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Abstract  

 

Organizations like census bureaus rely on non-exhaustive surveys to estimate industry 

population-level production functions. In this paper we propose selecting an estimator based 

on a weighting of its in-sample and predictive performance on actual application datasets. 

We compare Cobb-Douglas functional assumptions to existing nonparametric shape 

constrained estimators and a newly proposed estimated presented in this paper. For simulated 

data, we find that our proposed estimator has the lowest weighted errors. For actual data, 

specifically the 2010 Chilean Annual National Industrial Survey, a Cobb-Douglas 

specification describes at least 90% as much variance as the best alternative estimators in 

practically all cases considered.  
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1. Introduction  

The importance of sample-specificity and prediction error over-optimism for the assessment 

of production functions becomes immediately evident when estimating a production function 

using non-exhaustive survey data1. These machine learning concepts allow us to investigate 

the extent to which an estimated production function characterizes both the set of surveyed 

establishments and the set of un-surveyed establishments for a particular industry.  

Classical frontier estimators such as Stochastic Frontier Analysis (SFA, Aigner et al., 

1977), and Data Envelopment Analysis (DEA, Banker et al., 1984), as well as more recent 

developments such as Stochastic DEA (Simar and Zelenyuk, 2008), Convex Nonparametric 

Least Squares (CNLS, Kuosmanen, 2008), Constraint Weighted Bootstrapping (CWB, Du et 

al., 2013), and Shape-Constrained Kernel Weighted Least Squares (SCKLS, Yagi et al., 

2016) have all use Monte Carlo simulation results taking random samples drawn from a 

known data generation process (DGP) to justify their use or benefit. The developers of the 

methods also evaluate estimator performance on the input vectors of the same sample used 

for estimation2. The literature provides independent comparisons between some of these 

                                                           
1 We will primarily focus on establishment censuses and surveys performed by census bureaus where an 

establishment is defined as a single physical location where business is conducted or where services or 

industrial operations are performed. An example is the U.S. annual survey of manufacturers. This survey is 

conducted annually, except for years ending in 2 and 7 in which a Census is performed, Foster et al. (2008). 

This survey includes approximately 50000 establishments selected from the census universe of 346000, or 

approximately a 15% sampling, Fort et al. (2014).  
2 A body of economic literature of a less computational and more aggregate nature is the growth accounting 

literature, Solow (1957) and Barro and Sala-i-Martin (2004). These methods rely on price information, the 

cost minimization assumption and parametric forms to deterministically compute the coefficients of a first 

order approximation of a general production function using observed input cost shares (see for example 

Syverson, 2011). This literature’s main model adequacy check is to compute the R-squared value on the full 
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methods considering a more ample set of scenarios in a Monte Carlo simulation framework, 

but still using the same dataset to fit the production function/frontier and test its goodness-

of-fit, see Andor and Hesse (2012) as an example. Numerous applied studies to fit production 

functions and frontiers with real data have been conducted using the aforementioned methods 

without assessing estimator sample-specificity or even comparing the performance of 

multiple estimators on the actual application datasets3. Finally, the Monte Carlo simulations 

used to illustrate the performance of existing estimators do not explore the accuracy with 

which an estimator predicts the noise level of the DGP, which further obscures insights about 

the performance of a functional estimator. 

To address the issues above, we consider a model selection strategy that improves on 

the current paradigm for selecting a production function model among a pool of models 

generated by different functional estimators both on simulated and the actual application 

datasets. Our primary interest is estimating industry population-level production functions 

from potentially non-exhaustive manufacturing survey data. Accordingly, we focus on 

estimating the production function for the observed production units and the unobserved 

production units that we know exist, but not observed in a survey. For example, when we 

observe a full census, we will disregard out-of-sample performance because we will have a 

measurement for each point of interest. The framework we apply to both simulated and real 

data encompasses three elements: estimation of the optimism-corrected in-sample error 

                                                           
observed dataset, again foregoing insights into the adequacy of the estimator in survey-to-full sample data 

settings.   
3 For DEA-based studies, see the survey paper by Emrouznejad, Parker and G. Tavares (2008). For relevant 

SFA applications, see Section 2.10 on Greene (1993). Practical studies involving more recent methods include 

Mekaroonreung and Johnson (2012) and Eskelinen and Kuosmanen (2013). This is also common in the 

productivity literature, see for example Olley and Pakes (1997), Levinsohn and Petrin (2003), and De Loecker 

et al. (2015).  
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(defined in Section 3) for the observed establishment set, use of a learning set-testing set 

context to estimate the predictive error on the unobserved establishment set (Hastie, 

Tibshirani and Friedman, 2009 pp. 222), and a finite-sample weighting, which acknowledges 

the potential existence of only a finite set of establishments, thus weighting the in-sample 

and predictive errors proportionally to the survey size4.  

For the simulated datasets, we take advantage of the practically infinite data-generating 

capability in the Monte Carlo context. We estimate the expected optimism-corrected in-

sample error and the predictive error by computing mean squared errors for our fitted 

estimators on previously unobserved testing sets.  These important error measures provide 

estimates of the functional estimator’s expected predictive power for a full census of firms, 

of which some are unobserved. We also compute the performance against the known true 

DGP in both the in-sample and learning-to-testing set contexts. 

For real manufacturing survey datasets, we use different estimators to calculate the 

expected in-sample and predictive errors because we do not have the ability to generate new, 

unobserved datasets from the underlying DGP a priori, as in the case of simulated data. For 

the in-sample error, given the different natures of the considered estimators we cannot simply 

compute Mallow’s - 𝐶𝑝 (1973), Akaike Information Criterion (AIC, 1974), or similar 

optimism penalization, which are specific to linear models. Instead, we employ the 

parametric bootstrap approach by Efron (2004) to estimate in-sample optimism for 

potentially non-linear functional estimators. For our predictive error estimation, we estimate 

production functions using random subsamples of the survey data and assess the predictive 

                                                           
4 If the researcher is interested in the descriptive ability of the production function at every point of the input 

space, only the predictive error is of interest. See Appendix E for some results using this alternative 

assumption. 
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error of the fit, thus following a cross-validation strategy (see Stone, 1974; Allen, 1974 and 

Geisser, 1975 for seminal work on cross-validation).  

The universal nature of cross-validation is important in comparing production function 

estimators (Arlot and Celisse, 2010), as they usually arise from different regression 

paradigms and have different sets of assumptions. Specifically, Hastie, Tibshirani and 

Friedman (2009, pp. 230) mention that when evaluating nonlinear, adaptive regression 

techniques5, it is usually difficult to estimate the effective number of parameters, and cross-

validation is one of the few available model selection strategies available. The most 

commonly used cross-validation methods are non-exhaustive methods, k-fold cross-

validation, and repeated learning-testing (RLT) (Breiman et al, 1984). All have significant 

computational advantages over methods that exhaustively explore all the possible 

combinations of learning and validation sets, such as leave-one out cross-validation (Stone, 

1974, Geisser, 1975), or leave-p-out cross-validation (Shao, 1993).  Unlike k-fold cross-

validation, the variance of RLT can be controlled by increasing the number of replicates, 

given any learning set size (Burman, 1989). We do not use RLT to estimate the predictive 

error of a learning set of the size of our census set, as is normally the objective on cross-

validation, but rather to obtain the expected predictive error for a dataset of the size of the 

survey set itself. We then use our model selection strategy to assess the required survey sizes 

for obtaining reliable production function estimates for each of the studied industries.  

