
Returns to scope: a metric for production synergies demonstrated
for hospital production

Brandon Pope • Andrew Johnson

� Springer Science+Business Media New York 2012

Abstract Knowledge of the production function’s scope

properties can provide insights for firms choosing their oper-

ating strategy, policy-makers considering industry structure,

and analysts determining appropriate tools. We introduce a

new property, returns to scope, which is distinct from scale

properties and does not rely on price information. Based on

desirable characteristics of an estimator of returns to scope, we

propose two methods for assessment. We present examples

using simulated data and hospital production data from the

2008 National Inpatient Sample of the Agency for Healthcare

Research and Quality’s Healthcare Cost and Utilization Pro-

ject. We find that hospitals experience negative returns to

scope (productivity losses) from the joint production of minor

and major diagnostic procedures. Based upon our results we

conclude that the new returns to scope property allows sharper

insights than classic economies of scope approaches.

Keywords Returns to scope � Diversification � Hospital

production

JEL Classification D24 � I12

1 Introduction

Scope properties of production functions describe how mul-

tiple outputs are traded off against each other, and scale

properties describe the trade-offs between inputs and outputs.

Despite the relative shortage of theoretical attention in the

productivity literature, scope properties have been applied in

industries including agriculture (Paul and Nehring 2005),

transportation (Rawley and Simcoe 2010; Growitsch and

Wetzel 2009), healthcare (Preyra and Pink 2006), education

(Sav 2004), banking (Ferrier et al. 1993), R&D (Henderson

and Cockburn 1996; Arora et al. 2009), semiconductor man-

ufacturing (Macher 2006), and telecom (Evans and Heckman

1984). These applications typically focus on the classic

notions of economies and diseconomies of scope (Panzar and

Willig 1981) and their derivatives. The applied interest in

scope properties is largely due to its utility in strategic deci-

sion-making related to product mix, mergers, outsourcing, and

diversification. Extending the literature, this paper introduces

returns to scope, a new scope property with several appealing

features such as disentanglement from scale properties and

non-reliance on price information. We give two methods

which assess returns to scope from production data, and

illustrative examples using simulated as well as hospital

production data from the 2008 National Inpatient Sample of

the Agency for Healthcare Research and Quality (AHRQ)

Healthcare Cost and Utilization Project (HCUP). Our results

can be interpreted as giving insight as to the potential pro-

ductivity gains (or losses) from joint production of outputs.

For example, we find that hospitals of all sizes experience

negative returns to scope (productivity losses) from the joint

production of minor and major diagnostic procedures.

The remainder of this paper is organized as follows.

Section 2 reviews the literature on scope properties of

production functions and their assessment. In Sect. 3 we

introduce the new property, returns to scope, and examine

its relationship to economies of scope. Section 4 discusses

the desirable properties of an assessment of returns to

scope, and presents two such methods. Section 5 describes
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an example using simulated data, and then applies the new

property and methods to hospital data. Section 6 discusses

the results and our conclusions.

2 Literature review: economies of scope and related

measures

The classic definition of economies of scope for multi-

output firms stems from Panzar and Willig (1981) and

Baumol et al. (1982) that economies of scope exist where it

costs less to combine two or more firms with orthogonal

output vectors than to continue producing separately. The

mathematical definitions for the existence and measure-

ment of economies of scope are expressed through the cost

function, CðyÞ, where M ¼ 1; . . .;mf g is the set of outputs

and y 2 R
m
þ is the firm’s output vector.

Definition 1 (Baumol et al. 1982) Let P ¼ T1; . . .; Tkf g
denote a non-trivial partition of S � M. There are econo-

mies of scope at yS with respect to the partition P if

Xk

i¼1

C yTi
ð Þ[ C ySð Þ:

If the reverse inequality holds, there are diseconomies of

scope at yS. Note that this definition is restrictive in the

sense that economies of scope is determined from

comparing specialized firms with orthogonal output

vectors to a large firm producing the sum of the

orthogonal components. Evans and Heckman (1984)

observe that these areas of the cost function may not be

well characterized when data on these types of firms is

unavailable. Revised definitions using less specialized

regions of the cost function, and considering other

aggregation and dissolution strategies include:

• Berger et al. (1987) define expansion path subadditivity

(EPSUB) considering two firms (or two production

plans) A and B by

EPSUB yð Þ

¼
C yA

1 ;y
A
2 ;y

A
3

� �
þC yB
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• Ferrier et al. (1993) define economies of diversification

(DIVERS) by

DIVERS yð Þ¼
C yA

1 ;0;y
A
3

� �
þC 0;yB

2 ;y
B
3

� �
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• Preyra and Pink (2006) define a relaxed notion of

economies of scope by

SCOPE yð Þ

¼
C y1�21;

22

m�1
; � � � ; 2m

m�1

� �
þ���þC 21

m�1
; � � � ;2m�1

m�1
;ym�2m

� �

C yð Þ

However, these generalizations still suffer the limitations of

using price information and entangling scope and scale

concepts. Chavas and Kim (2010) address this issue by

decomposing economies of diversification into complemen-

tarity, scale, convexity, and fixed cost components. Data can be

used to estimate the parameters of the cost function when input

price data is available and a functional form can be assumed.

Once the cost function is parameterized, it is easy to calculate

economies of scope, or any of its extensions. For example,

Preyra and Pink (2006) estimate a quadratic cost function for

hospitals in Ontario, and examine the scope and scale properties

of the estimated function to make policy recommendations

regarding industry configuration. However, the cost function

approach is inappropriate if price data is not available or if firms

do not face identical prices. Instead, scope properties may be

examined through the production process itself, comparing the

production sets of diversified and specialty firms (Färe 1986;

Prior 1996; Morita 2003).

