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Abstract:  

Estimation of joint production technologies involving multiple outputs has proved a vexing challenge. 

Existing methods are unsatisfactory as they either assume away stochastic noise or restrict to 

functional forms that have incorrect output curvature. The first contribution of this paper is to develop 

a new probabilistic data generating process that is compatible with the directional distance function. 

The directional distance function is a very general functional characterization of production 

technology that has proved useful for modeling joint production of multiple outputs. The second 

contribution of this paper is to develop a new estimator of the directional distance function that builds 

upon axiomatic properties and does not require any functional form assumptions. The proposed 

estimator is a natural extension of stochastic nonparametric envelopment of data (StoNED) 

framework to multiple output setting. We examine the practical aspects and usefulness of the 

proposed approach in the context of incentive regulation of the Finnish electricity distribution firms. 
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1. Introduction 

Economies of scope is a fundamental notion in production economics. Economies of scope prevail if 

joint production of two or more outputs is more cost efficient than producing those outputs separately 

in specialized production processes (Panzar and Willig, 1981). Recently, Pope and Johnson (2013) 

introduced the notion of returns to scope that does not depend on input prices. According to their 

terminology, production technology exhibits positive returns to scope if the output sets are convex at 

all non-negative input levels. For business strategy, the curvature of the output isoquant is a critical 

determinant of whether it is beneficial to produce multiple products jointly (positive returns to scope) 

or specialize in a single product (negative returns to scope). Important examples of positive returns 

to scope include cogeneration (e.g., combined heat and power) and byproducts, which may be 

desirable outputs (e.g., manure used as fertilizer) or undesirable outputs (e.g., waste and pollution).  

In production theory, technology distance functions have been established as valid functional 

representations of joint production technologies (see, e.g., Färe and Primont, 1995; Chambers et al., 

1998). Ability to model joint production consistent with the axioms of the production theory is one 

of the main advantages of the axiomatic mathematical programming approach that builds upon such 

classic works as Koopmans (1951), Farrell (1957), Shephard (1970), and Afriat (1972). In operational 

research, Charnes et al. (1978) further developed this approach and popularized it under the label of 

data envelopment analysis (DEA). However, the standard DEA models assume all observed data 

points to be feasible (the envelopment axiom), and hence any random noise due to omitted variables, 

unobserved heterogeneity, and data errors must be assumed away. This is a shortcoming of the 

conventional DEA approach in real world applications where data is always more or less noisy.  

Stochastic frontier analysis (SFA: Aigner et al. 1977; Meeusen and van den Broeck, 1977) is 

an econometric approach to model production that takes noise explicitly into account as a random 

variable. Since Lovell et al. (1994) there has been considerable efforts to extend SFA to multiple 

output setting using distance functions (see, e.g., recent paper by Kumbhakar, 2013). However, the 

restrictive functional form assumptions imposed in SFA seem particularly problematic in the context 

of joint production. By far the most common parametric functional forms used in the estimation of 

distance functions is translog. Coelli and Perelman (1999) justify the choice of translog by correctly 

noting that the Cobb-Douglas functional form has “incorrect output curvature.” More specifically, 

the output sets of the Cobb-Douglas transformation function are neither closed nor convex at any 

parameter values. Hence, the Cobb-Douglas functional form is clearly invalid representation of a 

multiple output technology. However, there is no guarantee that the translog functional form would 

automatically solve the problem, but at least, the translog technology does have closed and convex 

output sets under certain parameter values (see Perelman and Santini, 2009). It is easy to verify that 
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when the translog functional forms satisfies closedness and convexity, then it violates free 

disposability of outputs (monotonicity). By the free disposability axiom one should be able to dispose 

any output variable to zero, but the translog function does not allow this because the logarithm of 

zero is undefined. In practice, violation of free disposability is problematic because the frontier 

contains points that are dominated, and hence technically inefficient according to the definition by 

Koopmans (1951). A related practical problem concerns the modeling of specialized firms that do not 

produce all of the outputs (consider, e.g., railroad companies that specialize in passenger or freight 

services). Unfortunately, these problems have not been duly recognized in the SFA literature. For 

example, Coelli and Perelman (1999) state that they “assume that the technology satisfies the axioms 

listed in Färe and Primont (1995),” failing to note that the translog function cannot satisfy this set of 

standard axioms at any parameter values. In our view, the wrong curvature of the translog is a more 

fundamental problem than the proponents of the parametric approach recognize.  

There exist semiparametric SFA approaches that apply local averaging techniques such as 

kernel regression (Fan et al., 1996; Kneip and Simar, 1996) or local maximum likelihood (Kumbhakar 

et al., 2007) to avoid the restrictive functional form assumptions of the classical SFA. To extend this 

approach to distance functions, one would have to be able to impose global properties, at least, the 

properties required for identification, such as linear homogeneity of the output distance function or 

the translation property of the directional distance function. As discussed above, it would be also 

desirable to impose global monotonicity and convexity of output sets. In this respect, our main 

objections against the translog function discussed above carry over to the semiparametric SFA as 

well. While it is possible to impose shape restrictions locally (see, e.g., Du et al., 2013), imposing 

global constraints in local averaging appears to be difficult. Most likely this will require use of similar 

techniques to those routinely used in the axiomatic mathematical programming approach (see, e.g., 

Simar and Zelenyuk, 2011; Yagi et al., 2016).  

For the reasons discussed above, we consider the axiomatic mathematical programming 

approach to modeling joint production not only the most promising way forward, but in fact, the only 

way to ensure that the estimated frontier satisfies the key properties such as closedness, free 

disposability, convexity, and the various homogeneity properties implied by the production theory. 

In this stream of literature, extending DEA to probabilistic setting has been an active research area 

since the late 1980s (see, e.g., Olesen and Petersen, 2016, for a recent survey). Important early 

contributions to this literature include Banker and Maindiratta (1992) and Banker (1993). More 

recently, Kuosmanen (2006) and Kuosmanen and Kortelainen (2012) introduced stochastic 

nonparametric envelopment of data (StoNED) as a more general framework that combines the classic 

DEA and SFA models as its special cases (e.g., Kuosmanen and Johnson, 2010; Kuosmanen et al., 
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2015). StoNED might be equally well called “stochastic DEA” or “nonparametric SFA”: the purpose 

of the new term StoNED is to highlight the generality of the approach and the fact that its intellectual 

roots are not limited to DEA or SFA but also span such areas as nonparametric tests of optimizing 

behavior in microeconomic theory (e.g., by Diewert and Parkan, 1983, and Varian 1984, 1985) and 

convex regression in statistics and operational research (Hildreth, 1954; Dent, 1973; Hanson and 

Pledger, 1976; Holloway, 1979).   

To estimate joint production technologies in the StoNED framework, Kuosmanen (2006) 

applies the directional distance function (DDF) by Chambers et al. (1996; 1998) that contains the 

classic radial distance functions as its special cases. Kuosmanen et al. (2015) further elaborate the 

StoNED estimator of the directional distance function. While extending the StoNED estimator from 

the single output setting to multiple outputs using distance functions is relatively straightforward, it 

is not clear what kind of assumptions are required to ensure even the most basic statistical properties 

of the estimator such as consistency. This question has proved particularly challenging because 

almost all known probabilistic models of a data generating process (DGP) in the literature assume a 

single output variable, and only few formal DGPs for multioutput setting have been suggested (e.g., 

Varian, 1985; Banker and Maindiratta, 1992; Simar 2007; Kuosmanen et al., 2007), none of which 

are compatible with the DDF. 

The main objectives of this paper are two-fold. The first objective is to introduce a novel 

probabilistic DGP where all inputs and outputs are perturbed in some pre-defined direction. We 

formally show that the proposed directional DGP is compatible with the directional distance function. 