The main contribution of this paper to the published literature is the proposed optimism-

corrected model selection method, which allows evaluation of estimator performance in both 

simulated and actual manufacturing survey data. The proposed method will benefit 

                                                           
5 The nonparametric estimators we evaluate are in this category.   
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organizations unable to collect census data on an annual basis. Further, because applications 

may have characteristics that favor the use of that particular estimator, we propose that 

relative performance of an estimator on the real application dataset should be the main 

criterion to follow when choosing a production frontier estimation method for an application. 

Furthermore, as an additional contribution we propose a functional estimator, Convex 

Adaptively Partitioned Nonparametric Least Squares (CAP-NLS), which integrates the idea 

of adaptive partitioning from Convex Adaptive Partitioning (CAP) (Hannah and Dunson, 

2013) with the global optimization strategy of the CNLS estimator.  

The CNLS estimator is an example of a sieve estimator which is extremely flexible and 

is optimized to fit the observed data set, White and Wooldridge (1991) and Chen (2007). 

Alternatively, the adaptive least squares-based CAP developed in the machine-learning 

literature has demonstrated good predictive performance by integrating model estimation and 

selection strategies, (and thus resulting in parsimonious functional estimates) as opposed to 

only optimizing fit on the observed dataset. Specifically, Hannah and Dunson (2013) 

recognize that the CNLS estimator overfits the observed dataset at the boundaries of the data, 

thus affecting the quality of prediction for the true underlying function. Other researchers, 

such as Huang and Szepesvári (2014) and Balázs, György and Szepesvári (2015) build 

examples in which CNLS estimation results in infinite Mean Squared Error due to overfitting 

of the sample. Using our proposed model-selection method, we illustrate that this overfitting 

has detrimental effects when estimating production functions from survey data to infer the 

true underlying industry population-level production behavior.  

The remainder of this paper is organized as follows. Section 2 discusses Convex 

Adaptively Partitioned Nonparametric Least Squares (CAP-NLS), a method that integrates 

CAP and CNLS using an adaptive partitioning strategy using the Afriat (1967; 1972) 
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inequalities and global optimization which greatly mitigates the overfitting issues of CNLS.  

Section 3 describes a Monte Carlo simulation analysis to demonstrate the performance of the 

proposed estimator for both in-sample and learning set-to-testing set scenarios. Section 4 

describes fitting production data for the five industries with the largest sample sizes in the 

2010 Chilean Annual National Industrial Survey, compares the proposed method to the 

performance of other estimation methods, and discusses the results. Section 5 discusses the 

implications of our research, summarizes the contributions to the production/cost function 

estimation literature, and suggests future research. 

 

2. Convex Adaptively Partitioned Nonparametric Least Squares 

2.1 Production Function Model 

We define the regression model for our nonparametric estimation procedure as 

                                                          𝑌 = 𝑓(𝑿) + 𝜀 ,                                                    (1)                                                                

where Y represents observed output, 𝑓(𝑿) denotes the attainable output level, given a certain 

input mix 𝑿 = (𝑋1, … , 𝑋𝑑)′, 𝑑 is the dimensionality of the input vector, and 𝜀 is a symmetric 

random term, which we call noise, assuming a mean 0. For our estimator, we use the 

establishment-specific equation (2) to derive our objective function: 

                                𝑌𝑖 = 𝑓(𝑋1𝑖, … , 𝑋𝑑𝑖) + 𝜀𝑖,     𝑖 = 1, … , 𝑛 .                                 (2) 

For notational simplicity, we let  𝑓𝑖 = 𝑓(𝑋1𝑖, … , 𝑋𝑑𝑖) and 𝑿𝒊 = 𝑋1𝑖, … , 𝑋𝑑𝑖. We describe 

the decreasing marginal productivity (concavity) property in terms of  ∇𝑓(𝑿), i.e., the 

gradient of 𝑓 with respect to X, as 

                           𝑓(𝑿𝑖) ≤ + 𝑓(𝑿𝑗) +  ∇𝑓(𝑿𝑗)𝑇(𝑿𝑖 − 𝑿𝑗) ∀𝑖, 𝑗.                           (3) 
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Given that the constraints in (3) hold, the additional constraint ∇𝑓(𝑿𝑖) > 0 ∀𝑖 imposes 

monotonicity. 

 

2.2 Convex Adaptively Partitioned Nonparametric Least Squares 

In this paper, we consider nonparametric approximation of 𝑓(𝑿) with several piecewise 

linear estimators. These estimators can consistently describe a general concave function 

allowing the concavity constraints in (3) to be written as a system of linear inequalities. The 

first estimator we consider, the CNLS estimator, is a sieve estimator consistent with the 

functional description in (1)-(3), Kuosmanen (2008). CNLS is also the most flexible 

piecewise linear estimator we consider because it allows and has the most piecewise linear 

segments or hyperplanes. There are two limitations, however. The estimator imposes 

condition (3) by a set of numerous pairwise constraints, which requires significant 

computational enhancements to be applied on moderate datasets (see Lee et al., 2013 and 

Mazumder et al., 2015). It also results in a parameter-intensive representation of 𝑓(𝑿), since 

it allows for potentially N distinct hyperplanes. Thus, the highly detailed sample-specific fit 

limits the estimator’s ability to predict the performance unobserved establishments from the 

same industry. From an economics perspective, allowing for such a large number of distinct 

hyperplanes is an issue, because individual establishment observations can specify their own 

vector of marginal products i.e., they can place zero weight on some set of inputs and exclude 

them from the analysis of that establishment’s production function. This implies that even if 

the establishment uses the inputs intensively, it can ignore the inputs recorded in the data 

when evaluating its performance.  

Hannah and Dunson (2013) propose CAP, a convex regression method also consistent 

with (1)-(3). The CAP algorithm partitions the dataset into input-space defined subsets 
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(hereafter, Basis Regions) and estimate one hyperplane per basis region. CAP explores 

proposals for basis regions and greedily selects models with incrementally better fits as the 

number of hyperplanes increases/decreases/refit. CAP transition from simpler (initially 

linear) to more detailed models of the concave function and select the model that results in 

the best tradeoff between model fit and the number of parameters used. 

We will now introduction Convex Adaptively Partitioned Nonparametric Least Squares 

(CAP-NLS) which conbines the advantages of both CNLS and CAP. We let [𝑖] be the index 

of the basis region to which observation 𝑖 is assigned for a given input set partitioning 

proposal and 𝐾 be the number of basis regions. Then, we approximate concave function 𝑓(𝑿) 

at input vector 𝑿𝑖 with the estimator  

                                                  𝑓𝐾(𝑿𝑖) =  𝛽0[𝑖]
∗ + 𝜷−0[𝑖]

∗𝑇 𝑿𝑖                                                  (4) 

where 

(𝛽0𝑘
∗ , 𝜷−0𝑘

∗ )𝑘=1
𝐾 = argmin

(𝛽0𝑘,𝜷−0𝑘)𝑘=1
𝐾

∑ (𝛽0[𝑖] + 𝜷−0[𝑖]
𝑇 𝑿𝑖 − 𝑌𝑖)

2𝑛
𝑖=1   

𝑠. 𝑡.  𝛽0[𝑖] + 𝜷−0[𝑖]
𝑇 𝑿𝑖 ≤ 𝛽0𝑘 + 𝜷−0𝑘

𝑇 𝑿𝑖  ∀ 𝑖 = 1, … 𝑁, 𝑘 = 1, … , 𝐾 

𝜷−0𝑘 ≥ 𝟎 ∀𝑘 = 1, … , 𝐾, 

the kth basis region is fitted by a hyperplane with parameters 𝜷𝑘 = (𝛽0𝑘
∗ , 𝜷−0𝑘