3 Returns to scope

Clearly if a firm is a price taker in input and output mar-

kets, the only source of economies of scope is through the

characteristics of the production function itself, despite its

definition and usual estimation through the cost function.

Therefore, our approach avoids reliance on prices. Noting

that the classic definition of economies of scope and its

related extensions are inextricably entangled with the scale

properties of the production function, we also suggest that

it is more appropriate to define scope properties orthogonal

to scale, i.e., based on the trade-offs between outputs at a

fixed input level.

We note that output sets may differ depending on the

types of inputs used. Consider the classic convex output set

illustrated by the case of a mill which uses bundles of

wheat to produce both grain and chaff. The solid line in the

left panel of Fig. 1 shows the production possibilities

characterized by the output set at a fixed level of input.

Thus, the output set as determined by a pure material

balance argument follows the dashed lines in the left panel.

The departure of the production possibilities frontier (the

solid line) from the material balance frontier is thought to

be greatest when the firm attempts to produce both outputs

at a high level because more outputs are lost due to mul-

titasking. For the case of a firm using yarn as an input to

produce hats and mittens, the dashed line in the right panel
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shows the linear output set determined by the material

balance constraint. Similarly, departure from this line in the

production possibilities set, potentially created by change-

over costs, is greatest when both outputs are relatively

high, and produces an output set (the solid line) which is

non-convex.

Further, consider the boundary of the output set for a

single input, two output production technology. When each

output exhibits ‘S-shape’ production, the shape of the

output sets can vary by input level. Let the total input x be

split between outputs y1 and y2 with proportions p and

(1 - p). Let each output be produced by

yj ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
:5xj � 13

p
þ 2. Figure 2 shows significant variation

in the shape of the boundary by input level.

Another argument used to diminish the need for meth-

ods which can characterize non-convex frontiers is that

profit maximizing firms will never be observed in these

regions of the frontier even if the true frontier is non-

convex. Yet, there are several reasons why firms might be

observed in such regions, e.g., firms are simply allocatively

inefficient and produce in a non-convex region in error.

Public firms who make output mix decisions using criteria

other than profit maximization could also be observed in

non-convex regions, or contractual restrictions can prevent

the selection of profit maximizing output mixes. Profit

maximizing firms themselves might be observed producing

in a non-convex region if the price taking assumption is too

strong and a pricing equilibrium supports the firm’s

behavior. Further, if markets are imperfectly competitive,

excess capacity may lead firms to increase their scope of

production (Wolinsky 1986). Finally, firms which are

regulated, dynamically expanding, or facing uncertainty

might also be observed in non-convex regions. For exam-

ple, risk-averse firms uncertain about production outcomes

will avoid specializing in any way which creates high risk.

All of these justifications support our interest in charac-

terizing non-convex output sets.

3.1 Convexity in production technologies

Inevitably, scope assessments are influenced by convexity,

a popular assumption for production technologies despite

the observation that convexity is assumed for its analytical

convenience rather than its economic realism (McFadden

and Fuss 1978). Several nonparametric estimators such as

data envelopment analysis (DEA, Cooper et al. 2006)

assume full convexity of the production technology,

enforcing convexity of all input sets, output sets, and

input–output sets. Of these, the assumption of convexity

between inputs and outputs has received the most attention,

whereas the assumption of convexity of input sets has

received little scrutiny in the literature based on the theo-

retical justification of diminishing marginal rates of tech-

nical substitution (although even this assumption may not

hold when the production process could make better use of

a single type of input as opposed to a mixture of two types).

There has been little interest in relaxing the assumption of

convexity of output sets, based on the theory of increasing

opportunity costs. The theory of increasing opportunity

costs argues that, holding inputs fixed and producing only

output 1, the opportunity costs in terms of output 1 required

Fig. 1 Material balance and

production possibilities

Fig. 2 Varying output frontiers by scale
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to produce a single unit of output 2 are relatively low. As

production of output 2 increases, resources which have

higher opportunity costs in terms of output 1 must be used

to produce output 2. We note that this argument is equiv-

alent to arguing for increasing absolute marginal rates of

transformation between outputs. While popular, these

arguments neglect effects such as change-over costs, setup

costs, and knowledge spillover, which may vary with scale.

For example, as firms increase in scale, complexity and

bureaucratic burden may reduce the opportunity for gains

from scope (De Witte and Marques 2011). In the case that

all resources are equally good at producing either of the

two outputs, increasing marginal products or change-over

costs would lead to non-convex output sets with a bound-

ary bowed towards the origin. Other support for non-con-

vex output sets appears in Becker and Murphy (1992), who

note that ‘‘increasing returns from concentrating on a nar-

rower set of tasks raises the productivity of a specialist

above that of a jack-of-all-trades.’’ See Briec et al. (2006)

for further discussion of convexity assumptions and their

relationship to the cost function.

The free disposal hull (FDH) (Afriat 1972) model com-

pletely relaxes convexity, leaving only the assumptions of

monotonicity, envelopment, and minimum extrapolation.

Motivations for relaxing the convexity assumptions could

include the desire to accurately estimate productions functions

with regions of increasing returns to scale or increasing mar-

ginal product and regions where non-convex output sets pre-

vail. The trade-off for additional flexibility in characterizing

these regions is diminished ability to discriminate between

firms (Wheelock and Wilson 2009). Other researchers have

partially relaxed convexity, e.g., Kuosmanen (2001) allows as

much convexity as possible while not allowing any FDH

efficient firms to appear inefficient. Bogetoft et al. (2000)

construct a technology which is convex in both input sets and

output sets, but not necessarily so between inputs and outputs.