The second objective is to develop a consistent nonparametric estimator of the DDF. The proposed 

estimator is a natural extension of the DDF estimator outlined in Kuosmanen (2006) and Kuosmanen 

et al. (2015), but in this paper we provide a more detailed, systematic presentation and relax the 

distributional assumptions associated with the inefficiency and noise terms.  

The practical motivation for this study stems from the regulation of electricity distribution firms 

in Finland (see Kuosmanen, 2012; Kuosmanen et al., 2013). These firms are local monopolies that 

set their output prices subject to complex dynamic revenue constraints implied by the regulation 

model. The production process involves multiple inputs (e.g., labor, capital), desirable outputs (e.g., 

transmitted energy, capacity) and undesirable outputs (e.g., outages, energy loss). The Finnish energy 

regulator applies the StoNED method as an integral part of incentive regulation to set the acceptable 

cost level for the regulated firms since 2012 (Kuosmanen, 2012). In this context, there is need for an 

estimation method that can handle multiple inputs and outputs within the axiomatic framework of 

production theory and model inefficiency and noise in a probabilistic manner. The purpose of this 

paper is to develop a method that satisfies both these criteria. Based on the findings of this study, the 
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Finnish regulator applies the multiple output StoNED approach developed in this paper in the 

incentive regulation of Finnish electricity distribution firms in years 2016 – 2023.    

The electricity distribution regulation application highlights that if the directional distance 

function is used to estimate the production function and for analysis purposes, the direction consistent 

with the data generation process may not be the same as the direction used for analysis purposes. 

Thus, we introduce a two-stage method in which we estimate the production function in the first stage 

using criteria consistent with the data generation process and in the second stage identify performance 

benchmarks located on the production function using a direction consistent with the analysis purpose. 

The rest of the paper is organized as follows. Section 2 introduces the directional distance 

function and a probabilistic DGP where all inputs and outputs are perturbed by inefficiency and noise. 

In Section 3 we show that the proposed DGP is compatible with the DDF representation of 

technology, and apply the result to develop a regression equation. Orthogonality conditions for 

identification of the DDF are also formally established. Section 4 develops an axiomatic 

nonparametric StoNED method for estimating the DDF. Section 5 discusses practical aspects related 

to the proposed approach in the context of incentive regulation of the Finnish electricity distribution 

firms. Section 6 draws concluding remarks and discusses some promising avenues for future research. 

The proofs of all formal propositions are presented in the Appendix, which is available as an online 

supplement to this paper. 

 

2. Theoretical model 

2.1 Benchmark technology 

Consider a joint production technology that transforms input vector 1( ... ) m

mx x 
 x

 to an output 

vector 1( ... ) s

sy y 
 y

. The most obvious representation of the benchmark technology is the 

production possibility set defined as  

{( , ) | can produce }m sT 

 x y x y
.  

Set T contains all input-output combinations that are feasible for benchmarking. By the use of the 

term benchmark technology we want to stress that feasibility can be understood as a descriptive 

statement (if ( , ) Tx y , then ( , )x y  is technically feasible) or a normative statement (if ( , ) Tx y , 

then ( , )x y  can be used as a benchmark in a performance norm whether or not ( , )x y  is technically 

feasible or not). The normative interpretation is particularly relevant in the context of incentive 

regulation, which forms the empirical motivation of this study. 

The three classical axioms of the benchmark technology T considered in this paper include the 

following (see, e.g., Koopmans, 1951; Afriat, 1972; Färe and Primont, 1995): 
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A1. Free disposability of inputs and outputs: 
m sT T    

. 

A2. Convexity: T = Conv(T). 

A3. Constant returns to scale (CRS): ,  >0T T  . 

 

The distinction of descriptive versus normative interpretation of the benchmark technology also 

concerns the axioms. For example, the descriptive interpretation of CRS suggests that proportionate 

scaling of ( , )x y  by any arbitrarily small or large multiplier >0  results as a technically feasible 

production plan ( , ) x y . Clearly, the descriptive interpretation of CRS is unrealistic. However, we 

often find the normative interpretation of CRS appealing: if ( , )x y  is a valid benchmark, then so is 

( , ) x y . In other words, evaluated firms cannot plea for diseconomies of scale either due to too 

small or too large scale of operation. In incentive regulation, imposing CRS for the benchmark 

technology gives firms an incentive to merge or divest, or more generally, operate at the most 

productive scale size.      

 

2.2 Directional distance function 

 The directional distance function (DDF) introduced by Chambers et al. (1996, 1998) is defined as  

( , , , ) sup{ | ( , ) }x y x y
TD T     x y g g x g y g

,  

where 
( , )x y m s

g g
 is a direction vector. The DDF is a general functional representation of the 

technology: assuming g-disposability (see, e.g., Färe et al., 2005), the production possibility set T is  

{( , ) | ( , , , ) 0}m s x y
TT D

  x y x y g g
 for any 

( , )x y m s

g g
. 

While the DDF is commonly used as a measure of technical inefficiency, we emphasize that in this 

paper we are primarily interested in the DDF as a functional representation of production possibilities. 

The DDF contains the conventional radial input or output distance functions as its special cases. 

Specifying the direction vector as ( , ) ( , )x y g g x 0 , then the DDF is equal to one minus the input 

distance function. Similarly, the output distance function is obtained by setting ( , ) ( , )x y g g 0 y .  

The DDF inherits the axiomatic properties of the production set T (see Chambers et al., 1998, 

Lemma 2.2). Two fundamental properties that any DDF must satisfy include the following:  

 

A4. Translation property:  

( , , , ) ( , , , )x y x y x y
T TD D     x g y g g g x y g g . 

A5. Homogeneity of degree -1 in the direction vector:  
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( , , , ) (1/ ) ( , , , ),  0x y x y
T TD D     x y g g x y g g .   

 

These properties are crucial for the internal consistency of the DDF. Translation property A4 is an 

additive analogue of the linear homogeneity property of the input and output distance functions. Other 

notable properties of the DDF include the following. If inputs and outputs are freely disposable, then 

the DDF is a continuous function that is monotonically increasing in inputs and monotonically 

decreasing in outputs. If production possibility set T is convex, then DDF is globally concave in inputs 

and outputs. If the technology exhibits CRS, then the DDF is linearly homogenous in (x,y): 

( , , , )x y
TD  x y g g ( , , , ),  0x y

TD   x y g g . 

The DDF also has the following property.  

 

Proposition 1: If inputs and outputs are freely disposable (A1), then the directional distance function 

TD  is monotonically decreasing in ( , )x y
g g  for all ( , ) Tx y  and monotonically increasing in 

( , )x y
g g  for all ( , ) Tx y .  

 

To our knowledge, this monotonicity property has not been formally proved before (Fukuyama, 2003, 

briefly notes the first part of Proposition 1 without a proof). This result illustrates that changing the 

direction vector affects the values of TD , but TD  remains a complete characterization of the 

technology for any arbitrary direction vector 
( , )x y m s

g g
. We also note that concavity of TD  in 

(x,y) under axiom A2 does not generally imply concavity or convexity with respect to the direction 

vector ( , )x y
g g .  

 

2.3 Data generating process (DGP) 

The previous sub-sections consider the set theoretic and functional representations of the benchmark 

technology and their axiomatic properties. We consider a sample of n observed input-output vectors 

denoted by 
( , )i ix y

 indexed by i = 1,2,…,n randomly drawn from a true population. This subsection 

describes a probabilistic model that generates the observed data and state our assumptions regarding 

the DGP.   

Virtually all behavioral hypotheses known in the theory of the firm assume optimizing behavior. 