∗ ). Note that 

like CNLS we are optimally fitting a piece-wise linear function with a fixed limit on the 

number of hyperplanes, 𝐾, thus the total number of Afriat inequality constraints is 𝑁𝐾 as 

opposed to the 𝑁(𝑁 − 1) constraints implied by (3). Further, note that (4) estimates 𝑓(𝑿) 

conditionally on an input-space partition. Thus, to obtain an unconditional estimator of 𝑓(𝑿), 

we need to explore different input-space partitions as in CAP. Consequently, we nest the 

solution to problem (4) into an algorithm that proposes partitions resulting in a more 

parsimonious estimator of 𝑓(𝑿) than the CNLS solution. 
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We estimate the function 𝑓(𝑿) by iteratively solving (4) inside of the partitioning 

proposal strategy. At each iteration, the strategy evaluates 𝐾𝑀𝐿 partition-splitting proposals, 

where 𝑀, a tunable parameter, is the number of random input-space location proposals for a 

new knot at each iteration, 𝐿 = 𝑑 is the number of randomly proposed directions, given the 

current basis regions and a proposed new knot location, that will define the new dataset 

partition, and 𝐾 is the current number of partitions at the current iteration.  The full estimation 

algorithm which nests (4) in the adaptive partitioning strategy is:  

Algorithm 1. CAP-NLS Estimator 

1. Start with 𝐾 = 1 and fit (4). 

2. Consider splitting each of the current 𝐾 hyperplanes at 𝑀 random knot locations in 𝐿 

random directions. 

3. Fit (4) for each of the (at most) 𝐾𝑀𝐿 partition proposals with at least 𝑛0/2 

observations on each basis region. If no partition proposal with enough observations 

exists, stop. 

4. Select the proposal that minimizes MSE, save in collection of models and let 𝐾 =

𝐾 + 1. Return to Step 2. 

To ensure model parsimony, we select the smallest model from the collection of models 

(in terms of 𝐾) for which MSE is within a prespecified tolerance of the MSE of the largest 

𝐾considered available in such collection. 6 Note the tunable parameter 𝑛0 is bounded below 

by 2(𝑑 + 1). CAP-NLS has one-to-many hyperplane to observations mapping and requires 

                                                           
6 The tolerance is set to 1% in all of our examples. Initially, we do not use the Generalized Cross Validation 

(GCV) score approximation used by Hannah and Dunson (2013), because they assert that GCV’s predictive 

results are only comparable with full cross validation strategies for problems with 𝑛 ≥ 5000, which are larger 

than the datasets we consider in this paper.  



 

11 
 

at least 2(𝑑 + 1) observations per partition to fit each hyperplane like CAP. This property is 

the key for superior out of sample performance.  

Even though CAP and CAP-NLS use the same partitioning strategy, there are three 

main differences between. First, CAP-NLS imposes concavity via the Afriat Inequalities 

rather than a minimum-of-hyperplanes construction. Second, CAP-NLS requires solving a 

global optimization problem rather than multiple localized optimization problems. As we 

will observe in Sections 3 and 4, the additional structure results in increased rates of 

convergence and improved robustness against the local monotonicity violations common in 

manufacturing survey data. Third, CAP-NLS does not require a refitting step, because it 

retains the observation-to-basis region correspondence before and after fitting problem (4).  

 

2.3 CAP-NLS as a series of Quadratic Programs 

Taking advantage of the linearly-constrained quadratic programming structure of CAP-NLS 

is essential to achieve computational feasibility. Therefore, we write Problem (4) in the 

standard form 

                                                             min
𝜷

1

2
𝜷𝑇𝐻𝜷 + 𝜷𝑇𝑔                                                 (5)                                                                 

                                                                     𝑠. 𝑡.  𝐴𝜷 ≤ 0,   𝜷 ≥ 𝒍. 

Starting with the objective function from (4), we let  �̃� = (𝟏, 𝑿) and write  

              min
(𝛽0𝑘,𝜷−0𝑘)𝑘=1

𝐾
∑ (𝛽0[𝑖] + 𝜷−0[𝑖]

𝑇 𝑿𝑖 − 𝑌𝑖)
2𝑛

𝑖=1 =  min
(𝜷𝑘)𝑘=1

𝐾
∑ (𝜷[𝑖]

𝑇 �̃�𝑖 − 𝑌𝑖)
2𝑛

𝑖=1 = ⋯      (6) 

                                  =  min
(𝜷𝑘)𝑘=1

𝐾
 
1

2
∑ (𝜷[𝑖]

𝑇 �̃�𝑖)
2𝑛

𝑖=1 − ∑ (𝜷[𝑖]
𝑇 �̃�𝑖𝑌𝑖)

𝑛
𝑖=1  , 

where we have dropped constant ∑ 𝑌𝑖
2𝑛

𝑖=1  and multiplied times one half. To write the last 

expression in (6) in standard form, we first write ∑ (𝜷[𝑖]
𝑇 �̃�𝑖)

2𝑛
𝑖=1 using matrix operations. We 



 

12 
 

define observation-to-hyperplane 𝑛(𝑑 + 1) × 𝐾(𝑑 + 1)-dimensional mapping matrix 𝑃, 

with elements 𝑃((𝑖 − 1) ∗ (𝑑 + 1) + 𝑗, ([𝑖] − 1) ∗ (𝑑 + 1) + 𝑖) = �̃�𝑖𝑗, 𝑖 = 1, … , 𝑛, 𝑗 =

1, … 𝑑 + 1 and all other elements equal to zero. Similarly, we define 𝑛 × 𝑛(𝑑 + 1)-

dimensional observation-specific vector product matrix 𝑆, with elements  𝑆(𝑖, (𝑖 − 1) ∗

(𝑑 + 1) + 𝑙) = 1 for 𝑙 = 1, . . ,3, 𝑖 = 1, … , 𝑛, 𝑗 = 1, … 𝑑 + 1 . Then, we concatenate vectors 

(𝜷𝑘)𝑘=1
𝐾  in 𝐾(𝑑 + 1) × 1-dimensional vector 𝜷. It follows that  

           ∑ (𝜷[𝑖]
𝑇 �̃�𝑖)

2𝑛
𝑖=1 = 𝜷𝑇𝑃𝑇(𝑆𝑇𝑆)𝑃𝜷    and    ∑ (𝜷[𝑖]

𝑇 �̃�𝑖𝑌𝑖)
𝑛
𝑖=1 = 𝜷𝑇𝑃𝑇𝑆𝑇𝒀,                 (7) 

from which we easily see that 𝐻 = 𝑃𝑇(𝑆𝑇𝑆)𝑃 and  𝑔 = −𝑃𝑇𝑆𝑇𝒀. 

To write in the Afriat Inequality constraints as 𝑛𝐾 × 𝐾(𝑑 + 1) - dimensional matrix 𝐴, 

we let elements 𝐴(𝐾(𝑖 − 1) + 𝑘, 𝑗 + (𝑑 + 1)([𝑖] − 1)) =  �̃�𝑖𝑗,    𝑖 = 1, … , 𝑛, 𝑗 = 1, … 𝑑 +

1, 𝑘 = 1, … , 𝐾, and let all other elements equal zero. Finally, we define 𝐾(𝑑 + 1) – 

dimensional vector 𝒍 to have elements 𝒍((𝑘 − 1)(𝑑 + 1) + 1) = 0, 𝑘 = 1, … , 𝐾, and all other 

elements be equal to negative infinity. 