3.2 Definition and relationship to economies of scale

Before formalizing a definition of returns to scope, recall

the arguments which have been presented regarding plau-

sible trade-offs between outputs in multi-output production

theory (Baumol et al. 1982, Section 4C). One argument

arising from the work of Adam Smith is that returns to

specialization could exist between outputs. Explanations

for such returns include the notion that laborers can pro-

duce a single output more efficiently than multiple outputs

because of learning, repetition, or change over costs. An

alternative argument comes from the Marshallian notion of

joint production, and suggests that a firm diversified in its

outputs should be able to produce more efficiently than two

specialized firms. This argument relates to the notion of

quasi-public inputs. Turning again to Fig. 1, the left panel

displays Marshallian returns to diversification and convex

output sets, while the right panel illustrates Smith’s concept

of returns to specialization with non-convex output fron-

tiers bowed towards the origin.

Our definition of returns to scope uses these concepts and

theoretical justifications for investigating the shape of the

output isoquant. Let T ¼ x; yð Þjx can produce yf g � R
nþm
þ

represent the production technology, which can be equiva-

lently expressed through its input sets, I yð Þ ¼ xj x; yð Þ 2 Tf g,
or output sets, P xð Þ ¼ fyj x; yð Þ 2 Tg. A production technol-

ogy is said to exhibit constant returns to scale (CRS) if

x; yð Þ 2 T ) kx; kyð Þ 2 T; 8k� 0. Let BðP xð ÞÞ be the

boundary of the output set PðxÞ. Our notion of returns to scope

is defined between pairs of outputs, with inputs and other

outputs fixed, so we frequently use the notation P x; y�ij

� �
¼

fðyi; yjÞj x; yi; yj; y�ij

� �
2 Tg. Since only non-negative quan-

tities of inputs and outputs are meaningful, all set comple-

ments are restricted to the non-negative orthant, i.e.,

Pc xð Þ ¼ fy 2 R
m
þj x; yð Þ 62 Tg. We make two standard

assumptions regarding the production technology:

Assumption 1: T is monotonic, that is x; yð Þ 2
T ) x

0
; y
0� �
2 T 8x0 � x; y

0 � y.

Assumption 2: T is compact in output sets, i.e., 8x;PðxÞ
is compact.

Definition 2 (i) Positive returns to scope exist between

outputs i and j at x; yij if Pðx; y�ijÞ is convex.

(ii) Negative returns to scope exist between outputs i and

j at x; yij if Pcðx; y�ijÞ is convex.

If the production technology T can be characterized by

the multi-input, multi-output production function

Fðx; yÞ� 0, with frontier F x; yð Þ ¼ 0, and satisfying the

conditions of the implicit function theorem, the following

equivalent definition can be stated.

Definition 3 (i) Positive returns to scope exist between

yi and yj at x; y�ij if o2yi

o2yj
� 0 along B P x; y�ij

� �� �
.

(ii) Negative returns to scope exist between

yi and yj at x; y�ij if o2yi

o2yj
� 0 along B P x; y�ij

� �� �
.

If both positive and negative returns to scope exist,

outputs i and j have a linear returns to scope at x; yij. Based

on our definition of returns to scope, we consider the

relationship between returns to scope, returns to scale, and

economies of scope.

Proposition 1 For CRS technologies, the assessment of

returns to scope between two outputs is constant along all

linear expansion and contraction paths.

Proof: We prove the consistency of a positive returns to

scope assessment between two outputs, using Definition 2,
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from which the proofs for negative and linear returns are

analogous. Suppose T exhibits CRS and positive returns to

scope exist between outputs i and j at x0; y0�ij. Then we need

to ensure the convexity of Pðkx; ky�ijÞ for k[ 0. Let y1 ¼

y1
i ; y

1
j

� �
; y2 ¼ y2

i ; y
2
j

� �
2 Pðkx; ky�ijÞ for k[ 0. Then by

CRS, y1

k ;
y2

k 2 Pðx; y�ijÞ. Positive returns to scale implies

that hy1

k þ
1�hð Þy2

k 2 P x; y�ij

� �
; 8h 2 0; 1½ �, and CRS again

implies that hy1 þ 1� hð Þy2 2 Pðkx; ky�ijÞ; 8h 2 0; 1½ �. h

We also state the following result regarding the rela-

tionship between returns to scope and economies of scope.

Proposition 2 Concerning single-input, two-output pro-

duction technologies:

(i) Technologies which are characterized by positive

returns to scope at all input levels and non-decreasing

returns to scale display economies of scope for all pairs of

production plans.

(ii) Technologies which are characterized by negative

returns to scope at all input levels and non-increasing

returns to scale display diseconomies of scope for all

production plans.

Proof: (i) Consider two production plans ðy1; 0Þ and

ð0; y2Þ. In order to observe economies of scope, it must be

that C y1; y2ð Þ\C y1; 0ð Þ þ Cð0; y2Þ. A sufficient condition

for this cost relation to be observed is that

L y1; 0ð Þ þ L 0; y2ð Þ � Lðy1; y2Þ. Let x1 be the minimum

amount of input that can produce ðy1; 0Þ and x2 be the

minimum amount of input that can produce ð0; y2Þ. Then

L y1; 0ð Þ ¼ x : x� x1f g; L 0; y2ð Þ ¼ x : x� x2f g; and L y1;ð
0Þ þ L 0; y2ð Þ ¼ fx : x� x1 þ x2g. All that is left to show is

that x1 þ x2 can produce ðy1; y2Þ.
Without loss of generality, let x2� x1, and let x2

x1
¼ k� 1.