Without restricting to any specific behavioral hypothesis such as profit maximization or cost 

minimization, we assume that a unique optimal solution to the firm’s problem exist, and denote the 

optimal input-output vector of firm i by 
( , )i i

 
x y

. That is, given the specific objective function and 
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constraints of firm i, 
( , )i i

 
x y

 is objectively the best solution that a perfectly rational manager with 

perfect information would always choose. Note that the input-output prices may endogenously 

depend on the firm’s input-output quantities and the prices may be random variables, but if a rational 

manager solves a well-defined optimization problem (e.g., maximize the expected net present value 

of future profit flows as in Olley and Pakes, 1996), the optimal solution 
( , )i i

 
x y

 is both exogenously 

given and deterministic to firm i. We do recognize that real managers are not always perfectly rational 

or perfectly informed, but at this point, we only assume that a unique deterministic optimal solution 

( , )i i

 
x y

 exists. Since 
( , )i i

 
x y

 are vectors of constants, we have 
( )iVar  x 0

 and 
( )iVar  y 0

.  

We assume that the objective function is monotonically increasing in outputs y and 

monotonically decreasing in inputs x. Together with axiom A1 this implies that the optimal solutions 

( , )i i

 
x y

 lie on the boundary of the production possibility set T, that is, 

( , , , ) 0  ( , ) ( , ), 1, ,x y x y
T i iD i n      x y g g g g 0 0

 .  

It is worth noting that in our DGP the production possibility set T is perfectly deterministic, and hence 

so is its functional representation, the DDF.   

As noted above, real managers may have imperfect information about the technology and the 

(probability density of) input-output prices, real managers make errors in both optimization of 

production plans as well as implementation of those plans. To model the impacts of all such 

managerial failures on observed input-output data in a probabilistic manner, we follow the SFA 

literature and posit a random inefficiency term denoted by iu
. Inefficiency term 

0iu 
 is nonnegative 

and has a constant finite mean 0   and a constant finite variance
2

u . Since the real world data is 

typically subject to omitted variables, unobserved heterogeneity, measurement errors, and other 

random noise, we also posit another random variable iv
 referred to as the noise term. We assume iv

 

is symmetric with a unique mode at zero and a constant finite variance 
2

v . We define the composite 

error term as i i iu v  
. Similar to the standard SFA models, the inefficiency and noise terms (and 

hence the composite errors i ) are assumed to be homoskedastic and independent of each other, 

implying 
2 2 2

u v   
. Further, random i  are independent of the optimal solutions

( , )i i

 
x y

.  

In contrast to the conventional SFA models, however, we do not make any specific 

distributional assumptions regarding inefficiency or noise. Following Hall and Simar (2002), we 

assume that the asymmetric inefficiency term 
0iu 

 has a density fu with a jump discontinuity at 0 

and expected value  . The noise term iv
 has a unimodal density with a unique mode at zero. Hall 

and Simar (2002) also make a technical assumption that 
2

v  approaches to zero asymptotically, which 
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is required for proving consistency of their estimator.  

Note that the optimal solutions 
( , )i i

 
x y

 are vectors in 
m s

 , but the composite error term i

and its components iu
 and iv

 are scalars. To assign the scalar-valued inefficiency and noise to m 

input and s output variables, our DGP employs a direction vector 
( , )x y
g g

. Specifically, the optimal 

solutions 
( , )i i

 
x y

 are perturbed by a random variable i  in the exogenously given direction 
( , ),x y
g g

which yields the observed input-output vectors as a result, specifically, 

  1, ,x

i i i i n    x x g
, 

  1, ,y

i i i i n    y y g
.    

The use of a direction vector to govern the DGP is a novel idea of this paper. We must stress that in 

our DGP 
( , )x y
g g

 is not an arbitrary parameter vector that a researcher is free to specify, but rather, 

a parameter vector that governs inefficiency and noise in the probabilistic DGP. Note that if  
0x

kg 
 

for some input k, then input k is free from inefficiency and noise, and we have 
* 0ik ikx x 

. The larger 

the value of 
x

kg
, the larger the expected value and variance of the deviation 

*

ik ikx x
. Our DGP allows 

for a possibility that all inputs and outputs are subject to inefficiency and noise, and hence, all inputs 

and outputs are endogenous variables (using the standard econometric terminology).  

 

2.4 Direction Selection for Estimation 

Since the observed input-output vectors 
( , )i ix y

 depend on random variables i , 
( , )i ix y

 are 

random variables themselves. The expected value and variance of 
( , )i ix y

 are (respectively) 

( , ) ( , )x y

i i i iE     x y x g y g
, 

2( , ) ( , ) x y

i iVar x y g g
. 

Although a researcher cannot directly observe the underlying direction vector governing the DGP, 

we can use the variances of the input-output variables to inform an empirical specification of the 

direction vector. Note that in our DGP the variances of all input and output variables are identical and 

constant across firms because the composite error terms i  are scalar, which allows an empirical 

specification of the direction vector. Some alternatives will be briefly examined next. 

To gain intuition, let us first assume 
( , )i iE x y

 to be constant across all firms: consider a sample 

of profit maximizing firms operating a competitive market where all firms take the same input-output 

prices as given, such that the optimal solution 
( , )i i

 
x y

 is exactly the same for all firms. Then given 

the direction vector ( , ) x y
g g , this implies that 

( , )i iE x y
 is constant across firms. Therefore, the 
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sample variances of input-output variables provide an unbiased and consistent estimator of 
2 ( , ) x y

 g g
. Note further that since the DDF is homogenous of degree -1 in the direction vector by 

axiom A5, we can harmlessly rescale the direction vector by an arbitrary scalar. Therefore, we can 

set the elements of ( , ) x y
g g  equal to the sample variances of the corresponding input-output 

variables, and simply ignore the unknown variance parameter 
2

  in the specification of the direction 

vector. To relax the strong assumption of a constant 
( , )i iE x y

 across all firms, one might assume that 

( , )i iE x y
 is constant across subsets of firms in a cross-sectional setting. Of course, the subsets should 

be large enough to be able to estimate 
2 ( , ) x y

 g g
 by the sample variances of input-output vectors 

for each subset.  

If one has panel data 
( , ), 1,...,it it t Tx y

, another possibility is to assume that
( , )it itE x y

 is 

constant over time (at least by approximation). Then, one can calculate the differences from the mean, 

ix
= ∑ itx𝑇

𝑡=1  and iy
= ∑ ity𝑇

𝑡=1  , as 
( , )it i it i x x y y

, and use sample variances,  

2 2

1

1
( ) ( )

Tx

x it itT



 g x x

and 

2 2

1

1
( ) ( )

Ty

y it itT



 g y y

of each element of the resulting vector as 

an unbiased and consistent estimator of 
2 2 2( , )= ( ), ( )x y x y

x y    g g g g
. This empirical specification 

strategy essentially requires that the expected value of the input-output vector is constant across 

multiple data points over time such that the sample variance can be used as an estimator of 
2 ( , ) x y

 g g
. This strategy requires the rather strong assumption that the firms input and output levels 

are approximately constant over time. Therefore, an alternative approach will be considered in 

Section 5.  However, the question of how best to recover the true direction associated with the 

proposed DGP in cross-sectional data remains and open and interesting research question.  