 

3. Experiments on Simulated Data 

We compare four estimators via Monte Carlo simulations: the proposed CAP-NLS estimator, 

a correctly specified parametric estimator, a monotonically-constrained version of CAP 

estimator, and the CNLS estimator. Our analysis of simulated data is similar to the 

comparison of methods in published studies that propose classical frontier production 

function estimators (see Section 4 for a comparison of estimation methods using application 

data).  

We consider Data Generation Processes (DGP) based on Cobb-Douglas functions and 

calculate our estimates for the expected in-sample error of the production function estimators 
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against the true DGP, 𝐸(𝐸𝑟𝑟𝐼𝑆𝑓), where the expectation is taken against all possible learning 

sets. We also estimate the following expected quantities: learning-to-testing set or predictive 

error against the true DGP, (𝐸𝑟𝑟𝑓) , in-sample error against observed output, 𝐸(𝐸𝑟𝑟𝐼𝑆𝑦) , 

and predictive error against observed output 𝐸(𝐸𝑟𝑟𝑦) (Hastie, Tibshirani and Friedman, 2009 

pp. 228-229. We note that on a real dataset, the estimate of in-sample error against observed 

output is the most reliable fitting diagnostic when working with a census or full set of 

establishments. Conversely, the estimator’s estimate compared to an additional sample drawn 

from the same DGP, which defines the expected predictive error, is the primary diagnostic 

when assessing the fit of a functional estimator obtained from estimation on a learning set 

relative to a much larger population. Thus, assessing the fit of a functional estimator on a 

finite census from a non-exhaustive sample requires weighting the two errors by the relative 

sizes of the sets of observed and unobserved establishments.  

Thus, we estimate the expected in-sample error against the true DGP for a learning set 

of size 𝑛𝐿𝑒𝑎𝑟𝑛 , 𝐸(𝐸𝑟𝑟𝐼𝑆𝑓
𝑛𝐿 ) , by 𝐸(𝐸𝑟𝑟𝐼𝑆𝑓

𝑛𝐿 )̂ =  𝑀𝑆𝐸𝐼𝑆𝑓
𝑛𝐿 = ∑ ∑ (𝑓𝑣𝐿𝑖

𝑛𝐿 − 𝑓𝑣𝐿𝑖)
2

/𝑛𝑉
𝑛𝐿
𝑖=1

𝑉
𝑣=1

7 for 

each functional estimator, where 𝑓𝑣𝐿
𝑛𝐿 is the production function estimate obtained with the 

𝑣𝑡ℎ learning set and learning set of size 𝑛𝐿, 𝑓𝑣𝐿𝑖 is the 𝑖𝑡ℎ observation of the 𝑣𝑡ℎ learning 

set, 𝑛𝐿 is the size of the learning set, and 𝑉 is the number of different learning sets considered. 

Analogously, we estimate the expected predictive error against the true DGP for a learning 

set of size 𝑛𝐿𝑒𝑎𝑟𝑛, 𝐸(𝐸𝑟𝑟𝑓
𝑛𝐿), by computing the averaged MSE across the 𝑉 learning-testing 

set combinations of the same DGP, 𝐸(𝐸𝑟𝑟𝑓
𝑛𝐿)̂ =  𝑀𝑆𝐸𝑓

𝑛𝐿 = ∑ ∑ (𝑓𝑣𝐿𝑖
𝑛𝐿 − 𝑓𝑣𝑇𝑖)

2
/𝑛𝑉

𝑛𝑇
𝑖=1

𝑉
𝑣=1 , 

                                                           
7 Note that the estimator “hat” character is over 𝐸(𝐸𝑟𝑟𝐼𝑆𝑓

𝑛𝐿 ) rather than 𝐸𝑟𝑟𝐼𝑆𝑓
𝑛𝐿 , the in-sample error for the 

particular learning set fitted with the production function.  
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where we choose the size of the testing set, 𝑛𝑇 = 1000, and 𝑓𝑣𝑇𝑖 is the 𝑖𝑡ℎ output observation 

of the 𝑣𝑡ℎ testing set. When estimating 𝐸(𝐸𝑟𝑟𝐼𝑆𝑦
𝑛𝐿 ), unlike when estimating 𝐸(𝐸𝑟𝑟𝐼𝑆𝑓

𝑛𝐿 ), we 

need to vary the random component of each observation of each learning set to avoid over-

optimism (Hastie, Tibshirani and Friedman, 2009 p. 228). Thus, we generate 𝑊 different sets 

of noise terms8 for each learning set and estimate 𝐸(𝐸𝑟𝑟𝐼𝑆𝑦
𝑛𝐿 )̂ =  𝑀𝑆𝐸𝑦𝐼𝑆

𝑛𝐿 =

 ∑ ∑ ∑ (𝑓𝑣𝐿𝑖 −  𝑓(𝒙𝑣𝐿𝑖) + 𝜀𝑤𝑇𝑖)
2

/𝑛𝑉𝑊
𝑛𝐿
𝑖=1

𝑊
𝑤=1

𝑉
𝑣=1 , where 𝒙𝑣𝐿𝑖 is the 𝑖𝑡ℎ input vector of the 

𝑣𝑡ℎ learning set, and 𝜀𝑤𝑇𝑖 is the 𝑖𝑡ℎ residual of the 𝑤𝑡ℎ testing set. Finally, we compute 

𝐸(𝐸𝑟𝑟𝑦
𝑛𝐿)̂ =  𝑀𝑆𝐸𝑦

𝑛𝐿 = ∑ ∑ (𝑓𝑣𝐿𝑖 − 𝑌𝑣𝑇𝑖)
2

/𝑛𝑉
𝑛𝑇
𝑖=1

𝑉
𝑣=1  to estimate the predictive error against 

observed outputs, where 𝑌𝑣𝑇𝑖 is the 𝑖𝑡ℎ output observation of the 𝑣𝑡ℎ testing set. 

We consider results for full-sample or census scenarios, and learning set-to-full set with 

finite full set scenarios. For the full-sample scenarios, we report 𝐸(𝐸𝑟𝑟𝐼𝑆𝑓
𝑛 )̂  and 𝐸(𝐸𝑟𝑟𝐼𝑆𝑦

𝑛 )̂ . 

For the learning set-to-full set scenarios, we compute an estimator for the full set error 

            𝐸(𝐸𝑟𝑟𝐹𝑆∙
𝑛𝐿)̂ = 𝑀𝑆𝐸𝐹𝑆

𝑛𝐿 = (𝑛𝐿/𝑛) 𝐸(𝐸𝑟𝑟𝐼𝑆∙
𝑛𝐿)̂ + ((𝑛𝐹 − 𝑛𝐿)/𝑛) 𝐸(𝐸𝑟𝑟∙

𝑛𝐿)̂               (8) 

where FS stands for full set, and either 𝑓 or 𝑦 replaces the dot operator. Note that 𝐸(𝐸𝑟𝑟𝐼𝑆𝑦
𝑛𝐿 )̂ , 

𝐸(𝐸𝑟𝑟𝑦
𝑛𝐿)̂ , and 𝐸(𝐸𝑟𝑟𝐹𝑆𝑦

𝑛𝐿 )̂  are also estimators for the noise level 𝜎2 of the DGP, we can use 

𝜎2 as a benchmark for their estimations. Further, without our corrections for over-optimism, 

computing an estimator �̂�2 will be complicated by the nonparametric nature of the regression 

methods used to fit the production functions9. For our learning-to-testing scenarios, we 