Then by non-decreasing returns to scale, 1þ kð Þ y1; 0ð Þ 2
P x1 þ x2ð Þ and 1þ 1

k

� �
0; y2ð Þ 2 Pðx1 þ x2Þ. Now by posi-

tive returns to scope, and choosing h ¼ 1
1þk ; 9y 2 Pðx1 þ

x2Þ such that y� h 1þ kð Þ y1; 0ð Þ þ 1� hð Þ 1þ 1
k

� �
0; y2ð Þ ¼

ðy1; y2Þ. Then monotonicity implies x1 þ x2ð Þ 2 Lðy1; y2Þ.
(ii) Consider a production plan ðy1; y2Þ. In order to

observe diseconomies of scope, it must be that

C y1; y2ð Þ[ C y1; 0ð Þ þ Cð0; y2Þ. A sufficient condition is

that L y1; 0ð Þ þ L 0; y2ð Þ � Lðy1; y2Þ. Let x12 be the mini-

mum amount of input that can produce ðy1; y2Þ. Let ðby1; 0Þ
be the maximum amount of the first output that x12 can

produce. By our assumptions of NRSc, the frontier cannot

be bowed away from the origin more than linearly at any

point and combined with our assumption of compact output

sets, this forces by1 [ y1. Again, by NRSc the frontier is

bowed towards the origin at least linearly at every point, so

the maximum amount of the second output producible by

x12 is at least by2 ¼ y2

by1�y1

by1 [ y2. Now let k1 ¼
y1

by1

\1; and k2 ¼ y2

by2

\1: By our assumption of non-increas-

ing returns to scale, k1x12 can produce y1, and k2x12 can

produce y2. Finally, k1 þ k2 ¼ 1; so x12 2 L y1; 0ð Þþ
Lð0; y2Þ, and diseconomies of scope must be observed. h

Proposition 2 shows that returns to scope and economies

of scope are related, but non-nested. Even simple tech-

nologies (single-input, two-output) exist which exhibit

positive returns to scope at all input levels, yet exhibit

diseconomies of scope. Similarly, there could exist tech-

nologies which exhibit negative returns to scope at all input

levels, but economies of scope could be found. We illus-

trate the potentially misleading signal from economies of

scope using a single-input, two-output production function

xb ¼ ya
1 þ ya

2. We can create examples of production

function which exhibit negative (positive) returns to scope

everywhere and have economies (diseconomies) of scope.

Graphs of these two cases appear in Fig. 3. First let

a ¼ :5; b ¼ 1:5, this production function displays negative

returns to scope everywhere. If we normalize the cost per

unit of x to 1, we can quickly compute that

C 5; 0ð Þ þ C 0; 5ð Þ ¼ 3:43 [ 2:73 ¼ Cð5; 5Þ, finding econ-

omies of scope. Now let a ¼ 2; b ¼ :5, this production

function displays positive returns to scope everywhere. We

compute that C 5; 0ð Þ þ C 0; 5ð Þ ¼ 1250\2500 ¼ Cð5; 5Þ,
finding diseconomies of scope.

Capturing the inverse relationship, what economies of

scope imply about returns to scope, is elusive due to the

composite nature of the economies of scope measure and

the flexibility of returns to scope to vary between input

levels. We define returns to scope with this in mind, since it

is plausible for small firms to exhibit negative returns to

scope while larger firms exhibit positive returns to scope.

From a policy perspective, scope properties help to

answer industry configuration questions, such as, ‘‘Given

Fig. 3 Returns to scope, economies of scope, and scale of production
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two hospitals of the same size (input level), should they

specialize or diversify between outputs, e.g., diagnostic and

therapeutic procedures, to achieve the greatest levels of

productivity?’’ Using the new returns to scope measure, the

answer is diversify if the production process exhibits

positive returns to scope at the input level, and specialize if

the production technology exhibits negative returns to

scope at the input level. Whether these hospitals currently

exhibit economies or diseconomies of scope is irrelevant.

The knowledge of returns to scope provides information for

policy-makers in structuring industries, managers in pro-

duction planning, and analysts in modeling and bench-

marking. We now introduce two methods for assessing

returns to scope.

4 Methods for assessing returns to scope

From the existing literature, we identify five properties

desirable for our assessment method:

1. Applicability without price data or observations of

specialized firms.

2. Ability to detect both positive and negative returns to

scope.

3. Avoid unnecessarily strong assumptions about the

functional form of the production function.

4. Robust to noise in the data.

5. Use of frontier data.

Below we present two methods for identifying returns to

scope.

4.1 Method one: output frontier regression

This two-stage method is similar to Thiry and Tulkens (1992)

and Bardhan et al. (1998), who report improved results from

first identifying efficient observations before performing

estimation. The first stage identifies the efficient subset of the

data. Since scope and scale are properties of the production

frontier, they are appropriately estimated using only frontier

observations. In order to identify efficient firms, Assumptions

1 and 2 from Sect. 3.2 are used. Recall that under these

assumptions the efficient observations at any input level x are

those which use at most x input and are non-dominated in

outputs. Observation k with production vector ðxk; ykÞ is

efficient at input level x if xk� x and 9= another observation,

say l with xl� x and yl� yk. This criterion selects the efficient

observations from the FDH technology at each input level.

The second stage fits a curve for each pair of outputs by using

the efficient points at a given level of input to estimate returns

to scope between a pair of outputs. The curve we estimate by

OLS is

0 ¼ F x; yð Þ ¼ xþ aiyi þ ajyj þ bijyiyj;

which holding x constant gives

oyj

oyi
¼ �oF

oyi

�
oF

oyj
;

o2yj

oy2
i

¼ �
oyj

oyi

o2F
oyioyj

oF
oyj

:

Monotonicity ensures that the sign of
o2yj

oy2
i

is constant, and

thus we can use Definition 3 to assess the returns to scope.

