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a b s t r a c t

Demand fluctuations that cause variations in output levels will affect a firm’s technical inefficiency. To
assess this demand effect, a demand-truncated production function is developed and an ‘‘effectiveness’’
measure is proposed. Often a firm can adjust some input resources influencing the output level in an
attempt to match demand. We propose a short-run capacity planning method, termed proactive data
envelopment analysis, which quantifies the effectiveness of a firm’s production system under demand
uncertainty. Using a stochastic programming DEA approach, we improve upon short-run capacity expan-
sion planning models by accounting for the decreasing marginal benefit of inputs and estimating the
expected value of effectiveness, given demand. The law of diminishing marginal returns is an important
property of production function; however, constant marginal productivity is usually assumed for capacity
expansion problems resulting in biased capacity estimates. Applying the proposed model in an empirical
study of convenience stores in Japan demonstrates the actionable advice the model provides about the
levels of variable inputs in uncertain demand environments. We conclude that the method is most suit-
able for characterizing production systems with perishable goods or service systems that cannot store
inventories.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Data envelopment analysis (DEA) is a deterministic mathemat-
ical programming approach to productive efficiency analysis. Gi-
ven the same input resources, a production process is called
efficient if its output levels are at least as high as other observed
production processes. However, in practice, reduced actual output
can be caused by insufficient demand biasing productivity mea-
sures. Noting that DEA studies typically do not model demand ef-
fects, this paper describes ‘‘proactive DEA’’ which measures
‘‘effectiveness’’ (Lee & Johnson, 2012a), which distinguishes demand
effects in productive efficiency analyses and identifies capacity
adjustment levels in a planning process using stochastic program-
ming (SP).

The literature on the demand effect in productivity and effi-
ciency analysis is limited. Lee and Johnson (2011, 2012b) decom-
pose a production process into capacity design, demand
generation, operations, and demand consumption components,
and measure the productivity change of each component. They dis-
tinguish the production process from the demand generation/con-
sumption process. The results indicate that demand fluctuations
rather than production capabilities can cause technical regress.
Further, the capacity design component generally has a significant
effect on long-term productivity. Therefore, Lee and Johnson
(2012a) propose a ‘‘demand-truncated production function’’ and esti-
mate ‘‘effectiveness’’ to distinguish from efficient production where
customer demand does not limit the levels of output. Typical of
most DEA studies, Lee and Johnson (2012a) study only supports
ex-post analysis of the data after production and sales. Therefore,
this paper describes a planning model using DEA-based techniques
that accounts for demand variations and ex-ante resource alloca-
tion to improve a firm’s operational effectiveness. This model also
supports planning functions by solving the short-run capacity
expansion problem.

The classic capacity expansion problem (Luss, 1982; Manne,
1961) includes the following variables; let decision variable
x 2 RJ

þ be the vector of the input resource needed, y 2 RQ
þ be the

vector of the products generated, D 2 RQ
þ be the demand vector

with respect to each output, A 2 RJ�Q
þ be the vector representing

the required resource per unit product, C 2 RJ
þ be the vector of cost

per unit resource, and P 2 RQ
þ be the vector of each product’s
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selling price. The solution indicates the resources required, x, and
the product quantity, y, generated. The optimization formulation
is as follows:

Max Py � Cx
s:t: Ay 6 x

y ¼ D
x P 0; y P 0

ð1Þ

The primary issues are determining the expansion sizes, expansion
times, and expansion locations, and the objective is to minimize the
discounted costs with respect to the expansion process (Luss, 1982).
In general, all production factors are adjustable. The capacity expan-
sion problem is a component of long-run production analyses. How-
ever, in the short run, the plant size, location, and capital stock for
production are typically fixed, whereas the variable factors such as
employment and material are adjustable (Marshall, 1920). Stigler
(1939) argues that the variations in output can be described in
terms of the law of diminishing returns and marginal productivity
theory, holding all productive factors quantity constant, and adjust-
ing the quantity of the remaining one. Wilson and Eckstein (1964)
claim that long-run and short-run economic analyses represent dif-
ferent productivity behaviors and conclude that the long-run cost
curve forms an envelope of the short-run cost. After distinguishing
the characteristics of long-run and short-run production, our paper
estimates the marginal product of variable inputs along the DEA
frontier and identifies the adjustments in variable inputs that influ-
ence the output levels in response to the demand fluctuations. The
relationship of marginal product between inputs and outputs is de-
scribed in matrix A of problem (1) and the elements in matrix A are
assumed constant in the typical capacity expansion literature. This
assumption may violate the law of diminishing marginal returns
and result in biased capacity estimates.

Considering the stochastic nature of demand, the typical capac-
ity expansion problem can be extended to uncertain demand and
formulated as (2), using a SP technique (Birge & Louveaux, 2011).
Assuming a firm desires to maximize expected profit, let eD be a
random variable of demand:

Max E ½f ðx; eDÞ� � Cx
s:t: x P 0

where for a realization d 2 eD ð2Þ
f ðx;dÞ ¼Max Py
s:t: Ay 6 x

y ¼ d
y P 0

This paper makes three contributions to the literature. First, we
use DEA to estimate production performance incorporating short-
run capacity expansion decisions, thus creating a proactive DEA
model. Using a production function estimated from observed pro-
duction processes assures the feasibility of the recommended
short-run capacity adjustment. Second, our definition of effective
production, or the product generated from the production system
to be consumed by realized demand, complements current effi-
ciency analysis. Third, the proposed method considers the dimin-
ishing marginal benefits of inputs and estimates the marginal
product which the short-run capacity expansion problem generally
ignores; ignoring the diminishing marginal return of inputs, tradi-
tional capacity expansion models may severely underestimate the
resources necessary to meet demand, resulting in lost sales, costly
outcomes, etc. In other words, in some cases, it may be too costly to
fill demand, thus reducing resources to decrease output levels may
be preferred.
The remainder of this paper is organized as follows. Section 2
reviews the DEA literature on uncertainty. Section 3 introduces a
demand-truncated production function and an effectiveness mea-
sure. Section 4 describes estimating marginal product to support
capacity adjustment, considering the law of diminishing marginal
returns. Section 5 discusses the SP models and performance indices
assessing the solution quality. Section 6 gives a numerical example,
and Section 7 describes an empirical study of Japanese conve-
nience stores. Section 8 concludes.
2. Literature review of DEA under uncertainty