Finally, some restrictive features of the DGP described above are worth noting. The assumption 

of a common direction vector 
( , )x y
g g

 that is both deterministic and constant across all firms is 

clearly restrictive. Our defense is that having a formal statistical model with clearly defined 

assumptions is far better than having no model at all. In fact, only few formal descriptions of a 

probabilistic DGP with noise are available in the multiple output setting. Banker and Maindiratta 

(1992) and Simar (2007) consider a radial DGP where the inputs (or outputs) are taken as exogenously 

given while all the outputs (inputs) are multiplied by a random variable 
exp( )i , resulting as radial 

perturbations along the ray from the origin. Such a radial model of inefficiency and noise is not free 

of restrictive assumptions (e.g., exogenous inputs, a specific radial direction for inefficiency and 

noise). Most importantly, the radial multiplicative model of inefficiency and noise is not compatible 
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with the additive, non-radial orientation of the DDF. In our view, the DGP described above is an 

additive analogue of the radial models by Banker and Maindiratta (1992) and Simar (2007), adapted 

from the radial framework to the DDF setting. 

Varian (1985) and Kuosmanen et al. (2007) consider a more general multivariate DGP where 

each input and output variable is perturbed by its own random composite error term, that is, there are 

m+s composite error terms instead of just one. We note that if the direction vector 
( , )x y
g g

 is 

specified as a random variable that is allowed to have different realizations across firms, then our 

directional DGP becomes observationally equivalent to the multivariate DGP of Varian (1985) and 

Kuosmanen et al. (2007). While we admit that the DGP considered in this paper is somewhat 

restrictive, we note extending the framework to more general settings as an interesting challenge for 

future research.     

 

3. Econometric model 

To establish an explicit connection between the functional representation of technology introduced 

in Section 2.2 and the DGP introduced in Section 2.3, we first state the following result. 

 

Proposition 2: If the observed data are generated according to the DGP described in Section 2.3, 

then the value of the DDF in observed data 
( , )i ix y

 point is equal to the realization of the random 

variable i , specifically, 

( , , , )   x y
T i i iD i x y g g

. 

 

Interestingly, although the DDF itself is a deterministic function with some known axiomatic 

properties, its value at a given observed data point is a random variable due to the inefficiency and 

noise contained in the observed data. This result verifies that the DGP described in Section 2.3 is 

structurally consistent with the DDF representation of the technology.   

To develop the regression equation, we apply the translation property to obtain one of the inputs 

or outputs as the dependent variable. We could arbitrarily choose any of the input or output variables 

as the dependent variable, but for the sake of notation, we specify the first output variable y1i as the 

dependent variable. Note that all inputs and outputs are potentially endogenous. 

Assuming 1 0yg  , we apply the translation property A4 and set 1 1/ y

iy g  
 to obtain the 

following equality 

1 1 1 1 1 1( ( / ) , ( / ) , , ) ( , , , ) ( / )y x y y x y x y y
T Ti i i i i i iD y g y g D y g   x g y g g g x y g g

. 

Applying Proposition 2, and reorganizing terms, we have the regression equation  
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1 1 1 1 1 1/ ( ( / ) , ( / ) , , )y y x y y x y
Ti i i i i iy g D y g y g    x g y g g g

.    (1) 

The negative sign of the composite error term is due to the fact that the DDF has positive values in 

the interior of the production possibility set T and negative values outside T. Note that the explanatory 

variables of (1) are potentially endogenous because the observed inputs and outputs are perturbed by 

i . To estimate equation (1), we first need to eliminate this endogeneity. 

To simplify the notation, we introduce the following partial differences:  

1 1( / )y x

i i iy g x x g
,   

1 1( / )y y

i i iy g y y g
 . 

Partial differences are similarly used in many areas of econometrics (consider, e.g., estimation of 

autoregressive models by feasible generalized least squares). Using these transformations, we can 

state the regression equation as 

1 1/ ( , , , )y x y
Ti i i iy g D  x y g g

.     

   

Proposition 3: If the observed data are generated by the DGP described in Section 2.3, then the 

transformed input-output variables 
( , )i ix y

are uncorrelated with the error term i , that is,  

( , )  i iCov i  x 0
 and 

( , )  i iCov i  y 0
. 

 

Intuition behind this result is the following. Since 1iy
 contains inefficiency and noise, adding 

1 1( / )y x

iy g g
 to the observed inputs and by subtracting 1 1( / )y y

iy g g
 from the observed outputs will 

cancel out the inefficiency and noise contained in the other input-output variables (see the proof for 

details). Hence, it is possible to eliminate the endogeneity problem. To gain intuition, it may be 

helpful to compare the proposed approach with the two-stage least squares (2SLS) approach where 

the endogenous variables are first regressed on external instruments, and subsequently, the fitted 

values of the endogenous variables are used as explanatory variables in the original regression 

equation. In our setting, the transformed input-output vectors 
( , )i ix y

 serve the same function as the 

fitted values of endogenous variables in the 2SLS approach, except that constructing vectors 
( , )i ix y

 

does not require estimation of any auxiliary regression.  

 

4. StoNED estimator 

This section describes the StoNED estimator that builds directly on the axiomatic properties of the 

DDF does not require any functional form assumptions. The proposed estimation is a step-wise 

method. The first step is to apply convex nonparametric least squares (CNLS) (Kuosmanen, 2008) to 
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estimate the conditional mean  

1 1( / , ) ( , , , )y x y
Ti i i i iE y g D  x y x y g g

.  

Note that the properties of the DGP imply that the conditional mean is simply the DDF minus a 

constant μ = E(u). The second step applies kernel deconvolution (Hall and Simar, 2002; 

Goldenshluger and Tsybakov, 2004) to estimate μ. The third step combines the results of the first two 

steps to estimate the DDF. 

 

4.1 Convex nonparametric least squares 

We first estimate the conditional mean 1 1( / , )y

i i iE y g x y
of output 1 by solving the following 

quadratic programming problem 
2

, , ,
1

min ( )
n

i

i





α β γ ε

 

subject to 
1 1/  

 ,

1 

,  

y

i i i i i i i

i i i i i h h i h i

x y

i i

i i

y g i

i h

i

i

 

 

     

        

   

  

β x γ y

β x γ y β x γ y

β g γ g

β 0 γ 0
   

The coefficients 
, ,i i i β γ

 characterize a tangent hyperplane of the estimated DDF for the observation 

i, and i  is an estimator of 
( )i iv u  

. Considering 1 1/ y

iy g
 as the dependent variable and the 

transformed variables (
,i ix y

) as the independent variables, this estimator is directly equivalent to 

the standard CNLS estimator by Kuosmanen (2008). Statistical consistency of this estimator is proved 

by Seijo and Sen (2011) and Lim and Glynn (2012). The only additional component to the standard 

CNLS estimator is the third constraint, which enforces the translation property and monotonicity with 

respect to the first output variable. 

 We emphasize that the above CNLS estimator is invariant to the choice of output 1y
 as the 

dependent variable. We can equally well choose some other output or an input as the dependent 

variable, and obtain exactly the same estimates. The only restriction is that the element of the direction 

vector corresponding to the dependent variable cannot be equal to zero: we cannot choose an input-

output variable that is free from inefficiency and noise as a dependent variable. In applications that 

we are familiar with it is quite easy to recognize beforehand which inputs and outputs are noisy and 

which ones are not.  

 

4.2 Estimating the expected inefficiency 
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The second step is to estimate the expected inefficiency  . Kuosmanen and Kortelainen (2012) 

propose to complement the CNLS regression by the method of moments (Aigner et al., 1977) or 

quasi-likelihood estimation (Fan et al., 1996) that can identify the constant μ based on the skewness 

of the CNLS residuals. However, these approaches require additional distributional assumptions for 

both the inefficiency and noise terms (e.g., half-normal inefficiency and normally distributed noise). 

Further, in these methods the identification of   is essentially based on the skewness of the residuals 

(Waldman, 1982). In this paper we use a robust nonparametric estimator that does not depend on the 

skewness of the residuals or specific distributional assumptions.  