Since o2F
oyioyj
¼ bij, the sign of the bij term gives the

assessment of returns to scope. That is, a negative value

for bij implies that
o2yj

oy2
i

is positive, which we defined as

negative returns to scope. In the case that the production

technology uses multiple inputs, a measure of aggregate

input, gðxÞ, can replace x.

An appealing feature of this method is the statistical

significance of the bij parameter provides certainty about

whether the data supports a conclusion of positive or

negative returns to scope. Although the first stage is sen-

sitive to noise in the data, we find that this sensitivity can

be reduced by using a thick frontier method, e.g., Berger

and Humphrey (1991). The functional form of the pairwise

frontier chosen is appealing because of its simplicity, ease

of estimation, and flexibility to characterize positive or

negative returns to scope.

4.2 Method two: comparison of hull areas

This method compares the areas of hulls constructed using

various estimation procedures. DEA estimates convex

output sets which are present when the production process

features positive returns to scope. FDH estimates non-

convex output sets, more closely approximating the pro-

duction frontier when non-convexities are present. We note

that the areas from DEA and FDH efficient points should

not be directly compared since in the case that convexity

does hold, these procedures will likely identify the same set

of efficient points, but yield different areas of output sets.

Instead we need to construct a baseline to which we can

compare a DEA output set area to identify positive returns

to scope, and to compare an FDH output set area to identify

negative returns to scope. We use the definition of anchor

points from Bougnol and Dulá (2009) to construct the

anchor interpolation hull (AIH) for this purpose.

Definition 4 (Bougnol and Dulá 2009) An extreme-effi-

cient point is an anchor point if it belongs to an unbounded

face of PVRS.
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The set of extreme-efficient points is the minimal set of

points used to define a convex hull which is equivalent to

the variable returns to scale (VRS) DEA hull PVRS.

Bougnol and Dulá prove that an extreme-efficient point is

an anchor if and only if there exists a solution to the DEA

multiplier formulation where one of the multiplier prices is

zero. They also give an algorithm for identifying anchor

points. We construct the anchor interpolation hull (AIH)

from anchor points, and compare it to hulls defined by

DEA and FDH efficient points.

To assess returns to scope between outputs i and j at

input level x, this method uses all data points with inputs

less than x. We map the outputs into R
2 by the ij-projection

mapping, pij y1; . . .; ymð Þ ¼ ðyi; yjÞ. An alternative to using

projections would be to use sections such as those descri-

bed in Krivonozhko et al. (2004), however these sections

assume convexity. The three areas used to assess returns to

scope are based on convex polytopes

ADEA ¼ A conv Yeff
DEA [ 0

� �� �
; ð1Þ

AFDH ¼ A conv Yeff
FDH [ 0

� �� �
� A convðYeff

FDHÞ
� �

; ð2Þ

AAIH ¼ A conv Yeff
anchor [ 0

� �� �
; ð3Þ

where convðSÞ means the convex hull of the set S, Yeff
model

represents the set of points deemed as efficient using a

particular model, and Að�Þ is the area operator. Note that

since anchor points are always DEA efficient, and DEA

efficient points are always FDH efficient, meaning all three

sets of efficient points include the anchor points. Therefore,

the only difference in areas comes from the shape of the

frontier characterizing the trade-off between outputs i and

j. The ranking of the areas is given by AFDH �AAIH �ADEA.

This leads to the following definition:

Definition 5 For a given input level x, and considering

outputs i and j, let ADEA;AFDH ; and AAIH be the areas given

by (1)–(3). Then we have the following measures for

positive returns to scope (PRSc) and negative returns to

scope (NRSc):

PRSc ¼ ADEA � AAIH

AAIH
; ð4Þ

NRSc ¼ AAIH � AFDH

AAIH
: ð5Þ

By construction, both PRSc and NRSc are greater than or

equal to 0. In general, both PRSc and NRSc could be

greater than 0. The production process exhibits positive

returns to scope between i and j at x if max PRSc;f
NRScg ¼ PRSc, and negative returns to scope if

max PRSc;NRScf g ¼ NRSc. The area-based approach is

more sensitive to noise in the data than the two-stage

method, but in the case that noise is bounded and uniformly

affects all mixes of outputs, Gstach (1998) shows that

envelopment frontiers are asymptotically consistent

estimators for the shape of the frontier. Noise can be

bounded by using outlier detection procedures (Johnson

and McGinnis 2008). The advantage of the area-based

method is the lack of a functional form specification.

Note that our definitions of returns to scope are for pairs

of outputs. For firms with three or more outputs, both of

our methods assess the pairwise trade-offs between yi and

yj independent of the level of yk. We make an additional

assumption that returns to scope between yi and yj do not

vary with yk, primarily to reduce the amount of data

required for assessment of returns to scope. By our

assumption of monotonicity, the ij-output set will clearly

vary with yk, and our implicit assumption is only that the

shape of the frontier does not vary with yk. We call this

property output scope invariance, a relaxation of the

property that ij-output sets are homothetic in yk. We discuss

how this assumption can be tested in the ‘‘Appendix’’.