The literature has proposed a variety of DEA models under
uncertainty primarily focusing on ex-post analysis. The Convex
Nonparametric Least Squares (CNLS) and Stochastic semi-Non-
parametric Envelopment of Data (StoNED) literature focuses on
unifying the Stochastic Frontier Analysis (SFA) and DEA approaches
to productivity analysis (Kuosmanen, 2008; Kuosmanen & Johnson,
2010; Kuosmanen & Kortelainen, 2012). These estimators impose
axioms such as convexity and monotonicity while including a sym-
metric random component to capture the typical sources of noise:
omitted variables, errors in measurement, differences between
modeling variables and data. StoNED allows for inefficiency. Other
models available in the DEA literature include chance-constrained
DEA (Bruni, Conforti, Beraldi, & Tundis, 2009; Cooper, Huang, & Li,
1996; Land, Lovell, & Thore, 1993; Olesen & Petersen, 1995) which
evaluates efficiency when uncertainty exists with respect to the
constraints. It builds a production frontier that envelops all of
the observations ‘‘most of the time’’, and a few firms may perform
above the frontier with an a priori set probability. Sengupta (1987,
2000) transforms DEA models into equivalent models incorporat-
ing stochastic variations and uses chance-constrained program-
ming solves the equivalent models, which explore how the
stochastic data affects the efficiency measurement. Imprecise
DEA, or fuzzy DEA (Cooper, Park, & Yu, 1999; Kao & Liu, 2000),
which states that certain variables or data are known to exist with-
in a given range or an ordinal relationship estimates efficiency
intervals to characterize the imprecision. However, the efficiency
distribution or its characteristics, such as the mean, are still un-
known. Simulated-based DEA (Kao & Liu, 2009; Premachandra,
Powell, & Watson, 2000) addresses imprecise data with a known
probability distribution. The results are used to support statistical
inference regarding the efficiency distribution. Ruggiero (2004),
who proposes using data averaged across a time horizon to esti-
mate the average efficiency for the time horizon, argues that the
estimates are less biased than estimating efficiency in each time
period and averaging the cross-sectional efficiencies over the en-
tire horizon. Kuosmanen (2004), Branda (2013), Lamb and Tee
(2012), and Beraldi and Bruni (2012) discuss risk ratios, conditional
value-at-risk (CVaR), stochastic dominance (SD), and SP with sto-
chastic data in financial applications. For addition methods not dis-
cussed, see for example Dyson and Shale (2010).

Typically, DEA methods under uncertainty focus on generating
robust efficiency estimates considering variations in data. How-
ever, our proposed SPDEA also provides resource re-allocation rec-
ommendations for maximizing efficiency or effectiveness in
uncertain environments. Table 1 summarizes and compares sev-
eral DEA approaches used to address uncertainty.
3. Effective production

Efficiency is commonly measured in the productivity literature
to quantify the observed productivity level relative to the best pos-
sible productivity level. However, if products or services are pro-
duced but not consumed, resources are wasted in storage.



Table 1
DEA under uncertainty.

Approach Stochastic in: efficiency (E)
or data (D)

Probability distribution of data:
known (K) or unknown (U)

Purpose: robust efficiency (E)
or resource reallocation (R)

Reference

Chance-constrained programminga E K E Land et al. (1993)
Cooper et al. (1996)
Olesen and Petersen (1995)
Bruni et al. (2009)

Imprecise, fuzzy, and interval data E + D U E Triantis and Girod (1998)
Cooper et al. (1999)
Kao and Liu (2000)

Averaged data D U E Ruggiero (2004)

Simulation D K E Premachandra et al. (2000)
Kao and Liu (2000)

Equivalent transformation E + D K E Sengupta (1987, 2000)

Risk measure, CVaR, SD, SP D K E Kuosmanen (2004)
Branda (2013)
Lamb and Tee (2012)
Beraldi and Bruni (2012)

SP supporting resource allocation D K E + R This paper

a Chance-constrained problems may be considered as a subclass of SP problems; the former emphasizes the stochastic property on constraints whereas the latter focuses
on stochastic coefficients in mathematical programming.

Fig. 1. Demand-truncated production function (DTPF).

1 Capital letters refer to data and lower-case letter refers to variable.
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Section 3.1 defines the concept of effective production and intro-
duces the truncated production function combining a classic pro-
duction function and demand information. Section 3.2 describes
an effectiveness estimator and its implementation using DEA.
Section 3.3 illustrates how the effectiveness estimator comple-
ments the efficiency measure and defines the strategic position
with respect to efficiency and effectiveness.

3.1. Demand-truncated production function

The production function f defines the maximum output that can
be produced, given the quantities of input resources. Let xF 2 RI

þ be
a vector of the fixed input resources, xV 2 RJ

þ be a vector of the var-
iable input resources, and yPF 2 Rþ be the output level of a single-
output production function. The standard production function with
a single output shown in Eq. (3) satisfies the properties of noneg-
ativity, weak essentiality, monotonicity, and concavity (Coelli,
Rao, O’Donnell, & Battese, 2005).

yPF ¼ f ðxF ; xV Þ ð3Þ

We define the demand-truncated production function (DTPF) as the
maximum demand for a product or service that can be fulfilled, gi-
ven the input resource quantities. The DTPF incorporates demand
and production function information. To maintain generality, de-
mand is firm-specific. Let yDTPF

k 2 Rþ be the output level of the pro-
duction function truncated by the demand of firm k and Dk 2 Rþ be
the potential realized demand of firm k. The DTPF with output level
yDTPF

k is the smaller of the two variables: the production function
output yPF and realized demand Dk as Eq. (4).

yDTPF
k ¼minðyPF ;DkÞ ¼minðf ðxF ; xV Þ;DkÞ ð4Þ

Let Yk 2 Rþ be the output level of firm k. The effective output
YE

k 2 Rþ describes the product or service generated by the produc-
tion system to be consumed via customer demand of firm k and
we define YE

k ¼minðYk;DkÞ. We say that a firm achieves effective
production if the effective output level as identified by the DTPF
is generated, i.e., yDTPF

k ¼ YE
k .

In the short-run, the fixed input levels cannot be adjusted, so
the production function is a function of variable input. Fig. 1 de-
fines the boundary of our analysis and illustrates the DTPF. Data
is gathered regarding demand and the effective output level is cal-
culated prior to our analysis and is thus data. Within our analysis,
production output which is a function of variable input and fixed
input variable vectors is estimated using observed production data.
The DTPF is estimated as the minimum of the firm specific demand
and the production function. Firm A presents a supply–demand

equilibrium where DA ¼ YA ¼ YE
A ¼ f XF

A;X
V
A

� �
.1 That is, firm A can

produce the optimal output level without unfulfilled demand or
excessive inventory. Firm A achieves effective production. We also
show that Firm B is efficient but not effective unit and Firm C is
effective but not efficient unit in Fig. 1. In addition, it is straightfor-
ward to validate the properties – nonegativity, weak essentiality,
monotonicity, and concavity of truncated production function –
since the minimum function of a production function and a constant
demand level is a convex polyhedral.
3.2. Effectiveness measure