 Fully nonparametric estimation of the expected inefficiency   based on the CNLS residuals  

is possible by applying nonparametric kernel deconvolution, as shown by Hall and Simar (2002). In 

this approach, the identification of  is based on the unknown density of the composite error term. 

Since the CNLS estimator produces residuals ie
 that are consistent estimators of 

( )i i iv u   
, 

we can apply the kernel density estimator for estimating the density function ef . Formally,  

 

1

1

ˆ ( ) ( )
n

i
e

i

z e
f z nh K

h





 
  

 


, 

where ( )K   is a compactly supported kernel and h is a bandwidth.  

 Hall and Simar (2002) show that the first derivative of the density function of the composite 

error term (
f ) is proportional to that of the inefficiency term ( uf  ) in the neighborhood of  . This 

is due to the assumption that uf  has a jump discontinuity at zero. Therefore, a robust nonparametric 

estimator of expected inefficiency   is obtained as 

 

ˆˆ arg max( ( ))e
z

f z



, 

where   is a closed interval in the right tail of 
( )f 

. 

 To implement the procedure empirically, a bandwidth must be chosen and   must be defined. 

Different bandwidth selection criteria are known in the literature of deconvolution kernel estimation. 

Delaigle and Gijbels (2004) discuss alternative bandwidth selection criteria for data contaminated 

with noise, including the normal reference method, the plug-in method, the cross-validation and the 

bootstrap method, and compare them using Monte Carlo simulations. They find that the plug-in and 

the bootstrap methods outperform the cross-validation method.    

 

4.3 Estimating the DDF 

Once ̂  has been obtained, the conditional mean estimated in the first step can be shifted upward to 

obtain an estimator of the DDF. But first, note that even though the CNLS estimator yields unique 
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predictions 1 1
ˆ / y

i i i i i iy g     β x γ y
 in the observed data points, the coefficients 

, ,i i i β γ
 obtained 

as the optimal solution to the CNLS problem are not necessarily unique [this is directly analogous to 

the fact that the multiplier weights of data envelopment analysis (DEA) are non-unique]. To resolve 

the non-uniqueness, Kuosmanen and Kortelainen (2012) appeal to the minimum extrapolation 

principle and propose to estimate the minimum envelopment of the fitted values of the CNLS 

estimator. In the similar vein, our estimator of the DDF is given by  

 
 

, ,

ˆ ˆ ˆ( , , , ) min 0 ; 1; 0; 0x y x y

i iD i


                  
β γ

x y g g β x γ y β x γ y β g γ g β γ
,  

Where 
ˆ ˆ( ) y

i i i ie    x x g
 and 

ˆ ˆ( ) y

i i i ie    y y g
 are the estimated projection points on the frontier 

of T. Using the estimated projection points as the reference units, we can compute 
ˆ ( , , , )x yD x y g g  

using the standard DEA formulation of the DDF (e.g., Fukuyama, 2003), and it can be solved by 

linear programming. One can compute all coefficients (α,β,γ) by using a convex hull algorithm (e.g., 

Olesen and Petersen, 2003; Appa and Williams, 2006) to obtain an explicit representation of the 

estimated DDF as a piece-wise linear function.  

 It is easy to verify that the estimator 
ˆ ( , , , )x yD x y g g

 of the production frontier satisfies free 

disposability A1, convexity A2, translation property A4, and the homogeneity property A5. The CRS 

property A3 is imposed by restricting 
0 i i  

. We stress that the projection points 
ˆ ˆ( , )i i

 
x y

 

obtained from the CNLS problem are consistent with these axiomatic properties. The auxiliary DEA 

step does not influence the DDF estimates of the observed firms: it is only used for computing the 

minimum envelopment of the fitted values, which allows us to compute the value of the DDF for any 

real valued production plan ( , )x y   and for any arbitrary direction 
( , )x y m s

g g
.  

We are primarily interested in the DDF as a representation of technology. Once the frontier is 

estimated, it is possible to use the estimated DDF for ex post efficiency analysis. One can use the 

estimated DDF for gauging the distance to the frontier in any direction 
( , )x y
g g

, which may be firm-

specific. In general, we would expect that the direction vector used for efficiency analysis would be 

different than the direction vector used in the CNLS estimation of the DDF. The direction vector used 

in CNLS for estimating the benchmark technology should be specified to match the underlying DGP. 

However, the direction vector applied in ex post performance comparisons can be specified 

differently to conform to the objectives of the firm managers, the regulator, or other stakeholders, 

depending on the purposes of efficiency analysis.    

Estimating the production frontier and subsequently performing an ex post efficiency analysis 

is a novel proposal of our estimation procedure. Several papers address the issue of selecting the 

direction vector to estimate a directional distance functions, see for example Daraio and Simar (2014) 
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who proposed a data driven method, Fare et al. (2013) who propose to select the direction 
y

g
 such 

that the observed data point is as close to the production function as possible when measured in units 

of 
y

g
 where 1

1
s

y

y

g

,or Zofio et al. (2013) and Atkinson and Tsionas (2016) who propose a method 

consistent with profit maximization. We see all of these methods as alternative methods to perform 

an ex post efficiency analysis which could be potentially useful depending on the objective of the 

efficiency analysis. However, it is not clear they could be use in the estimation of the directional 

distance production function because they are not consistent with DGP describe in this paper and no 

DGP has been proposed in the papers in which the estimators are developed.   

 While the estimated DDF can be useful for relative performance comparisons of firms, we 

emphasize that the ex post distance measures capture both inefficiency and noise because all data 

points are subject to noise by assumption. Indeed, it is incorrect to interpret a distance from an 

observed data point to the frontier as an estimate of inefficiency iu
. The density of iu

 can be 

estimated by kernel smoothing (Horrace and Parmeter, 2011), which can be useful for interval 

estimation and inferences on the aggregate levels of industries or groups of firms. However, 

consistent point estimators of the firm specific iu
 are impossible: without further structure or 

assumptions the realization of a random variable cannot be estimated based on a single noisy data 

point. This does not mean that efficiency analysis is meaningless in stochastic setting: for example, 

estimated frontier production function can be useful for benchmarking purposes. We next consider 

an application to incentive regulation where the main interest is in the estimation of a cost norm.   

 

5. Application to electricity distribution firms 

Benchmark regulation of electricity distribution networks is one of the most significant real world 

applications of frontier estimation techniques. Several regulators across the world apply the axiomatic 

deterministic DEA to estimate efficiency improvement targets, and some apply econometric 

techniques such as SFA (see, e.g., Bogetoft and Otto, 2011, Ch. 10, for a review). Finland was the 

first country to adopt the StoNED method in use and apply it systematically to real world incentive 

regulation since 2012 (Kuosmanen, 2012). The application presented in this section was originally 

developed in 2013 in order to help the Finnish regulator to further improve their benchmarking 

method. As discussed in more detail below, several methodological developments introduced in the 

previous sections have been adopted in actual use in the regulation model for Finnish electricity 

distribution firms for the time period 2016 – 2023. However, we stress that the model presented in 

this section is not exactly identical to the benchmarking model applied by the Finnish regulator, it has 

been simplified in a number of ways to allow emphasis on the modeling of multi-output production. 
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We present a simplified model here mainly for illustrative purposes. 

We examine the data set of 89 Finnish electricity distribution firms described in Kuosmanen 

(2012) (available in its online supplement). We consider the following input and output variables, 

which are fairly standard in the benchmark regulation of electricity distribution.  

 

Input variables:  

x1 = operational expenditures (OPEX, 1,000 €);  

x2 = capital expenditures (CAPEX, 1,000 €).  

 

Output variables:  

y1 = energy transmitted (GWh);  

y2 = length of lines (km);  

y3 = number of customers. 