5 Illustrative example and hospital application

To test the effectiveness of these methods, we first consider

a single-input, two-output production function. The input,

x, is drawn uniformly from the integers f5; 6; 7; . . .; 15g.
Inefficiency, u, is generated from jN 0; 0:1ð Þj, and enters the

production process as wasted input. Using total resources

1� uð Þx, a firm then devotes a fraction, p	Uð0; 1Þ, of

these resources to produce the first output, y1, and the

remaining resources, 1� pð Þ 1� uð Þx, to produce the sec-

ond output, y2. Based on resources ri used in producing yi,

the amount of output generated is given by yi ¼ r
1=c
i . We

vary c 2 f0:5; 1; 2g to create output set frontiers bowed

towards the origin, displaying negative returns to scope;

linear; and bowed away from the origin, displaying positive

returns to scope. We experiment with 50 and 100 firms

with the results reported in Tables 1 and 2. Statistical

significance of method one is indicated by *, **, and ***

for significance levels 0.10, 0.05, and 0.01. Although

method two has no statistical basis for significance, we

highlight large values of PRSc� NRScj j[ 0:15; 0:30;

and 0:45, by ^, ^^, ^^^.

Whether using 50 or 100 firms, the two methods agree in

their assessment of returns to scope at all input levels when

c = 0.5 or 2. The sign of the b12 term is significant for

many of these tests and the magnitude of PRSc� NRScj j is
large, especially in the runs with 100 firms. When c ¼ 1,

the output set frontier is linear, and both methods show

little evidence for positive or negative returns to scope. The

two-stage method finds no significant returns to scope at
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any input level for either experiment. Both methods appear

to benefit from more data. The two-stage method finds

more significance from 100 firms when c = 0.5 or 2. The

area-based method shows greater differences in PRSc and

NRSc when c = 0.5 or 2, and smaller differences when

c ¼ 1.

For data with many distinct input levels, the range of

inputs can be discretized to assess returns to scope. In

general, returns to scope are potentially different at each

input level. However, for certain technologies, e.g., output

homothetic technologies (Färe and Primont 1995), scope

assessments should be consistent at all input levels. In the

case that the technology is assumed to be output-homo-

thetic, our methods can test this assumption.

To investigate the robustness of our results, we run 100

trials at each c level for each experiment size. Table 3

reports the proportion of significant (and pseudo-signifi-

cant) positive or negative returns to scope by each of the

two methods. Checking our assumption of monotonicity

from the regression results, we find that monotonicity holds

at 100 % of FDH efficient firms for more than 90 % of all

experiments. Table 3 also shows that at c = 1 method one

may be biased towards PRSc and method two may be

biased towards NRSc. Despite creating bias in small sam-

ples, when output sets are convex (such as when c = 1), we

know that both DEA and FDH are asymptotically consis-

tent estimators of the true frontier (Banker 1993; Korost-

elev et al. 1995). Therefore as the number of firms becomes

large, the set of DEA and FDH efficient points will coin-

cide in the limit and the biases of each method will vanish.

The source of each methods bias is discussed in the

Table 1 Example of methods

for assessing returns to scope:

50 firms

c = 0.5 c = 1 c = 2

x b12 PRSc-NRSc x b12 PRSc-NRSc x b12 PRSc-NRSc

5 -0.043 -0.430^^ 5 0.076 0.050 5 0.153 0.046

6 -0.054 -0.434^^ 6 -0.015 -0.144 6 0.536 0.022

7 -0.017 -0.626^^ 7 -0.049 -0.101 7 -0.025 0.060

8 -0.010*** -0.369^^ 8 -0.041 0.043 8 1.112 0.097

9 -0.011*** -0.466^^^ 9 0.008 0.173^ 9 1.096 0.154^

10 -0.015*** -0.678^^^ 10 0.067 0.159^ 10 -0.043 0.075

11 -0.013*** -0.734^^^ 11 0.056 -0.031 11 0.613 0.105

12 -0.008** -0.744^^^ 12 0.019 -0.219^ 12 0.966** 0.207^

13 -0.005** -0.560^^^ 13 0.023 -0.300^^ 13 1.224 0.117

14 -0.002* -0.284^ 14 0.006 0.096 14 1.647*** 0.100

15 -0.002** -0.642^^^ 15 0.007 -0.019 15 0.826* 0.159^

Table 2 Example of methods

for assessing returns to scope:

100 firms

c = 0.5 c = 1 c = 2

x b12 PRSc-NRSc x b12 PRSc-NRSc x b12 PRSc-NRSc

5 -0.056*** -0.473^^^ 5 0.002 -0.035 5 0.952** 0.222^

6 -0.074*** -0.707^^^ 6 -0.014 -0.226^ 6 0.913** 0.330^^

7 -0.021*** -0.446^^ 7 -0.016 -0.119 7 0.716 0.191^

8 -0.020*** -0.774^^^ 8 0.014 0.117 8 0.810*** 0.221^

9 -0.014*** -0.743^^^ 9 -0.026 -0.191^ 9 0.774** 0.257^

10 -0.012*** -0.722^^^ 10 0.016 -0.015 10 0.985** 0.324^^

11 -0.007*** -0.585^^^ 11 0.005 -0.101 11 0.806** 0.115

12 -0.004*** -0.559^^^ 12 0.009 0.055 12 0.745*** 0.227^

13 -0.003*** -0.492^^^ 13 0.000 -0.047 13 0.745*** 0.324^^

14 -0.003*** -0.598^^^ 14 0.009 0.133 14 0.669*** 0.228^

15 -0.003*** -0.681^^^ 15 0.012 -0.269^ 15 0.781*** 0.276^

Table 3 Portion of significant (and pseudo-significant) trials for

two-output examples

c 50 firms 100 firms

Two-stage Area Two-stage Area

PRSc NRSc PRSc NRSc PRSc NRSc PRSc NRSc

0.5 0.001 0.756 0.003 0.970 0.000 0.961 0.000 0.998

1 0.074 0.030 0.101 0.333 0.071 0.031 0.080 0.241

2 0.580 0.002 0.541 0.002 0.913 0.001 0.761 0.000
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‘‘Appendix’’. Practically speaking, these biases can be

useful, for example when the number of firms is not infi-

nite, the tendency of each method to report opposite con-

clusions when output frontiers are linear can be used as a

robustness check. When both methods report the same

returns to scope, we have strong evidence to believe the

results. When they differ, further investigation may be

warranted.