Let x 2 RIþJ
þ denote the input vector and y 2 RQ

þ denote the out-
put vector of the production system. Define the production possi-
bility set as T = {(x,y):x can produce y} and estimate it by a
piece-wise linear concave function enveloping all observations
shown in (5). Let i = {1, 2, . . . , I} be the indexed set of fixed inputs,
j = {1, 2, . . . , J} be the indexed set of variable inputs, q = {1, 2, . . . , Q}
be the indexed set of output, and k = {1, 2, . . . , K} be the indexed set
of firms. XF

ik is the ith fixed input resource, XV
jk is the jth variable



Low

Effectiveness

Efficiency

Laggard

Demand
Focus

Production
Focus

Leader

High

Low

High

Fig. 2. Two-dimensional strategic position between efficiency and effectiveness.
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input resource, Yqk is the amount of the qth production output, and
kk is the multiplier of the kth firm. The model (5) defines the empir-
ically estimated variable-return-to-scale (VRS) production possi-

bility set eT .

eT ¼ ðx; yÞ
XK

k¼1

kkYqk P yq;

����� 8 q;
XK

k¼1

kkXF
ik 6 xF

i ;

(

8 i;
XK

k¼1

kkXV
jk 6 xV

j ; 8 j;
XK

k¼1

kk ¼ 1; kk P 0; 8 k

)
ð5Þ

Measure the efficiency h using the DEA estimator. Define the out-
put-oriented technical efficiency (OTE) as h, where
Dyðx; yÞ ¼ supfhjðx; hyÞ 2 eTg, where h P 1, and a firm is efficient if
h = 1.

Similarly, let yE 2 RQ
þ denote an effective output vector. Define

the effective production possibility set as TE = {(x,yE):x can produce
yE that will be consumed in current period} and TE � T. TE illus-
trates the feasible region of the effective production possibility
set which can be estimated by piece-wise linear concave envelop-
ment truncated by demand level shown as model (6), where eT E is
an estimated set of TE.

eT E¼ ðx;yEÞ
��XK

k¼1

kkYqk P yE
q; 8 q; Dq P yE

q; 8 q;
XK

k¼1

kkXF
ik6 xF

i ;

(

8 i;
XK

k¼1

kkXV
jk6 xV

j ; 8 j;
XK

k¼1

kk¼1; kk P 0; 8 k

)
ð6Þ

However, a generalized effectiveness measure is needed, because
capacity shortage or capacity surplus leads to the profit loss. YP

qk

is the amount of the qth penalized output with respect to demand
Dqk. Measure effectiveness, hE, with respect to the DTPF. If there is
a capacity shortage Yqk 6 Dqk, then set YP

qk ¼ Yqk � aqkðDqk � YqkÞ
P 0, and the opportunity to sell Dqk � Yqk additional units is lost;
otherwise YP

qk ¼ Dqk � dqkðYqk � DqkÞP 0, indicating a capacity sur-
plus Yqk > Dqk and inventory Yqk � Dqk are generated, both of which
are costly. Note that in calculating YP

kj, the penalty parameters
akj P 0 and dkj P 0 are used to quantify the effect of lost sales and
inventories, respectively, on effectiveness. If the cost of lost sales
or holding inventory is insignificant, then aqk = dqk = 0. Thus, we
state the following definition

Definition 1. Production Effectiveness hE is the largest possible
expansion of the penalized output at the given input level within
the effective production possibility set, or mathematically,
Dyðx; yPÞ ¼ supfhEjðx; hEyPÞ 2 eT Eg.2

In service industries, when a service is generated, it needs to be
consumed immediately. Therefore, the surplus of services gener-
ated and not consumed represents a lost opportunity, dqk > 0. In
manufacturing industries, a surplus of capacity means lower utili-
zation or machine idleness. However, if the product can be stored
at a lower holding cost, the penalty for capacity surplus may be
insignificant. On the other hand, if demand is not satisfied, both
service and manufacturing firms reduce revenues by the size of
the lost sales, and also lose market share, or damage their relation-
ships with customers. When the total cost of missed sales is signif-
icant, aqk > 0.

This paper’s definition of an effectiveness measure implies
some notable issues. Because inventory holding costs are typically
much smaller than the cost of lost sales, in many cases excess pro-
duction will not result in significantly worse effectiveness scores.
2 In the capacity surplus case, if demand is low, the penalty will lead to YP
qk located

outside of TE (outside of the positive orthant). In this case the penalty is truncated by
the x-axis (or Y = 0). Alternatively, a super efficiency measure could be used (Lovell &
Rousem, 2003).
However, when holding inventory is not possible, the effectiveness
measure will significantly differ from the efficiency measure. These
issues suggest that the method is most suitable for characterizing
production systems with perishable goods, make-to-order
production systems (pull systems), or service systems where
services or inventories cannot be stored. In this paper, the pro-
posed effectiveness measure is applied to Japanese convenience
store. This industry is a business with high turn-over commodities
and high product substitution. Each shop typically has a limited
space for storing inventory, because of high rental costs, and the
portion of daily-supplied foods is over 30% (Japan Franchise
Association, 2010). The high ratio of perishable goods and inability
to hold significant inventories justify the use of an effectiveness
analysis.

3.3. Efficiency vs. effectiveness

Although efficiency and effectiveness are related metrics, they
have different managerial implications. Efficiency measures the
relative return on inputs used, whereas effectiveness indicates
the ability to match demand given an existing production technol-
ogy. High effectiveness generates revenues by providing products
and services to customers; low effectiveness implies either poor
resource management or an inability to meet customers’ demands.
Fig. 2 illustrates two-dimensional strategic position between effi-
ciency and effectiveness. If the firm’s efficiency and effectiveness
are low, we use the term, ‘‘Laggard’’, since the firm tries to adopt
its competitor’s superior strategy to avoid being driven out of
the industry. If the firm performs well in terms of efficiency and
poorly in terms of effectiveness, we use the term, ‘‘Production
Focus’’, since the firm tries to make the best use of its input
resources and technology. If the firm performs poorly in terms of
efficiency and well in terms of effectiveness, we use the term,
‘‘Demand Focus’’, since the firm tries to employ a market-oriented
strategy to generate demand and maintain or expand market
share. Finally, if the firm is both efficient and effective, we use
the term, ‘‘Leader’’.

Assuming aqk = dqk = 0, a significant gap between efficiency and
effectiveness exists if demand is low, whereas efficiency and effec-
tiveness are identical measures if demand is high. These observa-
tions show the measure of effectiveness is particularly important
during economic downturns and lead to the following proposition.