                                                           
8 Computing the in-sample error provides a more realistic estimate of the quality of the production function on 

a full set than the learning error 𝑀𝑆𝐸𝐿𝑦
𝑛𝐿 = ∑ ∑ (𝑓𝑣𝑖 − 𝑌𝑣𝑖)

2
/𝑛𝑣

𝑛𝐿
𝑖=1

𝑉
𝑣=1 , because it averages performance 

across many possible 𝜀𝑖 residual values for the learning set input vector. 
9 Specifically, if we intend to use the learning set’s residual sum of squares, calculation of an estimator �̂�2 

would require knowledge of the functional estimator’s effective number of parameters. However, effective 

parameters can be difficult to calculate for both nonparametric and sieve estimators.   
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compare the performance of the three methods on 100 learning-testing set pairs, 𝑉 = 100, 

using learning datasets of size 𝑛𝐿= 30, 50, 80, 100, 150, 200, 240, and 300. For our full-

sample scenarios, we consider 𝑛𝐿𝑒𝑎𝑟𝑛= 100, 200, 300. For all scenarios, we consider 30 

randomly drawn sets of noise testing vectors, 𝑊= 30, to compute the in-sample portion of 

(8).We also estimate the correctly specified parametric estimator for the DGP. The true 

parametric form is never known in an application, i.e., we cannot select the correctly 

specified parametric estimator as an estimator for a practitioner, and our estimation results 

are best-case benchmarks.  

Below, we present our estimates of expected full set errors measured against the true 

DGP, 𝑀𝑆𝐸𝐹𝑆𝑓
𝑛𝐿 , and expected fraction of unexplained variance on the full set, 

𝑀𝑆𝐸𝐹𝑆𝑦
𝑛𝐿 /𝑣𝑎𝑟(𝑌𝐹𝑆), respectively.  Also, note that the expected full set error is equal to 

expected In-Sample error for the full-sample scenarios. Due to the extensive nature of our 

results, we present them in graphical form. Tabular results for all experiments are in 

Appendix A. We record and report other relevant performance indicators, such as the number 

of hyperplanes fitted and the estimation time. 

 

3.1 Bivariate input Cobb-Douglas DGP 

We consider the DGP 𝑌𝑖 = 𝑋𝑖1
0.4𝑋𝑖2

0.5 + 𝜀𝑖, where 𝜀𝑖~𝑁(0, 𝜎2) and 𝜎 =

0.01, 0.05, 0.1, 0.2, 0.3, 0.4 for our six noise settings, which we split into low and high-noise 

settings. We assume 𝑋𝑖𝑗~𝑈𝑛𝑖𝑓(0.1,1) for 𝑗 = 1,2 and 𝑖 = 1, … , 𝑛𝐿. Our first observation 

from Figures 1a and 1b is that our estimated expected full set error results for all learning-to-

testing set scenarios for CNLS exceed the scale of the y-axes (due to very high predictive 

error values); thus, we only present the full set error values for CNLS for the full set 
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scenarios. The top set of graphs in Figure 1a shows that CAP-NLS has similar to slightly 

better expected full set error values performance than both CAP and CNLS on full set 

scenarios, whereas CAP-NLS clearly outperforms both methods on learning-to-testing set 

scenarios. The bottom panels of Figure 1a show that for these low-noise scenarios, 𝜎 =

0.01, 0.05, 0.1, where values correspond to  0.3%, 6.5% and 22% of the output variance is 

due to noise, the improvement of CAP-NLS against CAP rarely exceeds 2% of the variance 

of the full dataset. In other words, an r-squared measurement would differ by less than two 

percent. We observe that the difference between the correctly specified parametric estimator 

and CAP-NLS is also within 2% for almost all cases. 
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Figure 1a. Bivariate Input Cobb-Douglas DGP results for small noise settings 

 

Surprisingly, Figure 1b shows that for large noise settings, 𝜎 = 0.2, 0.3, 0.4, CAP-NLS 

and the other nonparametric estimators are competitive with the correctly specified 

parametric estimator for large sample size or large noise scenarios. This performance gap 

reduction against the correctly specified parametric estimator is partly due to the generally 

nonlinear objective function of the Least-Squares estimator of Cobb-Douglas with an 

additive error term (the correctly specified error structure for our DGP), which can potentially 

lead to multiple local optimal solutions.  If we had instead considered a multiplicative error 
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structure on the DGP for which neither of the nonparametric estimators has a convex 

programming formulation, the Cobb-Douglas function would have been easy to estimate. 

Further, only CAP-NLS and the parametric estimator perform consistently regardless of the 

full set size on these higher noise settings, and the performance gap between CAP-NLS and 

CAP increases to more significant levels, and CAP’s performance becomes unstable. The 

bottom panels of Figures 1a and 1b show that all estimators approach the true noise-to-total 

variance level (labeled True Variance Level for notational ease) as the learning set size 

increases, regardless of the noise setting. Finally and as expected, we observe very high 

correlation between the expected full set error measured against the true DGP and the true 

noise-to-total variance level. 

Table 1 lists the number of hyperplanes fitted for the Full Sample scenarios for the three 

nonparametric estimators. Larger values indicate a more complex production function using 

more hyperplanes to characterize the curvature. CNLS fits a much larger number of 

hyperplanes relative to CAP-NLS, whereas CAP fits functions that are only slightly more 

complex than linear, by employing two hyperplanes in all estimates. Finally, although CAP-

NLS’s runtimes are the highest, they are still small in absolute terms. 
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Figure 1b. Bivariate Input Cobb-Douglas DGP results for large noise settings 
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Table 1. Number of Hyperplanes and Runtimes for Bivariate Input Cobb-Douglas DGP 

 

3.2 Trivariate input Cobb-Douglas DGP 

We consider the DGP 𝑌𝑖 = 𝑋𝑖1
0.4𝑋𝑖2

0.3𝑋𝑖3
0.2 + 𝜀𝑖, where 𝜀𝑖~𝑁(0, 𝜎2), 𝜎 =

0.01, 0.05, 0.1, 0.2, 0.3, 0.4 for our six noise settings having the same small and large noise 

split as the previous example, and 𝑋𝑖𝑗~𝑈𝑛𝑖𝑓(0.1,1) for 𝑗 = 1,2,3, 𝑖 = 1, … , 𝑛𝐿. Again, 

CNLS’s expected full set errors exceed the displayed range for the learning-to-full set 

scenarios regardless of noise level, due to the poor predictive error values, which are partly 

linked to the higher proportion of non-fully dimensional hyperplanes10 CNLS fits. Compared 

to Example 3.1, the higher dimensional form of the parametric estimator adds estimation 

complexity, i.e., the higher errors for the parametric estimator exceed the very small scale of 

                                                           
10 These are hyperplanes which have zero coefficients on some input dimensions, implying it is possible to 

obtain output without the zero-coefficient inputs. Olesen and Petersen (1996) were the first to discuss 

extensively these types of hyperplanes in a DEA context. 

    CAP-NLS CAP CNLS 

𝜎 n 100 200 300 100 200 300 100 200 300 

0.01 
K 9 12 12 2 2 2 93 164 242 

Time (s) 4 15 27 1 0.56 0.78 1 8 22 

0.05 
K 8 10 12 2 2 2 80 135 198 

Time (s) 5 12 30 0.42 0.60 0.77 1 6 23 

0.1 
K 9 10 11 2 2 2 60 148 172 

Time (s) 4 17 40 0.42 0.54 0.75 1 8 26 

0.2 
K 9 10 11 2 2 2 54 101 157 

Time (s) 5 16 32 0.47 0.66 0.79 1 8 23 

0.3 
K 8 10 11 2 2 2 50 98 147 

Time (s) 5 15 28 0.41 0.58 0.71 1 8 22 

0.4 
K 8 10 11 2 2 2 47 90 135 

Time (s) 4 15 29 0.46 0.62 0.74 1 7 22 
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most panels in Figure 2a.  