Experiments with 3, 4, and 5 output firms show that both

methods perform well in higher dimensions. To simulate

firms with k-dimensional outputs we draw a random vector

from the k-simplex to simulate the fraction of the resources

the firm directs to producing each output. We implement

random sampling from the k-simplex by first generating k

random variates zi	 expoð1Þ, and then dividing each of the

k random variates by the sum their sum
P

zi. We compute

the monotonicity constrained coefficients via quadratic

programming and find the differences from the uncon-

strained regression coefficients are small, although

monotonicity is more frequently violated in higher

dimensions. Further results are available from the authors

upon request.

6 Application: hospitals as multi-output firms

Many studies have modeled hospitals as multi-output firms

(see Hollingsworth 2008; Rosko and Mutter 2011 for

reviews) including several studies which consider scope

properties (Preyra and Pink 2006; Smet 2007; Ferrier et al.

2009). In order to examine returns to scope, we use the

AHRQ HCUP 2008 Nationwide Inpatient Sample, a data

set which contains all discharges from an approximate

20 % sample (1,056 hospitals) of US community hospitals

as defined by the American Hospital Association. The

sample is stratified across hospital bed sizes (small/med-

ium/large), location (urban/rural), control type, geograph-

ical region, and teaching status. We model 4 outputs: minor

diagnostic procedures (y1), major diagnostic procedures

(y2), minor therapeutic procedures (y3), and major thera-

peutic procedures (y4), categorized by International Clas-

sification of Diseases, Clinical Modification (ICD-9-CM)

codes. The distinguishing characteristic between minor and

major procedures of each type is the use of an operating

room. For example, a CT scan is a minor diagnostic pro-

cedure, whereas a brain biopsy is a major diagnostic pro-

cedure, an irrigate ventricular shunt is a minor therapeutic

procedure, whereas an aorta-renal bypass is a major ther-

apeutic procedure. We hypothesize that small hospitals

exhibit negative returns to scope, and larger hospitals

positive returns to scope. This hypothesis is based on the

idea that resources in smaller hospitals will be allocated to

producing a variety of outputs, whereas resources in larger

hospitals can be allocated to specialized tasks. Using

number of discharges as a single input proxy for the hos-

pital’s aggregate input level (x), we test for returns to scope

between outputs at 9 input levels. Table 4 shows the input

levels, the number of hospitals in each input level ‘bin’,

and the number of FDH efficient hospitals at each input

level. Tables 5 and 6 report the results of the two assess-

ment methods.

Table 7 combines the reports of returns to scope. Cells

in which the tests agree or only one test gives conclusive

evidence are marked according to the returns to scope

found. Cells where the tests disagree or both tests give

weak evidence are left blank.

Table 5 Two-stage method

assessment of hospital returns to

scope

�x y1y2 y1y3 y1y4 y2y3 y2y4 y3y4

250 -0.472 0.001 -0.015 0.042 1.964* 0.002

500 0.090 0.002*** 0.002 -0.009 0.140 -0.000

1,000 0.160** 0.002* -0.001 0.053*** 0.009 0.000

2,000 0.015 0.001* 0.000 0.016*** 0.003 -0.000

4,000 0.007 0.000 0.000 0.005 0.005 0.000

8,000 0.003 0.000*** 0.000** 0.002 0.011** 0.000***

16,000 0.004*** 0.000*** 0.000*** 0.002* 0.006*** 0.000***

32,000 0.004** 0.000*** 0.000* -0.000 0.001* 0.000*

64,000 0.000 0.000** -0.000 0.000 0.001 0.000

Table 4 Hospital counts by

input levels
k 1 2 3 4 5 6 7 8 9

�xk 250 500 1,000 2,000 4,000 8,000 16,000 32,000 64,000

#fi : xi 2 ð�xk�1; �xk�g 62 102 117 136 140 156 167 140 25

#fi : i 2 FDHð�xkÞg 11 18 11 13 11 11 23 8 4
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We gain three important insights from the analysis. First, at

6 of 9 input levels there is evidence of negative returns to scope

between minor and major diagnostic procedures ðy1; y2Þ. The

contrasting resources needed for these outputs, e.g., major

diagnostic procedures require highly specialized instrumen-

tation and labor, whereas minor procedures require less, make

it plausible that hospitals producing both minor and major

diagnostics will spend considerable time switching between

the two types of procedures and thus produce less than hos-

pitals specializing in either output. The only evidence to the

contrary appears at input level 1,000, which showed positive

returns to scope. However, our investigation revealed that a

single hospital at this input level produced 45 major diagnostic

procedures (no other FDH efficient hospital at this input level

produced more than 13) and produced 609 minor diagnostic

procedures (the second most of any hospital at this input

level). This observation forces both area-based measures of

returns to scope to zero and pulls the two-stage measure of

returns to scope positive. Removing this hospital from the data

set produced an insignificant measure of returns to scope from

the two-stage method, and changed the area-based measure of

returns to scope from 0 to -0.547. Second, there is evidence of

positive returns to scope at 6 of 9 input levels between minor

diagnostic and minor therapeutic procedures ðy1; y3Þ. Intui-

tively, these outputs require the same resources, e.g., nursing

labor and exam rooms, and therefore share setup costs of

production, which leads to positive returns to scope between

these outputs. Third, the evidence supports our hypothesis that

smaller hospitals display negative returns to scope between all

pairs of outputs. The negative returns to scope disappear as

hospitals become larger and better suited to produce multiple

outputs. A possible explanation for this insight is that larger

hospitals are able to share generic resources across similar

outputs, thus improving utilization, whereas smaller hospitals

have to divide their resources in order to produce distinct

outputs. Switching, change-over, or coordination costs are the

type of phenomenon we expect to create output sets bowed

towards the origin, displaying negative returns to scope. Our

findings of negative returns to scope partially echo the results

of Smet (2007) who finds positive pair-wise cost comple-

mentarities between days of internal medicine, surgery, and

specialized care produced in Belgian hospitals.