 

We can interpret OPEX as a proxy of labor input, and CAPEX as a proxy of capital input. The 

measurement of labor input in this industry is difficult because a large proportion of work has been 

outsourced to subcontractors, and hence the labor hours and the wage bills of the firms do not 

represent the actual labor input. An important unresolved issue in this literature concerns the question 

of whether the single input variable should be defined as the total expenditures (TOTEX = x1 + x2) or 

the operating expenditures (OPEX) (e.g., Jamasb and Pollit, 2007; Bogetoft and Otto, 2011, Ch. 10). 

Distribution firms can convincingly argue that the capital expenditure (CAPEX), which forms a part 

of TOTEX, is fixed in the short run. Indeed, investments in the power grid are expected to serve over 

several decades, which makes it difficult to adjust the CAPEX component in the short run (e.g., in 

Finland, one regulation period is four years). However, omitting the CAPEX component can give 

wrong incentives to overinvest since OPEX can be substituted, at least to some extent, by CAPEX. 

Omitting CAPEX would favor those firms that can invest capital in labor saving technologies to drive 

down the OPEX component. In Finland, Kuosmanen (2012) recommended the use of TOTEX, but 

the regulator decided to use OPEX, omitting the CAPEX component.  

The use of the DDF that facilitates multiple inputs and multiple outputs can help to resolve the 

question of OPEX versus TOTEX regulation. For example, a regulator may prefer to measure 

efficiency in terms of OPEX, treating CAPEX as a fixed input, which can be done by setting the 

direction vector for efficiency evaluation as (1,0)x g  for the inputs. As for the output variables, 

local distribution monopolies have little effect on the customer demand. For example, the distribution 

companies have a legal obligation to connect all customers, and they obviously cannot transmit more 
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power than what is demanded by the customers. On the other hand, there are monetary sanctions if 

distribution firms fail to meet demand. By these arguments, setting direction vector for efficiency 

evaluation as (0,0,0)y g  for the outputs seems an appropriate and meaningful specification from 

the regulation point of view. This specification allows the regulator to measure the cost saving 

potential in OPEX, keeping CAPEX and the output variables fixed at their observed level. Indeed, 

this is the direction vector that the Finnish regulator adopted in use in their benchmarking model since 

2016. Although this can be a meaningful direction for the ex post performance analysis, we first need 

to estimate the DDF using observed data that are subject to noise. From the econometric point of 

view, ignoring noise in all variables except OPEX would be a strong assumption. 

In the present application, both input variables are clearly noisy. The main component of OPEX 

is labor expenses (both in-house and outsourced labor). Thunderstorms, heavy snowfalls, and other 

random weather events that cause damage to power lines will directly affect the OPEX expenses. 

CAPEX is measured based on the replacement value of the distribution network using the linear 

depreciation. Such an accounting measure of capital, which requires monetary valuation of thousands 

of network components of different vintages, will obviously contain a lot of noise. Therefore, we set 

both elements of 
x

g  positive in the estimation of the DDF.  

In contrast, the output variables are measured with high precision, and they capture both the 

actual power transmission (y1) and the capacity (outputs y2 and y3). We also assume that firms take 

the demand for electric power as given. Therefore, we assume the outputs to be exogenous and specify 

(0,0,0)y g . Thus, we need to take one of the input variables, say OPEX (x1), as the dependent 

variable that is normalized and moved to the left-hand side of the regression equation.  

Since we have two noisy input variables, we can harmlessly normalize 1 1xg 
. The remaining  

question is then how to specify 2

xg
 for the CAPEX input? A critical assumption not emphasized thus 

far is homoscedasticity of the composite error term. This assumption is required in the stepwise 

estimation strategy for shifting the estimated conditional mean upward to estimate the frontier 

represented by the DDF. Therefore, our empirical strategy to specify 2

xg
 is based on the 

homoscedasticity assumption and a simple grid search strategy.  

Appendix 2 (available in the online supplement) describes the CNLS formulation used in this 

application and describes our empirical strategy of specifying 2

xg
. In summary, we compute the 

CNLS estimates using different values of 2

xg
, then apply the White test of heteroscedasticity, and 

choose 2

xg
 that yields the lowest value of the White’s test statistic. This empirical strategy results as 

the specification 2 0.25xg 
. 
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Table 1 reports some descriptive statistics of the estimated shadow prices of inputs and outputs. 

The estimated DDF is a piece-wise linear function consisting of facets characterized by the multipliers 

β and γ. Recall we allow coefficients β and γ to be firm-specific, but in practice, the estimated 

coefficients are clustered to a smaller number of facets. Note that inefficiency loss is here measured 

on monetary scale (€). The output coefficients γ have compelling price interpretation with well-

defined units of measurement whereas input coefficients β are unit invariant multipliers. For example, 

increasing OPEX by one euro increases inefficiency by 86 cents on average.  

   

 Table 1: Marginal effects of inputs (β coefficients) and outputs (γ) on the DDF 

Variable mean st.dev. min  max 

β1 OPEX  0.857 0.219 0.010 1.000 

β2 CAPEX 0.572 0.878 0.000 3.961 

γ1 energy transmission (c / kWh) 3.529 1.597 0.060 5.955 

γ2 length of lines (€ / km)  410.8 298.5 0.0 1 918 

γ3 customers (€ / customer) 35.01 34.60 0.00 21.72 

 

Next, we apply the kernel density estimator to the CNLS residuals to estimate the expected 

value of inefficiency (see Section 4.2 for details). Figure 1 plots the estimated density function and 

its first derivative. The derivative function achieves its maximum at point -1.73 (indicated by the 

vertical line in Figure 1), and hence our estimate of the expected value of inefficiency is 
ˆ 1.73  .  

 

  

Figure 1: Estimated density of the CNLS residuals (solid line) and its first derivative (broken 

line). The vertical line indicates the maximum value of the derivative function, which provides 
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the estimate of the expected inefficiency.  

 

 

Figure 2: Estimated input isoquants of the average firm and the three largest distribution 

networks (Fortum, Elenia, and Helen). 

 

Figure 2 plots the input isoquants of the representative distribution firm (i.e., the arithmetic 

average of the output vectors), and the three largest distribution firms (Fortum, Elenia, and Helen). 

The horizontal axis is OPEX and the vertical axis is CAPEX: both are measured in Million €. In the 

multiple output setting, the shape of the input isoquant depends on the output structure of the firm. 

The estimated isoquants suggest that there are considerable substitution possibilities between OPEX 

and CAPEX given the output structure of Fortum and Elenia, whereas the output structure of Helen 

(operating in Helsinki) yields almost a L-shaped (Leontief type) input isoquant. 

To assess performance of distribution firms, we next project the observed data points to the 

frontier using the direction vector (1,0)x g , (0,0,0)y g , which is the relevant direction for the 

regulator. Keeping the outputs and CAPEX fixed at their current levels, we first estimate the cost 

saving potential for each firm as the difference of the observed OPEX and the predicted OPEX 

according to the StoNED frontier, and then sum over all firms to estimate the total cost-saving 

potential of the industry. The estimated cost saving potential in OPEX amounts to €44.6 Million, 

which is 14 percent of the observed total OPEX of the industry. In other words, the overall efficiency 

of the industry is estimated as 86 percent. Note that the measured distances from observed data points 

to the estimated frontier contain random noise, but since the noise term has zero mean, the firm-

specific noise terms will likely cancel out as the distances of individual firms from the frontier are 

totaled to assess efficiency at the industry level. If we consider performance in terms of the ratio of 

Average firm

Fortum

Elenia

Helen 

0

20

40

60

80

0 20 40 60 80 100

x2 CAPEX

Million €

x1 OPEX

Million €



21 

 

estimated and observed OPEX at the firm level (keeping in mind our caveat regarding noise), we find 

a high dispersion of performance across firms, with the minimum ratio of estimated and observed 

OPEX equal to 45 percent, and the maximum equal to 140 percent. The arithmetic mean is 81 percent, 

which is lower than the cost-weighted overall efficiency of 86 percent noted above. 