Figure 2b, however, shows that the errors given by the parametric estimator are lower 

than the errors for CNLS in learning-to-full settings. Further, CAP’s expected performance 

deteriorates relative to Example 3.1, and the performance gain obtained by employing CAP-

NLS is relevant in an increased number of settings. As in Example 3.1, as the learning set 

grows, the expected full set errors gap between CAP-NLS and the correctly specified 

parametric estimator either favors CAP-NLS at every learning set size or becomes more 

favorable for CAP-NLS as the learning set size increases. Finally, Figure 2b shows that CAP-

NLS can accurately recover a production function even when noise composes nearly 85% of 

the variance, as for the 𝜎 = 0.4 results. 
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Figure 2a. Trivariate Input Cobb-Douglas DGP results for small noise settings 

 

In Table 2, we observe that all methods fit slightly more hyperplanes than for the 

Bivariate-input example. The increase in the number of hyperplanes with increased 

dimensionality is moderate for both CAP-NLS and CAP at all settings. For CNLS, while the 

number of hyperplanes does not significantly increase for 𝑛 = 100, it significantly increases 

for the two larger datasets. The runtimes for all methods are also higher than in the previous 

example, i.e., CAP-NLS’s times nearly double, although staying below one minute for all 

scenarios. 
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Figure 2b. Trivariate Input Cobb-Douglas DGP results for large noise settings 
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Table 2. Number of Hyperplanes and Runtimes for Trivariate Input Cobb-Douglas DGP 

 

3.3 Four-variate input Cobb-Douglas DGP 

We consider the DGP 𝑌𝑖 = 𝑋𝑖1
0.3𝑋𝑖2

0.25𝑋𝑖3
0.25𝑋𝑖4

0.1 + 𝜀𝑖, where 𝜀𝑖~𝑁(0, 𝜎2) and 𝜎 =

0.01, 0.05, 0.1, 0.2, 0.3, 0.4 for our six noise settings and 𝑋𝑖𝑗~𝑈𝑛𝑖𝑓(0.1,1) for 𝑗 = 1,2,3,4; 

𝑖 = 1, … , 𝑛𝐿. Figures 3a and 3b show that for this higher dimensional example, the 

parameters in the parametric estimator are increasingly difficult to learn, and thus the 

parametric estimator can only predict the true function up to a certain accuracy, namely 

𝑀𝑆𝐸𝐹𝑆𝑓
𝑛𝐿 = 0.015, and then tends to plateau at this error level even as the learning set size 

increases. Moreover, the benefits of CAP-NLS over the other nonparametric methods are 

similar to Example 3.2 for the small noise settings, but significantly larger for the large noise 

    CAP-NLS CAP CNLS 

𝜎 n 100 200 300 100 200 300 100 200 300 

0.01 
K 9 12 13 2 2 2 96 193 294 

Time (s) 5 28 51 0.59 0.78 1 1 9 27 

0.05 
K 10 11 12 2 2 3 80 169 235 

Time (s) 5 28 45 0.53 0.83 1 1 9 28 

0.1 
K 8 12 14 2 2 3 75 136 199 

Time (s) 6 24 54 0.54 1 1 1 10 24 

0.2 
K 8 11 12 2 3 2 61 126 193 

Time (s) 8 23 50 0.52 0.93 1 1 9 28 

0.3 
K 8 11 12 2 3 3 57 123 184 

Time (s) 5 23 49 0.53 0.92 1 1 9 28 

0.4 
K 8 11 12 2 3 3 54 115 179 

Time (s) 5 25 49 0.52 0.92 1 1 9 29 
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settings. Finally, the gap between CAP-NLS and all the other functional estimators, 

parametric or nonparametric, favors CAP-NLS for all noise settings and learning set sizes. 

 

 

Figure 3a. Four-variate Input Cobb-Douglas DGP results for small noise settings 

 

Table 3 shows that the number of hyperplanes needed to fit the four-variate input 

production function does not significantly increase from the trivariate-input case of Example 

3.2 for any of the methods. CAP-NLS has 40-60% longer runtimes compared to the trivariate-

input case. The runtime increase with dimensionality, however, is not a severe concern, 
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because the input information to fit a production function (or output in the case of a cost 

function) rarely exceeds four variables. The maximum recorded runtime for CAP-NLS is still 

below two minutes, i.e., it is not large in absolute terms.  

 

 

Figure 3b. Four-variate Input Cobb-Douglas DGP results for large noise settings 
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Table 3. Number of Hyperplanes and Runtimes for Four-variate Input Cobb-Douglas DGP 

 

3.4 Implications of Examples 3.1-3.3  

This section discusses the implications of the three examples for our proposed estimator. 

Notably, CAP-NLS is the only functional estimator which performs robustly on a learning-

to-full set basis across all dimensionalities and noise levels, while also being the 

nonparametric estimator with the lowest in-sample error on nearly all of the full set scenarios. 

Even though CNLS’s overfitting of the learning set (as observed by the large number of 

hyperplanes it fitted) has a severe detrimental effect on the expected full set error due to low 

predictive power,i.e., high expected predictive error, the overfitting has little effect on the in-

sample performance (as observed through its expected full set error in the full set scenarios). 

Therefore, CNLS is a robust candidate estimator for analyzing full census datasets. CAP 

performs well on both full set and learning-to-full set scenarios for small noise settings at all 

    CAP-NLS CAP CNLS 

𝜎 n 100 200 300 100 200 300 100 200 300 

0.01 
K 7 11 12 2 2 2 98 194 234 

Time (s) 5 29 70 0.42 1 2 1 8 24 

0.05 
K 7 12 13 2 2 2 87 170 215 

Time (s) 4 33 65 0.39 1 1 1 9 27 

0.1 
K 7 12 12 2 2 2 55 166 207 

Time (s) 4 30 62 0.60 1 2 1 10 32 

0.2 
K 7 12 13 2 2 2 63 132 192 

Time (s) 4 36 79 0.45 1 2 1 9 31 

0.3 
K 7 12 12 2 2 2 59 122 192 

Time (s) 4 36 74 0.46 1 2 1 10 32 

0.4 
K 7 12 12 2 2 2 57 122 186 

Time (s) 4 36 75 0.48 1 2 1 10 33 
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dimensionalities, but its learning-to-full set performance deteriorates as the level of noise 

increases.   

 Expected full set error on the full set scenarios is similar for all nonparametric methods, 

with the exception of CAP in the high noise settings with 3 or 4 inputs, when its performance 

deteriorates. CAP-NLS and CNLS perform similarly in the full set scenarios in all cases. 

Runtimes for CAP-NLS are the only ones to deteriorate significantly with dimensionality 

and they are the largest of the three nonparametric methods in all cases. Its runtimes, 

however, are still small in relative terms, i.e., no larger than 2 minutes for any fitted dataset. 

Finally, while dimensionality of production functions is typically low and therefore CAP-

NLS’s scalability in dimensionality is not a concern, it implies that scalability in n could be 

an issue to fit large production datasets11 (see Appendix B for a modification to CAP-NLS 

to address this potential issue). The next section presents the dataset. 