7 Conclusions

Scope properties can assist strategic decision-making

related to multi-output production processes. Extending the

extant knowledge of such properties, this paper introduced

a new property, returns to scope, which is orthogonal to the

scale of production and does not rely on price information.

We discussed how returns to scope and the more traditional

economies of scope are non-nested concepts, useful for

answering different questions about industry structure and

product mix strategies. Knowledge of returns to scope also

provides information about the shape of the production

frontier, and is valuable in determining the most appro-

priate frontier estimation procedures.

Based on the definition of returns to scope, we present

two methods for assessment, which are orthogonal to scale,

can detect positive or negative returns to scope, and

required only input and output data. Using simulated data

we give examples of the ability of each method to detect

returns to scope. Although each method possesses a small

Table 6 Area-based method

assessment of hospital returns to

scope

�x y1y2 y1y3 y1y4 y2y3 y2y4 y3y4

250 -0.817^^^ -0.255^ -0.555^^^ -0.544^^^ -0.450^^ -0.018

500 -0.152^ -0.192^ 0.037 -0.615^^^ 0.109 -0.520^^^

1,000 0.000 0.112 -0.529^^^ -0.126 0.072 -0.367^^

2,000 -0.551^^^ 0.115 -0.218^ 0.000 -0.261^ -0.293^

4,000 -0.204^ -0.051 -0.153^ 0.000 0.035 -0.217^

8,000 -0.228^ 0.000 0.000 0.046 0.092 0.000

16,000 -0.290^ 0.117 -0.197^ -0.226^ -0.188^ 0.000

32,000 -0.169^ 0.000 0.000 0.037 0.135 -0.149

64,000 0.000 0.000 0.064 -0.027 0.000 0.000

Table 7 Combined assessment of hospital returns to scope

�x y1y2 y1y3 y1y4 y2y3 y2y4 y3y4

250 - - - -

500 - - -

1,001 ? ? - ? -

2,000 - ? - ? - -

4,000 - - -

BOQO - ? ? ? ?

16,000 ? ?

32,000 - ? ? ? ?

64,000 ?
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sample bias, we identify the causes and show that the

biases vanished asymptotically. The biases also are in

opposite directions, meaning that the assessments are

robust when the methods agree.

We use the AHRQ HCUP 2008 National Inpatient

Sample to assess returns to scope in hospital production of

minor and major diagnostic and therapeutic. Our results

illuminate three insights regarding the trade-offs between

services provided in hospitals. First, hospitals of all sizes

experience negative returns to scope between minor and

major diagnostic procedures, implying that when possible

these two service lines should be diversified. Second,

hospitals of all sizes experience positive returns to scope

between minor diagnostic and therapeutic procedures,

implying that when possible these two service lines should

be jointly produced. Third, small hospitals generally

experience negative returns to scope, whereas larger hos-

pitals more often realize positive returns to scope. Based on

our findings that scope properties can fluctuate throughout

regions of production, functional estimators which are able

to selectively impose returns to scope properties are

desirable. We leave development of such estimators for

future research.
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Appendix

Testing for output scope invariance

The methods we present for testing for returns to scope

ignore the possibility that variation in a third output ðykÞ
may affect the returns to scope between yi and yj. We

referred to this property of a production function as output

scope invariance. In order to test for the effects of other

outputs on the returns to scope between yi and yj, the two-

stage method can be augmented to test for three way

interactions among outputs,

0 ¼ F x; yð Þ ¼ xþ aiyi þ ajyj þ bijyiyj þ
X

k 6¼i;j

qijkyiyjyk:

In the case that the qijk terms are insignificant, there is

evidence that outputs yi and yj are output scope invariant of

output yk.

Small sample biases in assessment methods

The biases of each method can best be explained by con-

sidering the data generation process and the details of each

method. Figure 4 shows a plot of firms who have at most x0

level of input. When c ¼ 1, the frontier is linear, and

without noise, efficient firms with input level of exactly x0

lie farthest from the origin on a line. These points are

marked by filled circle. Moreover, the FDH frontier could

contain firms with lower input levels, or firms which pro-

duce less output due to inefficiency, and would appear

between efficient firms at input level x0, and are marked by

filled diamond. The location of these types of firms

explains both the negative bias of the area-based method

and the positive bias of the two-stage method. Using this

data, the area-based method finds no evidence of PRSc, but

using the convex hull of FDH efficient points (the region

enclosed by the dashed line in Fig. 4), it finds evidence for

NRSc. The two-stage method would estimate a regression

line similar to the one shown as a solid line in Fig. 4. If the

weakly efficient firms were not part of the sample, the

regression line would run directly through all the efficient

points, producing a1 ¼ a2 ¼ �1 and b12 ¼ 0. Adding the

presence of the weakly efficient firms has two effects on

the estimated parameters. In order to minimize the sum of

squared errors, the OLS procedure increases the magnitude

of the ai parameters, making them more negative. To

balance this effect, OLS also slightly increases the b12

parameter, making it positive, and giving the impression of

positive returns to scope.
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