For comparison, we also applied the method of moments estimator assuming half-normal 

inefficiency and normal noise. This parametric estimator provides the estimated expected value of 

2.45 for the inefficiency term, which is considerably higher than the value of 1.72 suggested by the 

kernel deconvolution method. To put these figures in a proper context, we calculated the total cost 

saving potential of the industry as explained above, but now using the method of moment estimate. 

This analysis suggests the total cost-saving potential of €75.5 Million, or 23 percent of the industry 

OPEX, which is €30.9 Million higher than the corresponding estimates obtained with the kernel 

deconvolution method. This comparison illustrates the decisive role of the distributional assumptions 

in regulation. However, sensitivity of the efficiency estimates on the distributional assumptions 

should not be interpreted as evidence in favor of the deterministic methods. To put the results in the 

correct perspective, if we assume away noise completely and interpreted all deviations from the 

frontier as inefficiency, as most regulators currently do, then the estimated saving potential in OPEX 

is €161.3 Million (or 49.8 percent). This is more than 3.6 times larger than our estimate. It may be 

also interesting to compare our estimates of the total industry efficiency with those obtained by 

Kuosmanen et al. (2013) using TOTEX as a single input factor (StoNED €47.5 Million, SFA €93.0 

Million, DEA €141.4 Million): our estimate of €44.6 Million comes very close to the previously 

reported StoNED estimate. 

Based on our study, the Finnish energy regulator applies the multiple output StoNED approach 

for the incentive regulation of electricity distribution firms during the period 2016 – 2023, including 

CNLS estimation of the conditional mean, kernel deconvolution of the expected inefficiency, and the 

use of the direction vector (1,0)x g , (0,0,0)y g , as discussed above. However, we stress again 

that the illustrative application presented in this section is not exactly identical to the full-scale 

benchmarking model used in the real world. The benchmarking model used in the real world includes 

the following important modifications: 1) The frontier is estimated using an unbalanced panel data 

rather than a single cross section considered in this section. 2) The CAPEX variable is replaced by 

the replacement value of the capital stock. 3) A hedonic measure of the damage due to interruptions 

is included in the model as an undesirable output, in addition to the input and output variables 

considered above. 4) The ratio of connection points to customers is used as a contextual variable in 

order to better capture observed heterogeneity in the operating environments of firms.  
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6. Conclusions 

The stated objectives of this paper were twofold. Firstly, we introduced a stochastic DGP where all 

input and output variables are endogenous. To identify the directional distance function, viewed here 

as a representation of the benchmark technology, we demonstrated how to apply the translation 

property of the directional distance function to move one of the input or output variables as the 

dependent variable using a simple data transformation. We showed that the data transformation 

cancels out inefficiency and noise from the independent variables of the estimation under the stated 

assumptions. While some of the assumptions in the proposed DGP may appear restrictive, we find it 

critically important to make the underlying assumptions explicitly. The proposed DGP can be 

extended to more general settings, but we leave this as an interesting challenge for future research.    

Secondly, we developed a new nonparametric axiomatic estimator of the directional distance 

function that introduces to the StoNED approach some recent developments in the literature of kernel 

deconvolution. The proposed StoNED approach expands the scope of the previous semi-

nonparametric approaches in several dimensions. 1) The proposed approach is compatible with joint 

production of multiple outputs (returns to scope or economies of scope) using multiple inputs, 2) it 

has a sound axiomatic foundation, 3) it takes stochastic noise explicitly into account in all input and 

output variables, and 4) it does not rely on any arbitrary distributional assumptions. These are 

significant advances from the point of view of practical implementation of the StoNED approach.   

We examined the specification of appropriate direction vector through an empirical case of 

energy regulation in Finland. While we view the choice of the direction vectors as an application 

specific issue, we believe this application can provide some ideas and insights that are potentially 

useful in other applications in different industries and at different levels of aggregation.  

The present paper focuses on the production side of the economy. However, we believe the 

insights and techniques developed in this study could be useful in other contexts as well. One 

possibility is to utilize the intimate connections between the theory of revealed preference and the 

axiomatic production theory to apply the results and insights of this paper to consumer demand 

analysis and modeling of household consumption decisions (see, e.g., Cherchye et al., 2007). 

Technically, the directional distance function we considered is directly analogous to Luenberger’s 

(1992) benefit function. Another possibility is to abstract from the microeconomic theory, and view 

the distance function simply as a functional representation of dependence between variables. From 

this perspective, the theoretical results of this paper could be utilized in multivariate regression where 

all variables are endogenous. We hope this paper open up several interesting avenues of future 

research.  
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Online supplement 

 

Appendix 1: Proofs of Propositions 

 

Proposition 1: If inputs and outputs are freely disposable (A1), then the directional distance function 

TD  is monotonically decreasing in ( , )x y
g g  for all ( , ) Tx y  and monotonically increasing in 

( , )x y
g g  for all ( , ) Tx y .  

 

Proof.  

Consider first an arbitrary ( , ) Tx y  and a pair of direction vectors 
( , )x y m s

A A



g g
 and 

( , )x y m s

B B



g g
 such that 

( , ), ( , ) ( , )x y x y

A A B B g g g g 0 0
. We need to show that  

( , ) ( , )x y x y

A A B Bg g g g   
( , , , ) ( , , , )x y x y

T TA A B BD Dx y g g x y g g
. 

Define the projection points 
( , )A A

 
x y

 and 
( , )B B

 
x y

 on the boundary of T as follows: 

( , )A A

 
x y

:
( , , , ) 0x y

T A A A AD   x y g g
 

( , , , )

( , , , )

x y x
TA A A A

x y y
TA A A A

D

D





 

 

x x x y g g g

y y x y g g g   

( , )B B

 
x y

:
( , , , ) 0x y

T B B B BD   x y g g
   

( , , , )

( , , , )

x y x
TB B B B

x y y
TB B B B

D

D





 

 

x x x y g g g

y y x y g g g    

Next, define a point 
( , )AB AB

 
x y

 as 
( , , , )

( , , , )

x y x
TAB A A B

x y y
TAB A A B

D

D





 

 

x x x y g g g

y y x y g g g  

Note that point 
( , )AB AB

 
x y

 is obtained by projecting (x,y) in the direction 
( , )x y

B Bg g
 by amount 

( , , , )x y
T A AD x y g g

, and it is not necessarily on the frontier. Since 
( , ) ( , )x y x y

A A B Bg g g g
, point 

( , )A A

 
x y

 

obviously dominates 
( , )AB AB

 
x y

 in the sense that 
A AB

A AB

 

 





x x

y y   

Monotonicity of TD  in (x,y) requires that 
( , )B B

 
x y

 must also dominate 
( , )AB AB

 
x y

, that is, 
B AB

B AB

 

 





x x

y y  
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Otherwise the boundary point 
( , )A A

 
x y

 dominates another boundary point 
( , )B B

 
x y

, which clearly 

violates the free disposability axiom A1.  

Now, consider the difference of 
( , )B B

 
x y

 and 
( , )AB AB

 
x y

, which can be stated as 
( ( , , , ) ( , , , ))

( ( , , , ) ( , , , ))

x y x y x
T TB AB A A B B B

x y x y y
T TB AB A A B B B

D D

D D

 

 

   

    

x x x y g g x y g g g 0

y y x y g g x y g g g 0  

Since 
( , ) ( , )x y

B B g g 0 0
 by assumption, we must have 

( , , , ) ( , , , )x y x y
T TA A B BD Dx y g g x y g g

 .  