Proposition 1. If there is no penalty for ineffective production, i.e.
aqk = 0, then the effectiveness estimate converges to an efficiency as
demand increases.
Proof 1. Based on the definition of effectiveness and model (6), for
all output q we have YP

q ¼ Yq, and if Dj ?1, then the constraint
Dq P YP

q in model (6) is redundant. Thus, limDq!1hE ¼ h. h



Fig. 4. Marginal product regarding short-run capacity expansion or contraction.
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4. Capacity expansion and marginal product

Capacity is the maximal output level of a production process.
The output is a result of the total productive capability of a firm’s
resources including workforce, machinery, and utilities. Capacity
adjustment is the ability to adjust output levels to handle uncer-
tainty by controlling variable resources in the short run (Alp &
Tan, 2008). In production theory, capacity adjustment can be inter-
preted as the marginal product of the production function, i.e. the
extra output generated by one more unit of an input. Fig. 3 shows
the marginal product and production frontier with a single output.
The production function’s output level is defined as yPF = f(xF,xV).
The marginal product at point B with respect to specific variable

input j is MPjB ¼ @f ðxF ;xV Þ
@xV

j

����
XV

jB

.

There are two ways to estimate marginal product. SFA esti-
mates the production function with a given functional form, e.g.,
a simple case of a linear function estimated by ordinary least
squares (OLS) and the coefficients associated with the independent
factors provide estimates of the marginal product. DEA constructs
a piece-wise linear production function approximating the true
production function, and the shadow prices of input and output
characterize the marginal product. Both methods have drawbacks:
SFA requires defining a functional form and risks potential misspe-
cification, whereas DEA’s observations on the production frontier
do not have unique shadow prices.

Podinovski and Førsund (2010) propose a directional derivative
technique to assess the marginal product of a nondifferential effi-
cient frontier constructed by the DEA estimator. Let vF

i ; vV
j ; uq

and u0 be the multipliers of fixed inputs, variables inputs, outputs,
and the intercept term, respectively. Since marginal product is a
characteristic of the frontier, for one specific efficient firm r, the
following revised formulation calculates the marginal rate bVþ

j�q�r

approaching from the right side with respect to one particular var-
iable input, j⁄, and one output, q⁄.

@þYq�r

@XV
j�r
¼ bVþ

j�q�r ¼Min vV
j�

s:t:
XI

i¼1

vF
i XF

ir þ
XJ

j¼1

vV
j XV

jr �
XQ

q¼1

uqYqr þ u0 ¼ 0

XI

i¼1

vF
i XF

ik þ
XJ

j¼1

vV
j XV

jk �
XQ

q¼1

uqYqk þ u0 P 0

uq� ¼ 1

vF
i ;v

V
j ;uq P 0; u0 is free

ð7Þ

To measure the marginal rate approaching from the left side, the
objective function is replaced by the following equation.
Fig. 3. Marginal product of production function.
@�Yq�r

@XV
j�r
¼ bV�

j�q�r ¼Max vV
j� ð8Þ

This paper uses bVþ
k ¼ bVþ

j�q�k and bV�
k ¼ bV�

j�q�k to denote the simplified
notations of marginal products of short-run capacity expansion and
contraction. Fig. 4 illustrates the marginal product bVþ

k or bV�
k in the

short run. Note that we do not define the marginal product for inef-
ficient firms operating inside of the production frontier. However, to
estimate how the consumed output expands with an increase of
variable input, we assume that the marginal increase in output is
the same as the marginal products of the reference firm on the fron-
tier via output-oriented expansion.
5. Stochastic programming model

It is possible to formulate the capacity adjustment question as
an if-then statement: if a particular demand scenario is realized,
then how is short-run capacity adjusted? Section 5.1 discusses a
scenario-based approach assuming that demand is a random vari-
able. Defining a scenario by its demand level, an individual sce-
nario analysis specifies an adjustment to variable input level for
each potential outcome. Section 5.2 discusses a two-stage recourse
problem (RP), since the scenario-based approach does not consider
the robustness of solutions under varying scenarios.

5.1. Scenario-based approach

We use a scenario-based approach when we define a scenario as
a particular realization of demand. Given a description of alterna-
tive potential scenarios, the model suggests suitable decisions
regarding short-run capacity expansion or contraction under de-
mand fluctuations. Note that the range of adjustment of variable
input levels is limited to model-realistic limitations on manage-
ment. We estimate the production possibility set by using the ob-
served production data; the set does not change regardless of the
assumptions about short-run capacity expansion.

There are two kinds of solutions: an individual scenario analy-
sis, and an expected value (EV) solution (Birge & Louveaux,
2011). An individual scenario analysis represents the variable
adjustment for one specific demand scenario; however, the EV
solution is obtained by solving the model using the expected value
of the random variable(s). We define the expected value of demand
as Dr ¼

PS
s¼1psDrs, where ps represents the probability of sth sce-

nario occurring and Drs be the realized demand of rth firm in sth
scenario.

Assuming fixed inputs cannot be adjusted in the short run, we
develop a capacity expansion model based on the output-oriented
variable returns to scale (VRS) DEA formulation with single output



Fig. 5. Contraction example of the proposed algorithm.

3 The integer assumption made in constraint (9.18) is necessary to identify a global
optimal solution, which can be solved via the model linearization technique in the
Appendix.

4 The output-oriented DEA estimator is Dyðx; yÞ ¼ supfhjðx; hyÞ 2 eTg defined in
Section 3.2.
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as a revised dual form of effectiveness measure Dyðx; yPÞ ¼
sup hEjðx; hEyPÞ 2 eT E

n o
. Let Yks be the actual output, bV

jr be the mar-

ginal product characterized by bVþ
jr and bV�

jr with respect to jth var-
iable input of firm r, and Rjr be the parameter of adjustable range.
Then the decision variables us; ws; vF

is; vV
js; v0s are the multipliers

associated with outputs, demand, fixed inputs, variable inputs, and
the VRS constraints of typical DEA formulation, respectively, djrs is
the additional adjustment of variable input composed of positive

dþjrs

� �
or negative d�jrs

� �
adjustments, yrs and yP

rs are the adjusted

and penalized output, respectively, and hE
rs measures production

effectiveness. To maintain the identical production possibility set
after capacity expansion or contraction of firm r, index k includes
a firm r0 which contains the data for firm r before capacity
expansion.

Min MhE
rs þ

XJ

j¼1

dþjrs þ d�jrs

� �
ð9:1Þ

s:t: hE
rs ¼

XI

i¼1

vF
isX

F
ir þ

XJ

j¼1

vV
js XV

jr þ djrs

� �
þwsDrs þ v0s ð9:2Þ

usyP
rs þwsyP

rs ¼ 1 ð9:3Þ

XI

i¼1

vF
isX

F
ik þ

XJ

j¼1

vV
jsX

V
jk � usYks þ v0s P 0; 8k n r ð9:4Þ

XI

i¼1

vF
isX

F
ir þ

XJ

j¼1

vV
js XV

jr þ djrs

� �
� usyP

rs þ v0s P 0 ð9:5Þ

yP
rs ¼ ½yrs � arsðDrs � yrsÞ�ð1� z1rsÞ ð9:6Þ

þ ½Drs � drsðyrs � DrsÞ�z1rs þ e ð9:7Þ

yrs � Drs < Mz1rs ð9:8Þ

yrs � Drs P �Mð1� z1rsÞ ð9:9Þ

yrs ¼ Yr þ
XJ

j¼1

bV
jrdjrs ð9:10Þ

bV
jr ¼ bVþ

jr z2jrs þ bV�
jr ð1� z2jrsÞ; 8j ð9:11Þ

djrs < Mz2jrs; 8j ð9:12Þ

djrs P �Mð1� z2jrsÞ; 8j ð9:13Þ

djrs ¼ dþjrs � d�jrs; 8j ð9:14Þ

� RjrX
V
jr 6 djrs 6 RjrX

V
jr; 8j ð9:15Þ

z1rs; z2jrs 2 f0;1g; 8j ð9:16Þ

yP
rs; yrs;us;ws; vF

is;v
V
js P 0; 8i;8j ð9:17Þ

dþjrs;d
�
jrs P 0 as integers; 8j ð9:18Þ

The objective function Eq. (9.1) minimizes the product of the esti-
mated effectiveness hE

