Estimators,” Econometrica, 83, 2411–2451.
[8]

Alvarez, R., and Görg, H. (2009), “Multinationals and Plant Exit: Evi-
dence From Chile,” International Review of Economics & Finance, 18,
45–51. [8]

Andrews, D. W. K. (2000), “Inconsistency of the Bootstrap When a Parameter
is on the Boundary of the Parameter Space,” Econometrica, 68, 399–405.
[5]

Benavente, J. M. (2006), “The Role of Research and Innovation in Promoting
Productivity in Chile,” Economics of Innovation and New Technology, 15,
301–315. [8]

Beresteanu, A. (2005), “Nonparametric Analysis of Cost Complementarities
in the Telecommunications Industry,” RAND Journal of Economics, 36,
870–889. [9]

——— (2007), “Nonparametric Estimation of Regression Functions under
Restrictions on Partial Derivatives,” working paper. [1]

Bernard, A. B., and Jensen, J. B. (2004), “Exporting and Productivity in the
USA,” Oxford Review of Economic Policy, 20, 343–357. [8]

Birke, M., and Dette, H. (2007), “Estimating a Convex Function in
Nonparametric Regression,” Scandinavian Journal of Statistics, 34,
384–404. [1]

Brunk, H. D. (1955), “Maximum Likelihood Estimates of Monotone Parame-
ters,” The Annals of Mathematical Statistics, 26, 607–616. [1]

Carroll, R. J., Delaigle, A., and Hall, P. (2011), “Testing and Estimating Shape-
Constrained Nonparametric Density and Regression in the Presence of
Measurement Error,” Journal of the American Statistical Association, 106,
191–202. [1]

Cavaliere, G., Nielsen, H.B., and Rahbek, A. (2017), “On the Consistency of
Bootstrap Testing for a Parameter on the Boundary of the Parameter Space,”
Journal of Time Series Analysis, 38, 513–534. [5]

Cleveland, W. S. (1979), “Robust Locally Weighted Regression and Smoothing
Scatterplots,” Journal of the American Statistical Association, 74, 829–836.
[3]

Davidson, R., and Flachaire, E. (2008), “The Wild Bootstrap, Tamed at Last,”
Journal of Econometrics, 146, 162–169. [5]

De Loecker, J. (2007), “Do Exports Generate Higher Productivity? Evidence
From Slovenia,” Journal of International Economics, 73, 69–98. [8]

Du, P., Parmeter, C. F., and Racine, J. S. (2013), “Nonparametric Kernel Regres-
sion With Multiple Predictors and Multiple Shape Constraints,” Statistica
Sinica, 23, 1347–1371. [1]

Fan, Y., and Guerre, E. (2016), “Multivariate Local Polynomial Estimators:
Uniform Boundary Properties and Asymptotic Linear Representation,” in
Essays in Honor of Aman Ullah, eds. G. Gonzalez-Rivera, R. C. Hill, and
T.-H. Lee, Bingley, UK: Emerald, pp. 489–537. [3]

Grenander, U. (1956), “On the Theory ofMortalityMeasurement: Part II,” Scan-
dinavian Actuarial Journal, 1956, 125–153. [1]

Groeneboom, P., Jongbloed, G., and Wellner, J. A. (2001), “Estimation of a
Convex Function: Characterizations and Asymptotic Theory,” The Annals
of Statistics, 29, 1653–1698. [1]

Hall, P., and Heckman, N. E. (2000), “Testing for Monotonicity of a Regression
Mean by Calibrating for Linear Functions,” The Annals of Statistics, 28,
20–39. [5]

Hall, P., and Huang, L.-S. (2001), “Nonparametric Kernel Regression Subject
to Monotonicity Constraints,” The Annals of Statistics, 29, 624–647. [1]

Hanson, D., and Pledger, G. (1976), “Consistency in Concave Regression,” The
Annals of Statistics, 4, 1038–1050. [1]

Henderson, D. J., and Parmeter, C. F. (2015), Applied Nonparametric Econo-
metrics, Cambridge, UK: Cambridge University Press. [9]

Hildreth, C. (1954), “Point Estimates of Ordinates of Concave Functions,” Jour-
nal of the American Statistical Association, 49, 598–619. [1]