Thus, we have shown that TD  is monotonically decreasing in ( , )x y
g g  for all ( , ) Tx y . 

Directly analogous argument applies to an arbitrary ( , ) Tx y . The only difference concerns 

the signs of inequalities ,B AB B AB

      x x 0 y y 0 . The signs are reversed because  

( , , , ) 0 ( , )x y
TD T  x y g g x y

. 

While the absolute value 
( , , , )x y

TD x y g g
 is monotonically decreasing in 

( , )x y
g g

 for all 

( , ) m s

x y
, function 

( , , , )x y
TD x y g g

 is monotonically increasing in 
( , )x y
g g

 for all ( , ) Tx y .  

 

Proposition 2: If the observed data are generated according to the DGP described in Section 2.3, 

then the value of the DDF in observed data 
( , )i ix y

 point is equal to the realization of the random 

variable i , specifically, 

( , , , )   x y
T i i iD i x y g g

. 

      

Proof.  

If the observed data are generated according to the DGP stated in Section 2.3, then the value of the 

DDF with the observed data of firm i is given by 

( , , , ) ( , , , )x y x y x y
T Ti i i i i iD D     x y g g x g y g g g

.   

Using the translation property A4, we have  

( , , , ) ( , , , )x y x y x y
T Ti i i i i i iD D        x g y g g g x y g g

.   

By definition, the efficient input-output vectors must be on the boundary of the production 

possibility set T and satisfy the condition 

( , , , ) 0x y
T i iD   x y g g

.  

Combining the previous steps, we have shown that 
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( , , , )   x y
T i i iD i x y g g

.       

 

Proposition 3: If the observed data are generated by the DGP described in Section 2.3, then the 

transformed input-output variables 
( , )i ix y

are uncorrelated with the error term i , that is,  

( , )  i iCov i  x 0
 and 

( , )  i iCov i  y 0
. 

 

Proof.  

Properties of the DGP imply that the transformed input vector can be stated as 1 1 1 1 1

1 1

1 1

( / ) ( ) (( ) / )

( ( / ) ) ( )

( / )

y x x y y x

i i i i i i i

y x x x

i i i

y x

i i

y g y g g

y g

y g

 



 

 

 

     

   

 

x x g x g g

x g g g

x g  

Note that the composite error i  present in both the elements of ix
 and 1iy

 cancels out completely. 

Since the optimal solutions 
( , )i i

 
x y

 are exogenously given constants, we have 

( , )i iCov   x 0
, 

( , )i iCov   y 0
 

Further, since the direction vector ( , )x y
g g  is constant across observations, we obviously have  

( , ) ,

( , )

x

i

y

i

Cov

Cov









g 0

g 0  

Combining these observations, we have demonstrated that 

1 1( , ) ( , ( / ) )  y x

i i i i iCov Cov y g i      x x g 0
, 

which confirms the first part of the proposition. 

Consider next the output vector. Using exactly the same arguments as in the case of the input 

vector, we have  
1 1

1 1 1

1 1

1 1

( / )

( ) (( ) / )

( ( / ) ) ( )

( / )

y y

i i i

y y y y

i i i i

y y y y

i i i i

y y

i i i

y g

y g g

y g

y g

 



 

 

 

 

   

   

 

y y g

y g g

y g g g

y g  

As in the case of the input vector, the composite error term i  present in the elements of both iy
and 

in 1iy
 cancels out completely. We have already note that 

( , )i iCov   y 0
 and 

( , )y

iCov  g 0
, which 

imply that the second part of the proposition must hold: 

1 1( , ) ( , ( / ) )  y y

i i i i i iCov Cov y g i      y y g 0
      



30 

 

Appendix 2: Additional materials related to the application 

Normalizing an input variable as the dependent variable, the regression equation becomes 

1 1 1 1 1 1/ ( ( / ) , ( / ) , , )x x x x y x y
Ti i i i i ix g D x g x g     x g y g g g

. 

Note that the signs of the DDF and the composite error term change compared to the situation where 

an output variable is normalized as the dependent variable. Function ( )TD   is monotonically 

decreasing in inputs, monotonically increasing in outputs, and convex in inputs and outputs. 

The CNLS formulation presented in the paper does not make any assumption about the returns 

to scale (i.e., variable returns to scale are implicitly assumed). The previous study by Kuosmanen 

(2012), using this same data with TOTEX as the single input variable, argues that the CRS axiom A3 

is justified from the regulation point of view. Further, the null hypothesis of CRS could not be rejected 

in empirical specification tests. In this study we impose CRS by dividing all input and output variables 

by output y1. In practice, this implies that distance to frontier is measured in €/GWh, the inputs are 

expressed as €/GWh, and the outputs are the line km per GWh and customers per GWh. This 

specification also helps to alleviate heteroscedasticity due to the large differences in firm size.  

Applying the modifications discussed above, the CNLS problem becomes 

2 2 3

2

, , , ,
1

min ( )
n

i

i
    





 

subject to 

1 1 2 2 1 3 3 1 2 2 1 2 1 1

2 2 1 3 3 1 2 2 1 2 1 1

2 2 1 3 3 1 2 2 1 2 1 1

2 2

2

/ ( / ) ( / ) ( / ( / ))  

( / ) ( / ) ( / ( / ))

( / ) ( / ) ( / ( / )) ,

1

0,

x

i i i i i i i i i i i i i i i

x

i i i i i i i i i i i i

x

h h i i h i i h i i i i

x

i

i i

x y y y y y x y g x y i

y y y y x y g x y

y y y y x y g x y i h

g

    

   

   



 

      

   

     



  2 30, 0, 0 i i i   
  

The subscripts of the gamma and beta coefficients refer to the shadow prices of the corresponding 

output and input variables (i.e., y2, y3, x2). Coefficient i  is the shadow price of the transmission 

output (y1). The shadow price of OPEX (x1) is 2 2(1 )x

ig 
.  

We apply the CNLS regression using a grid of initial values for 2

xg
, say 0 (1,0)x g

, 1 (1,0.1)x g

, 1 (1,0.2)x g
, and so forth. We then apply the White test of heteroscedasticity to the CNLS residuals 

using the transformed variables 2 1 3 1 2 1 2 1 1( / , / , / ( / ))x

i i i i i i i iy y y y x y g x y
, their squared values, and 

their cross products as regressors. Based on the estimates of the White test statistic (nR2), we can 

introduce a finer grid of values for 2

xg
, and compute the estimator and the associated White test 

statistics. Our main aim is to identify at least one direction for which the null hypothesis of 
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homoscedasticity can be maintained according to the White test. Finding the “optimal” direction that 

minimizes the White test statistic is of secondary importance, but it can be used as an empirical 

criterion for the specification of the direction vector. 

Figure A plots the values of the White test statistic as the value of the direction 2

xg
 increases 

from zero to one. We obtain the lowest value of the test statistic by setting 2 0.25xg 
. We first used 

grid search with increments of 0.1, and then performed a more detailed search with the interval [0.2, 

0.3], estimating the model using 21 different direction vectors in total. We find that all test statistic 

values associated with 2 0.7xg 
 are below the critical value of the White test at the conventional 

levels of significance (the critical values of the White test at 1%, 5%, and 10% significance levels are 

indicated in Figure A). Thus, we will set the direction vector as (1,0.25)x g . 

The search of the most homoscedastic direction also revealed that the skewness of CNLS 

residuals is positive at all values of the direction vector considered, as expected. 

 

Figure A: Values of the White test statistic as the function of 2

xg
. 
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