rs with a large number M and a secondary
objective of minimizing the variation in input adjustment. Note that
we use an output-oriented DEA model. Eqs. (9.2)–(9.4) and (9.5) are
the envelope constraints to build the production possibility set. e is
a small number to maintain feasibility when the penalized output
yP

rs ¼ 0. Constraints (9.6), (9.7) and (9.8) calculate the effective out-
put level for the two cases, Yr 6 Drs and Yr > Drs. Eq. (9.9) determines
the actual output level of firm rthrough capacity expansion. Con-
straints (9.10), (9.11) and (9.12) calculate the marginal output for
short-run capacity expansion, i.e., djrs P 0, then bV

jr ¼ bVþ
jr ; otherwise

bV
jr ¼ bV�

jr . Constraint (9.13) shows the adjustment of variable input
via goal programming, djrs P 0 if and only if capacity expansion
with dþjrs P 0; otherwise capacity contracts with djrs 6 0 if and only
if d�jrs P 0. The adjustment range is restricted in Eq. (9.14). Eq. (9.15)
defines z1rs and z2jrs as binary variables. Eq. (9.16) includes nonneg-
ative constraints. dþjrs and d�jrs are integers because we are consider-
ing labor as a variable input. We drop constraint (9.17) if the
variable input is not required to be an integer.3 In fact, the model
(9.1)–(9.16) and (9.17) is a mixed-integer nonlinear problem which
is difficult to solve. A linearization and reformulation technique is
used to solve the proposed model (see Appendix).

Note that the estimation of the increase in output is conserva-
tive if two or more variable inputs are expanded simultaneously,
i.e. we estimate the marginal production of each variable input
separately and then take the dot product of the marginal product
vector. If there is a synergistic effect between the different variable
inputs, this is not captured. However, because the production fron-
tier limits the output level, the benefits of increasing multiple vari-
ables inputs leads to a resulting production vector within the
production possibility set.

In order to maintain feasibility, meaning that a firm remains
within the original production possibility set after taking the
adjustment action, we calculate the effectiveness and resource
adjustments using the proposed algorithm. Fig. 5 shows a contrac-
tion example. The proposed algorithm leads to Observation 1:

Observation 1. A firm that expands or contracts short-run
capacity via the proposed algorithm with marginal products bVþ

jk
or bV�

jk remains feasible in the original production possibility set.
Proposed Algorithm

1. For one specific demand scenario Dr, start from specific firm
r = 1.

2. For r = 1 to number of firms.
2.1 Set step t ¼ 0; XV

jrt ¼ XV
jr and Yrt = Yr.

2.2 Calculate marginal products bVþ
jrt and bV�

jrt .

2.3 Run scenario-based approach (9.1)–(9.16) and (9.17) to

calculate XV
jrt þ djrt; 8j and Yrt þ

PJ
j¼1b

V
jrtdjrt .

2.4 If djr ¼
P

tdjrt ¼ 0, then go to step 2.8; otherwise run out-
put-oriented DEA estimator to calculate efficiency hDEA

rt .4
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2.5 If hDEA
rt P 1, then get hE

rt ; djr ¼
P

tdjrt ; 8j, and Yr ¼ Yrt

þ
PJ

j¼1b
V
jrtdjrt . Go to step 2.8.

Else if hDEA
rt < 1 and djr ¼

P
tdjrt < 0, then run (10) to hold

back the input adjustment on the efficient frontier
Min
XJ

j¼1

XV
jrt þ djrt

� �

s:t:
XK

k¼1

kkYk ¼ Yrt þ
XJ

j¼1

bV�
jrt djrt

XK

k¼1

kkXF
ik 6 XF

ir; 8i

XK

k¼1

kkXV
jk 6 XV

jrt þ djrt; 8j

XK

k¼1

kk ¼ 1

� RjrX
V
jr 6 XV

jrt � XV
jr

� �
þ djrt

kk P 0; 8k

ð10Þ
Else run the model (11)
J � �
Max
X
j¼1

XV
jrt þ djrt

s:t:
XK

k¼1

kkYk ¼ Yrt þ
XJ

j¼1

bVþ
jrt djrt

XK

k¼1

kkXF
ik 6 XF

ir; 8i

XK

k¼1

kkXV
jk 6 XV

jrt þ djrt; 8j

XK

k¼1

kk ¼ 1

RjrX
V
jr P XV

jrt � XV
jr

� �
þ djrt

kk P 0; 8k

ð11Þ
2.6 Set XV
jrðtþ1Þ ¼ XV

jrt þ djrt ; 8j and Yrðtþ1Þ ¼ Yrt þ
PJ

j¼1b
V
jrtdjrt .

2.7 Set t = t + 1 and go to step 2.2.
2.8 Set r = r + 1 and go to step 2.1.

5.2. Two-stage recourse approach

The two-stage recourse approach illustrated in Fig. 6 provides a
robust solution to all scenarios. In our model, the first-stage deci-
sion, i.e. the here-and-now decision, corresponds to selecting the
variable input level based on the demand forecasts. After demand
is realized, the second-stage decision, i.e. the wait-and-see
decision, corresponds to the measurement of effectiveness.

The two-stage recourse approach introduces an expected
recourse function which characterizes the performance of the sec-
ond stage, which in our formulation is the effectiveness estimates
based on the short-run capacity decisions for each specific
Fig. 6. Two-stage recourse problem.
scenario. This approach generates robust solutions to the first-
stage decisions. The two-stage recourse DEA model with capacity
adjustment and uncertain demand is shown below.