 

4. Chilean Annual National Industrial Survey 

4.1 Dataset and considerations 

The Chilean Annual Industrial Survey (ENIA, by its initials in Spanish) is an annual census 

of all industrial establishments with 10 or more employees which are located inside the 

Chilean territory.  The census’s main goal is to characterize Chile’s manufacturing activity 

in terms of input usage, manufactured products, and means of production utilized in the 

diverse transformation processes. We focus on the five largest 4-digit industries in terms of 

sample size and only remove observations with non-positive value added or input values for 

                                                           
11 Oh et al. (2015) and Crispim Sarmento et al. (2015) discuss the computational challenges for fitting existing 

nonparametric piecewise linear estimators in large application datasets. 



 

29 
 

any of the used input variables. In this paper, we refer to the learning sets as the survey 

subsamples and to the full sets as the survey full sample or census. 

Our objective is to illustrate three key points largely overlooked in the production 

function estimation literature on working with national survey data for manufacturing. First, 

as real production data is highly clustered around a particular scale size and input ratios, the 

data lacks the more complex curvature of data simulated from monotonic and concave DGPs. 

In view of this difference, the performance of estimators and their resulting rankings can vary 

significantly between Monte Carlo simulation experiments and the estimators’ performance 

on survey data. Therefore, we assess the ability of the estimators discussed in Section 3 to fit 

industry-specific data from the ENIA dataset on a subsample to full sample setting. Second, 

we illustrate the replicate-specific performance of the selected functional estimators. Third, 

we graphically explore the increase in explanatory capability of our fitted production 

functions as a function of the relative size of survey subsample to survey full sample. The 

section concludes with a discussion of the implications of practical survey sample sizes. 

 

4.2 Methodology to compare functional estimator performance on real data 

We begin by comparing the additive error formulations of CAP-NLS, CAP, and CNLS. 

We consider the additive-error Cobb-Douglas formulation used in Example 3.3,  𝑌 =

𝑋1
𝛼1𝑋2

𝛼2𝑋3
𝛼3𝑋4

4 + 𝜀, which we label CDA. As theory would imply, we restrict all input powers 

to be nonnegative for the Cobb-Douglas functional estimator. In total, we compare four 

different functional estimators. Our comparison focuses on the estimated expected error on 

the full survey set of establishments, given a survey subset size 𝐸(𝐸𝑟𝑟𝐹𝑆𝑦
𝑛𝐿 )̂  , but reports the 
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scale-invariant quantity 𝑅𝐹𝑆
2 = max (1 − 𝐸(𝐸𝑟𝑟𝐹𝑆𝑦)̂ 𝑉𝑎𝑟(𝑌𝐹𝑆)⁄ , 0), where 𝑉𝑎𝑟(𝑌𝐹𝑆) is the 

sample variance of the output on the full industry dataset12.   

As discussed in Section 3, Monte Carlo simulations, to compute 𝐸(𝐸𝑟𝑟𝐹𝑆𝑦
𝑛𝐿 )̂  we rely on 

separate estimations of the expected predictive 𝐸(𝐸𝑟𝑟𝑦
𝑛𝐿) and in-sample 𝐸(𝐸𝑟𝑟𝐼𝑆𝑦

𝑛𝐿 ) errors, 

which we later weight by the relative size of the observed and unobserved establishment sets. 

Unlike in section 3, we cannot generate more data from the same DGP as that of the observed 

dataset, or vectors of residuals with the same level of noise as the DGP, and thus we cannot 

compute the error estimators 𝑀𝑆𝐸𝑦
𝑛𝐿 and 𝑀𝑆𝐸𝐼𝑆𝑦

𝑛𝐿 . To circumvent these issues, we estimate 

𝐸(𝐸𝑟𝑟𝑦
𝑛𝐿) via an RLT procedure and we estimate 𝐸(𝐸𝑟𝑟𝐼𝑆𝑦

𝑛𝐿 ) by summing the learning error 

𝑀𝑆𝐸𝑦𝐿
𝑛𝐿 for a 𝑛𝐿-sized learning set and a parametric bootstrap covariance penalty estimator 

𝐸(𝜔𝑛𝐿)̂  for expected in-sample optimism 𝐸(𝜔𝑛𝐿) (Efron, 2004). For the RLT procedure, we 

consider 20%, 30%, 40%, and 50% learning subsets and 𝑉 = 100 replicates to understand 

the predictive power of subsample-fitted functional estimators when inferring the industry-

level production function as the subsample size increases13. For the bootstrap procedure, we 

consider 𝐵 = 500 parametric bootstrap replicates. 

We compute our expected predictive error estimate given by RLT,  𝑀𝑆𝐸𝑅𝐿𝑇
𝑛𝐿 =

∑
𝑛𝐿

𝛼

𝑛

𝑉
𝛼=1 ∑ (𝑓𝑖

𝛼 − 𝑌𝑖)
2

/𝑖∉{𝛼} 𝑛𝑇
𝛼, where {𝛼} is the index set of the 𝛼𝑡ℎ learning set, 𝑓𝑖

𝛼 are the 

estimated functional values obtained from the 𝛼𝑡ℎ learning set, and 𝑛𝑇
𝛼 = 𝑛 − 𝑛𝐿

𝛼, where 

𝑛𝐿
𝛼  is the size of the 𝛼𝑡ℎlearning set. Given that we only want to estimate the expected 

                                                           
12 Note that the definition of 𝑅𝐹𝑆

2  implies that if the evaluated estimator fails to explain more variability than 

the simply taking the mean of the output variable over the full sample, we will instead use the mean as our 

estimator. 
13 We reemphasize that unlike cross validation procedures in which the goal is to estimate 𝐸(𝐸𝑟𝑟𝑦

𝑛), our goal 

is to estimate 𝐸(𝐸𝑟𝑟𝑦
𝑛𝐿). 
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predictive error for a set of the size of our learning set, our RLT estimator does not have the 

bias described by Burman (1989) when estimating the usual cross-validation objective, which 

is the expected predictive error for a set of the size of our full set. Burman (1989) shows that 

the variance of RLT can be partially controlled with the number of replicates 𝑉. Finally, we 

acknowledge that independently of 𝑉, the variance of our RLT expected predictive error 

estimate could increase with the learning set size as the testing set size decreases, given our 

finite full survey. However, we do not observe an increase in variance in our estimates, as 

we explained in Section 4.3. 