Kuosmanen, T. (2008), “Representation Theorem for Convex Nonparametric
Least Squares,” The Econometrics Journal, 11, 308–325. [1,3]

Kuosmanen, T., and Kortelainen, M. (2012), “Stochastic Non-Smooth Envelop-
ment of Data: Semi-Parametric Frontier Estimation Subject to Shape Con-
straints,” Journal of Productivity Analysis, 38, 11–28. [6]

Lee, C.-Y., Johnson, A. L., Moreno-Centeno, E., and Kuosmanen, T. (2013),
“A More Efficient Algorithm for Convex Nonparametric Least Squares,”
European Journal of Operational Research, 227, 391–400. [2,6]

Levinsohn, J., and Petrin, A. (2003), “Estimating Production Functions Using
Inputs to Control for Unobservables,” The Review of Economic Studies, 70,
317–341. [8]

Li, Q., and Racine, J. S. (2007), Nonparametric Econometrics: Theory and
Practice, Princeton, NJ: Princeton University Press. [3]

Li, Z., Liu, G., and Li, Q. (2017), “Nonparametric Knn estimation with mono-
tone constraints,” Econometric Reviews, 36, 988–1006. [1,3]

Lim, E., and Glynn, P. W. (2012), “Consistency of Multidimensional Convex
Regression,” Operations Research, 60, 196–208. [1,4]

Liu, R. Y. (1988), “Bootstrap Procedures Under Some Non-I.I.D. Models,” The
Annals of Statistics, 16, 1696–1708. [5]

Mammen, E. (1991), “Nonparametric Regression Under Qualitative Smooth-
ness Assumptions,” The Annals of Statistics, 19, 741–759. [1]

——— (1993), “Bootstrap and Wild Bootstrap for High Dimensional Linear
Models,” The Annals of Statistics, 21, 255–285. [5]

Masry, E. (1996), “Multivariate Local Polynomial Regression For Time Series:
Uniform Strong Consistency and Rates,” Journal of Time Series Analysis,
17, 571–599. [3]

Mazumder, R., Choudhury, A., Iyengar, G., and Sen, B. (2017), “A computa-
tional framework for multivariate convex regression and its variants,” Jour-
nal of the American Statistical Association, (Accepted). [3]

Nesterov, Y. (2005), “Smooth Minimization of Non-Smooth Functions,”Math-
ematical Programming, 103, 127–152. [3]

Pavcnik, N. (2002), “Trade Liberalization, Exit, and Productivity Improve-
ments: Evidence From Chilean Plants,” The Review of Economic Studies,
69, 245–276. [8]

Racine, J., and Li, Q. (2004), “Nonparametric Estimation of Regression Func-
tions With Both Categorical and Continuous Data,” Journal of Economet-
rics, 119, 99–130. [3]

Seijo, E., and Sen, B. (2011), “Nonparametric Least Squares Estimation of
a Multivariate Convex Regression Function,” The Annals of Statistics, 39,
1633–1657. [1]

Stone, C. J. (1977), “Consistent Nonparametric Regression,” The Annals of
Statistics, 5, 595–620. [3,6]

Varian, H. R. (1984), “The Nonparametric Approach to Production Analysis,”
Econometrica, 52, 579–597. [2]

Wu, C.-F. J. (1986), “Jackknife, Bootstrap and Other Resampling Methods in
Regression Analysis,” The Annals of Statistics, 14, 1261–1295. [5]


	Abstract
	1.INTRODUCTION
	2.MODEL FRAMEWORK AND METHODOLOGY
	2.1.Model
	2.2.Shape-Constrained Kernel-Weighted Least-Squares (SCKLS)
with Local Linear

	3.THEORETICAL PROPERTIES OF SCKLS
	4.SHAPE MISSPECIFICATION: THEORY AND TESTING
	4.1.Misspecification of the Shape Restrictions
	4.2.Hypothesis Testing for the Shape

	5.SIMULATION STUDY
	5.1.Numerical Experiments on Estimation
	5.2.Numerical Experiments on Testing the Imposed Shape

	6.APPLICATION
	6.1.The Census of Chilean Manufacturing Plants
	6.2.Estimated Production Function and Interpretation

	7.CONCLUSION
	SUPPLEMENTARY MATERIALS
	ACKNOWLEDGMENTS
	References