Min M
XS

s¼1

psh
E
rs þ

XJ

j¼1

dþjr þ d�jr
� �

ð12:1Þ

s:t: hE
rs ¼

XI

i¼1

vF
isX

F
ir þ

XJ

j¼1

vV
js XV

jr þ djr

� �
þwsDrs þ v0s; 8s ð12:2Þ

usyP
rs þwsyP

rs ¼ 1; 8s ð12:3ÞXI

i¼1

vF
isX

F
ik þ

XJ

j¼1

vV
jsX

V
jk � usYks þ v0s P 0; 8k n r;8s ð12:4Þ

XI

i¼1

vF
isX

F
ir þ

XJ

j¼1

vV
js XV

jr þ djr

� �
� usyP

rs þ v0s P 0; 8s ð12:5Þ

yP
rs ¼ ½yr � arðDrs � yrÞ�ð1� z1rsÞ
þ ½Drs � drðyr � DrsÞ�z1rs þ e; 8s ð12:6Þ

yr � Drs < Mz1rs; 8s ð12:7Þ
yr � Drs P �Mð1� z1rsÞ; 8s ð12:8Þ

yr ¼ Yr þ
XJ

j¼1

bV
jrdjr ð12:9Þ

bV
jr ¼ bVþ

jr z2jr þ bV�
jr ð1� z2jrÞ; 8j ð12:10Þ

djr < Mz2jr ; 8j ð12:11Þ
djr P �Mð1� z2jrÞ; 8j ð12:12Þ
djr ¼ dþjr � d�jr ; 8j ð12:13Þ
� RjrX

V
jr 6 djr 6 RjrX

V
jr; 8j ð12:14Þ

z2jr 2 f0;1g; 8j ð12:15Þ
z1rs 2 f0;1g; 8s ð12:16Þ
yP

rs; yr; d
þ
jr ; d

�
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is;vV
js P 0; 8i;8j;8s ð12:17Þ

dþjr ;d
�
jr P 0 as integers; 8j ð12:18Þ

The objective function (12.1) is to minimize the effectiveness
estimate hE

rs aggregated over scenario s with probability measures
ps and to minimize the adjustment variation for firm r. The
two-stage recourse problem (RP) provides an adjustment to the var-
iable input level djr; dþjr ; d�jr and output level yr in the first stage and
attempts to minimize expected effectiveness by optimizing the
variables yP

rs; ws; us; vF
is; vV

js, and v0s in the second stage after the
demand is realized. We define the recourse function as gðdjr;DrsÞ
¼minu;vP0 hE

rsjð12:2Þ—ð12:8Þ; ð12:16Þ—ð12:18Þ
� �

where djr is the
first-stage decision and Drs is a realized outcome of random variableeDrs. The expected value of the recourse function is E½gðdjr; eDrsÞ�
¼
P

spsh
E
rs under discrete scenarios. In the proposed algorithm we

replace Step 1 by the realized outcome of demand distribution Drs

and Step 2.3 by using the two-stage recourse approach
(12.1)–(12.12), (12.12)–(12.17) and (12.18).

5.3. Value of information and stochastic solution

With the solutions generated from model (9) and model (12),
we now investigate the quality of the solutions. The most common
metrics are the expected value of perfect information (EVPI), and
the value of the stochastic solution (VSS) (Birge & Louveaux,
2011). EVPI measures the maximum amount the decision-maker
is willing to pay in return for complete information about the
future. By defining the effectiveness measures from the
wait-and-see (WS) problem and the recourse problem (RP) as
WS ¼ EeD ½Max gðd; eDÞ� and RP ¼Max EeD ½gðd; eDÞ�, we can then de-
fine EVPI as Eq. (13).



544 C.-Y. Lee, A.L. Johnson / European Journal of Operational Research 232 (2014) 537–548
EVPI ¼WS� RP ¼ EeD ½Max gðd; eDÞ� �Max EeD ½gðd; eDÞ� ð13Þ

VSS is a measure of the quality of the expected value decision in
terms of the recourse problem. Namely, it tells us the cost of ignor-
ing uncertainty. Let �dðDÞ be an EV solution and define the expected
result of using the EV solution (EEV) as EEV ¼ EeD ½gð�dðDÞ; eDÞ�. Define
VSS as follows.

VSS ¼ RP � EEV ¼Max EeD ½gðd; eDÞ� � EeD ½gð�dðDÞ; eDÞ� ð14Þ
6. Numerical example

This section discusses a numerical example without capacity
expansion (djr = 0) to illustrate the effectiveness measure with
ak = 0 and dk = 1. Table 2 shows the data for 12 firms, including a
fixed input, variable input, actual output, and three demand fore-
casts: pessimistic (PE), most-likely (ML), and optimistic (OP). This
example postulates the probability of realizing each of the demand
scenarios as 1/6 for the PE, 4/6 for the ML and 1/6 for the OP de-
mand forecasts. Table 3 shows the efficiency and effectiveness
measures. Note that PE, ML, OP, and EV are deterministic (and
use the scenario-based approach), and SP uses the two-stage re-
course problem (RP). Specifically, the difference between the EV
solution and the SP solution is that the former calculates effective-
ness using expected demand Dk, whereas the latter estimates the
expected value of effectiveness of the three demand scenarios.
For illustrative purposes, we use the inverses of efficiency and
effectiveness to restrict the scores between 0 and 1 in Sections 6
and 7.

Fig. 7 maps the efficiency and the effectiveness levels with the
different demand scenarios on a two-dimensional coordinate
graph whose four quadrants indicate the strategic position which
Table 2
Data for numerical example.

Firms Fixed
input

Var.
input

Actual
output

Pessimistic
demand

Most-likely
demand

Optimistic
demand

A 9 5 10 6 9 12
B 4 7 8 5 6 9
C 4 9 11 6 8 13
D 5 9 9 7 8 10
E 7 7 10 7 9 13
F 6 7 7 4 6 9
G 10 8 10 7 8 11
H 8 6 7 7 8 9
I 5 6 11 6 7 12
J 4.5 10 10 8 10 12
K 4 8 12 7 8 12
L 10 7 5 3 5 8

Table 3
Efficiency, effectiveness, and EVPI.

Firm Efficiency Effectiveness

PE ML OP EV SP (RP) WS EVPI

A 1.00 0.33 0.89 1.00 0.89 0.82 0.82 0.00
B 1.00 0.40 0.67 1.00 0.74 0.68 0.68 0.00
C 0.92 0.17 0.63 0.92 0.71 0.60 0.60 0.00
D 0.75 0.71 0.88 0.90 0.90 0.85 0.85 0.00
E 0.87 0.57 0.89 0.87 0.93 0.83 0.83 0.00
F 0.61 0.25 0.83 0.78 0.87 0.73 0.73 0.00
G 0.83 0.57 0.75 0.91 0.80 0.75 0.75 0.00
H 0.64 1.00 0.88 0.78 0.88 0.88 0.88 0.00
I 1.00 0.17 0.43 1.00 0.57 0.48 0.48 0.00
J 0.83 0.75 1.00 0.83 1.00 0.93 0.93 0.00
K 1.00 0.29 0.50 1.00 0.59 0.55 0.55 0.00
L 0.44 0.33 1.00 0.63 0.97 0.83 0.83 0.00
Avg. 0.855 0.449 0.755 0.903 0.802 0.729 0.729
provides guidelines of productivity improvement. The intersection
of two axes describes the performance of industry level which is
the average of the 12 firms weighted by actual output. For the
PE-demand case, firms F and L are the laggards (the terminology
introduced in Fig. 2), firms D, G, H, and J belong to demand focus,
firms A, B, C, I, and K are attributed to production focus, and firm
E is the leader. When demand is high, note that it does not limit
the production possibility set and that effectiveness closely corre-
lates with efficiency, i.e. the 12 firms tend to a diagonal line. This
result is consistent with Proposition 1.

Fig. 7 shows the convergence process from the pessimistic to
the optimistic demand scenario, i.e. effectiveness provides addi-
tional information beyond an efficiency measure during economic
downturns. Note that the results show that all firms prefer to
under-produce rather than over-produce, because inventory
implies ineffective production. For example, firm C is highly
ineffective in the PE and the ML cases, but the production function
forms a demand-supporting limitation in the OP case. Thus, firm C
must reduce its output level if it wants to become more effective.

Finally, Fig. 8 shows that the results of EV and SP are similar.
When the variable defining scenarios is continuous, as is the case
with demand, we would expect the results to be similar.5 In addi-
tion, the last column of Table 3 indicates that all EVPI values equal
zero; thus, there is no value in paying for perfect information be-
cause capacity adjustment is not considered.

7. Empirical study

This section discusses an application in an empirical study of
the performance of 25 convenience stores in Japan under demand
uncertainty in the first half of 2003. Since the opening of the first
convenience stores in 1969, today about 42,889 stores serve 1.1
billion customers annually (Japan Franchise Association, 2010).
Most convenience stores have a floor area of 100 square meters
and carry about 3000 product types. Even though their prices are
generally higher than supermarket prices, they are popular due
to the range of services offered, e.g., courier and postal services,
touch-screen monitors for finding jobs and ordering tickets, utility
payments, ATMs, online shopping, and 24/7 convenience (Nippo-
nia, 2001). Section 7.1 presents the dataset. Section 7.2 describes
the results of estimating effectiveness using the scenario-based
and the two-stage recourse approaches. We solve the proposed
model using LINGO 9.0 Solver.

7.1. Data description

Table 4 summarizes the data from Sueyoshi (2003). In general,
the convenience stores industry production process can be charac-
terized by three input resources: capital, branch size (fixed inputs),
and employee (variable input). The forecasted demand and actual
output are measured in units; actual output is estimated by real-
ized revenue divided by the average price per item.6 Similarly, de-
mand is calculated by estimating revenue divided by average price
per item. Efficiency is estimated by using the actual output and
effectiveness is estimated by using the proposed DTPF.

We use the following definitions: capital is the net worth of the
equipment used to operate the convenience stores; branch size and
employee are the number of branches and manpower headcount in
the first half of 2003. Firm-specific demand is the estimated num-
ber of goods sold and characterized by the pessimistic, most-likely,
and optimistic estimates provided by managers and chief
5 However, when the scenarios are discrete, the results estimated using EV
typically will not be realized. For SP the results are estimated for each scenario; thus
the interpretation of the results is more direct.

6 Data from the Japan Franchise Association (2010).
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executive officers; see Sueyoshi (2003) for more details. The mar-
ginal product defined in section 4 is estimated by the Podinovski
and Førsund (2010) method. Each convenience store can adjust
capacity over some limited range by hiring/laying off employees.
For simplicity, we limit the positive and negative adjustment in
manpower resources to 15%; however, testing other values for this
parameter produces proportionally similar results.
7.2. Efficiency and effectiveness analysis

This section illustrates efficiency and effectiveness estimation
in a demand-dependent context. A demand-dependent context
means that all firms consistently realize the same single demand
state (such as pessimistic, most-likely, or optimistic). We postulate
that demand eDk follows a beta distribution. The expected value can



Table 5
Efficiency, effectiveness, EVPI, and VSS.

CVS Firm Efficiency Effectiveness

PE ML OP EV RP WS EVPI EEV VSS

N Y Exp. N Y Exp. N Y Exp. N Y Exp. N Y Exp. N Y Exp.

am/pm A 0.91 0.91 0 0.97 0.97 0 0.91 0.91 0 0.91 0.91 0 0.91 0.91 0 0.92 0.92 0 0.92 0.00 0.92 0.00
Heart in B 0.82 0.82 0 0.97 0.97 0 0.95 0.95 0 0.88 0.88 0 0.95 0.95 0 0.94 0.94 0 0.94 0.00 0.94 0.00
HOTSPAR C 0.54 0.55 �48 0.81 0.81 0 0.96 0.96 0 0.80 0.80 0 0.96 0.96 0 0.91 0.91 0 0.91 0.00 0.91 0.00
Apple Mart D 1.00 1.00 0 0.89 0.89 0 1.00 1.00 0 1.00 1.00 0 1.00 1.00 0 0.98 0.98 0 0.98 0.00 0.98 0.00
Everyone E 0.85 0.85 0 0.82 0.82 0 0.85 0.85 0 0.85 0.85 0 0.85 0.85 0 0.85 0.85 0 0.85 0.00 0.85 0.00
Caramel Mart F 0.72 0.72 0 0.71 0.71 0 0.89 0.89 0 0.72 0.72 0 0.89 0.89 0 0.83 0.83 0 0.83 0.00 0.83 0.00
Coco Store G 1.00 1.00 0 0.95 1.00 �13 1.00 1.00 0 1.00 1.00 0 1.00 1.00 0 0.99 1.00 �13 1.00 0.00 0.99 0.01
Community Store H 1.00 1.00 0 0.87 0.92 �23 1.00 1.00 0 1.00 1.00 0 1.00 1.00 0 0.98 0.99 �23 0.99 0.00 0.98 0.01
Circle K I 0.77 0.83 134 0.96 1.00 33 0.90 1.00 84 0.85 1.00 134 0.90 1.00 84 0.90 0.98 84 1.00 0.02 0.90 0.08
Sunkus J 0.76 0.78 �141 0.96 1.00 67 0.92 1.00 121 0.89 0.98 141 0.92 1.00 121 0.92 0.99 121 1.00 0.01 0.92 0.07
Shop and Life K 0.61 0.65 5 0.86 0.86 0 0.98 1.00 �2 0.94 1.00 4 0.97 1.00 �2 0.95 0.97 �2 0.98 0.01 0.95 0.02
Spar L 0.91 0.91 0 0.87 0.87 0 0.92 0.92 0 0.91 0.91 0 0.92 0.92 0 0.91 0.91 0 0.91 0.00 0.91 0.00
Three F M 0.76 0.76 0 0.95 0.95 0 0.91 0.91 0 0.88 0.88 0 0.91 0.91 0 0.92 0.92 0 0.92 0.00 0.92 0.00
Seikatsu Train N 0.94 0.94 0 0.98 0.98 0 0.94 0.94 0 0.94 0.94 0 0.94 0.94 0 0.95 0.95 0 0.95 0.00 0.95 0.00
Seicomart O 1.00 1.00 0 0.85 0.92 �40 1.00 1.00 0 1.00 1.00 0 1.00 1.00 0 0.98 0.99 �40 0.99 0.00 0.98 0.01
Seven Eleven P 1.00 1.00 0 1.00 1.00 0 1.00 1.00 0 1.00 1.00 0 1.00 1.00 0 1.00 1.00 0 1.00 0.00 1.00 0.00
Daily Yamazaki Q 1.00 1.00 0 0.86 1.00 �152 1.00 1.00 0 1.00 1.00 0 1.00 1.00 0 0.98 1.00 �152 1.00 0.00 0.98 0.02
Hiromaru Chain R 0.47 0.47 0 0.79 0.79 0 1.00 1.00 0 0.84 0.84 0 1.00 1.00 0 0.94 0.94 0 0.94 0.00 0.94 0.00
Family Mart S 0.76 0.76 0 0.97 1.00 44 0.90 1.00 152 0.85 1.00 260 0.90 1.00 152 0.90 0.98 152 1.00 0.02 0.90 0.08
My Shop Chain T 1.00 1.00 0 0.70 0.70 0 1.00 1.00 0 1.00 1.00 0 1.00 1.00 0 0.95 0.95 0 0.95 0.00 0.95 0.00
Monpellie U 1.00 1.00 0 1.00 1.00 0 1.00 1.00 0 1.00 1.00 0 1.00 1.00 0 1.00 1.00 0 1.00 0.00 1.00 0.00
Mon Mart V 1.00 1.00 0 0.91 0.91 0 0.98 0.98 0 1.00 1.00 0 0.98 0.98 0 0.97 0.97 0 0.97 0.00 0.97 0.00
Lics W 1.00 1.00 0 0.97 0.97 0 1.00 1.00 0 1.00 1.00 0 1.00 1.00 0 1.00 1.00 0 1.00 0.00 1.00 0.00
Little Star X 0.74 0.74 0 0.83 0.83 0 0.89 0.89 0 0.74 0.74 0 0.90 0.90 0 0.86 0.86 0 0.86 0.00 0.86 0.00
Lawson Y 0.69 0.69 0 0.98 0.98 0 0.92 0.92 0 0.87 0.87 0 0.92 0.92 0 0.93 0.93 0 0.93 0.00 0.93 0.00

Avg. 0.857 0.863 0.960 0.983 0.955 0.980 0.927 0.965 0.955 0.980 0.951 0.972

Table 4
Descriptive statistics of raw data.

Stat. Fixed input Var. input Output Demand

Capital Branch Employee Goods Pessimistic Most-likely Optimistic

Yen (106) Unit Headcount Unit (106)

Average 3452.5 1421.4 683.5 794.4 795.5 857.9 920.4
Std. dev. 7465.8 2291.5 1068.3 1330.2 1492.9 1558.6 1625.9
Max 30876.0 7780.0 4126.0 6191.3 6358.8 6586.6 6814.4
Min 3.0 22.0 8.0 12.1 11.7 13.1 14.7
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be estimated as Dk ¼ ðPEk þ 4MLk þ OPkÞ=6.7 Table 5 presents the
efficiency, effectiveness, EVPI, and VSS estimations. N means that
short-run capacity expansion is not allowed and Y means that man-
power expansion is allowed. The ‘‘Exp.’’ column indicates the change
in variable input where positive values indicate short-run capacity
expansion and negative values indicate contraction. The penalty is
only for capacity surplus, i.e. due to the service industry of conve-
nience stores. Table 5 shows the manpower adjustment for produc-
tivity improvement, for example, Family Mart needs to hire
additional 152 employees to increase its effectiveness score from
0.9 to 1.00 in the ML demand case.

We note that the convenience stores empirical study aligns
with the numerical study, in that higher demand increases the cor-
relation between effectiveness and efficiency. The correlation coef-
ficients are 0.26 and 0.76 in the pessimistic and the optimistic
demand cases without capacity expansion, respectively. In addi-
tion, EVPI and VSS in most of the convenience stores chains are
close to or equal to zero; thus, there is almost no difference be-
tween the two-stage RP and the expected value of EV, as shown
7 The beta distribution is widely used in project management with PERT (Program
Evaluation and Review Technique) and CPM (Critical Path Method) to plan activity
times and scheduling (Hillier & Lieberman, 2002).
in Table 5. This result is driven by the limited demand fluctuations
in the convenience stores industry during the first half of 2003.
However, we prefer the EV method because it is computationally
easier and provides similar results.

Concerning the ex-ante and ex-post analysis of short-run capac-
ity expansion, Fig. 9 maps the efficiency and effectiveness under
pessimistic demand on a two-dimensional coordinate and identi-
fies the four quadrants representing different strategies similar to
Fig. 2. The intersection of two coordinate axes indicates the indus-
try’s weighted average performance. For the ex-post analysis, we
calculate the efficiency after applying the expansion of variable in-
put recommended by the model (9) which may reduce efficiency to
increase effectiveness. Again, the results are almost identical.
8. Conclusion

Proactive DEA embedded with stochastic programming tech-
nique estimates a production function and make short-run capac-
ity decisions under demand uncertainty. The results of an
empirical study of Japanese convenience stores show that the pro-
posed model improves upon previous models by considering vary-
ing marginal product rates for expansion and contraction and the
limitations due to diminishing returns. In addition, efficiency and
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Fig. 9. Efficiency vs. effectiveness with pessimistic demand before and after expansion.
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effectiveness estimates easily identify the influence of demand on
productivity analysis.

Effectiveness complements efficiency measure. They are not
mutually independent since DTPF is generated based on produc-
tion function, but they have different managerial implications. Effi-
ciency measures the relative return on inputs used, whereas
effectiveness indicates the ability to match demand given an exist-
ing production technology. The revenue is directly associated with
effectiveness measure. Two-dimensional strategy position sup-
ports the development of productivity improvement.

This paper makes three contributions to the DEA literature.
First, we extend ex-post DEA efficiency estimation to aid in future
planning, i.e. proactive DEA. Second, we propose an effectiveness
measure and a demand-truncated production function to address
demand, which is rarely discussed in the literature. Third, by con-
sidering the diminishing marginal benefits of inputs via marginal
production estimation we ensure that the capacity adjustment re-
mains inside of the production possibility set.

We note that this paper only considers the case of the change of
one input contributing to the change of one output. In fact, the
adjustment of one input can contribute to multiple outputs due
to the law of marginal rate of technical substitution. Future devel-
opment of a multi-output model with price information would be a
valuable contribution. Moreover, the panel data and a dynamic
analysis will be useful for supporting a sequential control of
resource.
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