To compute the estimator for expected14 in-sample error 𝐸(𝐸𝑟𝑟𝐼𝑆𝑦
𝑛𝐿 )̂ , we add the learning 

error 𝑀𝑆𝐸𝑦𝐿
𝑛𝐿 and a covariance penalty term 𝐸(�̂�𝑛𝐿) to account for expected optimism 

𝐸(𝜔𝑛𝐿). If we consider an arbitrary estimator 𝑌�̂� and a uniformly weighted squared loss 

function, i.e., 𝑔(𝑌�̂�, 𝑌𝑖) =  𝑌�̂� − 𝑌𝑖 in our notation, Efron (2004) shows that  

                                      𝐸(�̂�𝑛𝐿) =
2

𝑛𝐿
∑ 𝑐𝑜𝑣(

𝑛𝐿
𝑖=1 𝑌�̂�, 𝑌𝑖).                                             (8) 

We note that if all of the functional estimators being considered were in the linear smoother 

form �̂� = S𝒀, we would write the penalty term in terms of the trace. Clearly, the Cobb-

Douglas functional estimator is not, and so we use the parametric bootstrap algorithm by 

Efron (2004), which directly estimates 𝑐𝑜𝑣(𝑌�̂�, 𝑌𝑖) (see Appendix C for the details about this 

algorithm). Thus, our full expression for 𝐸(𝐸𝑟𝑟𝐹𝑆𝑦
𝑛𝐿 )̂  for learning set sizes of size 𝑛𝐿 is 

                  𝐸(𝐸𝑟𝑟𝐹𝑆𝑦
𝑛𝐿 )̂ =  (𝑛𝑇/𝑛)𝑀𝑆𝐸𝑅𝐿𝑇

𝑛𝐿 +  (𝑛𝐿/𝑛)(𝑀𝑆𝐸𝑦𝐿
𝑛𝐿 +  𝐸(�̂�𝑛𝐿)).                       (9) 

                                                           
14 Again, expectations and averages over the error and optimism metrics discussed are done over all possible 

learning sets of a given size. 
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We assume the data is truly homoscedastic and use an error measure that is uniformly-

weighted over observations, such as (10)15. Thus, if we intended to use multiplicative or other 

residual assumptions, our error estimators would need to reflect a similar residual-weighting 

scheme.  

To define the inputs and output for our production function, we follow the KLEMS 

framework and fit a Value-Added production function  

𝑉𝐴 = 𝑌 − 𝑀 = 𝑓(𝐾𝐿𝐸𝑆)  ,                                            (10) 

where VA is value added, Y is output, M is intermediate goods, K is capital stock, L are labor 

man-hours, E is energy, and S is service expenditures, respectively. The variables are readily 

found in the Chilean manufacturing dataset, except for Energy, for which we also add the 

fuel expenditures costs. All variables except for L are measured in thousands of Chilean 

pesos.  

 

4.3. Functional Estimator Comparison Results 

In Table 4, the Best Method field lists the functional estimator with the highest 𝑅𝐹𝑆
2  for 

each subset size, considering ties for functional estimators with 𝑅𝐹𝑆
2  values within 2% of the 

best estimator. Table 4 also shows a field for 𝐾𝑛𝐿
𝐶𝐴𝑃𝑁𝐿𝑆, the average number of CAP-NLS 

hyperplanes fitted to either the learning sets in the case of 20, 30, 40, and 50 percent subset 

sizes, or the bootstrapped sets used to compute 𝐸(�̂�𝑛𝐿) in the case of the full set.  The average 

number of CAP-NLS hyperplanes fitted allows us to compare the complexity of the estimated 

production functions relative to those considered in Section 3. As expected due to the simpler 

curvature and more concentrated nature of real manufacturing survey data relative to Monte 

                                                           
15 Although a different assumption can be made within this same framework by introducing a weighting 

function on the individual residual terms, we focus on the uniformly weighted error. 
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Carlo simulated data, the number of CAP-NLS hyperplanes fitted for data sets with 100 or 

200 observations is generally smaller than those fitted to similar sample sizes in Example 

3.3, in which the production function also has a four-dimensional input space.  

Further exploring our real data results, we observe both similarities and discrepancies 

regarding the insights obtained from testing estimators with real data. The clearest similarity 

to all our low noise settings16 is the multiple ties across functional estimators in terms of 𝑅𝐹𝑆
2 , 

meaning that several of the estimators describe the production function with the same 

accuracy. Thus, the model selection results are consistent with the small noise setting results 

for all of our small noise simulated data examples. Discrepancies include better CDA 

performance for larger datasets, regardless of the residual noise level, which are closer to the 

insights obtained by using lower-dimensional example 3.1. Surprisingly, CDA’s 

performance is remarkably good, especially if we consider that now the true DGP is 

unknown. Table 5 presents the capabilities of the CDA parametric estimator against the best 

estimate achieved for each subset size.  In general, the CDA estimator describes nearly as 

much variance as the best estimator. Further in Appendix D, we include equivalent results to 

those of Table 5 including estimates from the classical multiplicative error assumption for 

Cobb-Douglas (labeled CDM) 17. The results for CDM show that a multiplicative error 

assumption when fitting the Cobb-Douglas model is a significantly better assumption for the 

other metal products and wood industries (industry codes 2899 and 2010) (even if tested in 

terms of (10) with uniform error weighting) and a significantly worse assumption for bakeries 

                                                           
16 The maximum attainable, i.e., using the full set as the learning set, noise-to-total variance levels of our real 

datasets are very similar to those of our low noise settings. Compare 1-𝑀𝑆𝐸𝐹𝑆𝑦
𝑛𝐿 /𝑣𝑎𝑟(𝑌𝐹𝑆) in our low noise 

settings against the 𝑅𝐹𝑆
2 results of the 100% survey real datasets. 

17 Recall we use the Cobb-Douglas function with an additive error term is used to maintain consistency of the 

error structure across estimators.  
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(1541). These results show that common characteristics of manufacturing survey data, such 

as a high concentration of establishments around popular scale sizes or the economically 

efficient input ratios, sparse data on large establishments and simpler curvature, reduce the 

performance gap between other shape constrained estimators such as CAP or Cobb-Douglas 

assumption and our proposed estimator. 

 

Table 4. Method comparison across the 5 largest sampled industries from the Chilean 

Annual National Industrial Survey, 2010.

 Industry Name and Code 𝑛 Survey 

Size 
𝑅𝐹𝑆

2  𝐾𝑛𝐿
𝐶𝐴𝑃−𝑁𝐿𝑆 Best Method 

Other Metal Products (2899) 144 20% 50% 1 CAP-NLS, CDA 

30% 60% 2 CAP-NLS, CDA 

40% 64% 2 CAP-NLS, CDA 

50% 72% 3 CAP-NLS 

100% 88% 7 CAP-NLS 

Wood (2010) 150 20% 35% 1 CDA 

30% 40% 1 CAP-NLS, CDA 

40% 47% 2 CAP-NLS, CDA 

50% 52% 3 CAP-NLS, CDA 

100% 66% 6 CAP-NLS 

Structural Use Metal (2811) 161 20% 77% 1 CAP-NLS, CAP 

30% 82% 2 CAP-NLS 

40% 87% 3 CAP-NLS, CAP 

50% 90% 4 CAP-NLS 

100% 95% 9 CAP-NLS, CAP 

Plastics (2520) 249 20% 54% 2 CAP-NLS, CAP, CDA 

30% 57% 3 CDA 

40% 57% 5 CAP-NLS, CAP, CDA 

50% 60% 7 CAP-NLS, CAP, CDA 

100% 64%  11 CAP-NLS, CAP, CDA 

Bakeries (1541) 250 20% 72% 3 CAP 

30% 77% 3 CAP 

40% 78% 4 CAP, CDA 

50% 85% 4 CAP 

100% 99% 5 CAP-NLS, CAP, CDA 
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 Industry Name and Code 𝑛 Survey 

Size 
𝑅𝐹𝑆

2  𝑅𝐶𝐷𝐴
2  Ratio vs. Best Method 

Other Metal Products 

(2899) 

144 20% 50% 49% CDA ties for Best Method 

30% 60% 59% CDA ties for Best Method 

40% 64% 64% CDA ties for Best Method 

50% 72% 60% 0.83 vs. CAP-NLS 

100% 88% 79% 0.90 vs. CAP-NLS 

Wood (2010) 150 20% 35% 35% CDA ties for Best Method 

30% 40% 40% CDA ties for Best Method 

40% 47% 47% CDA ties for Best Method 

50% 52% 51% CDA ties for Best Method 

100% 66% 62% 0.94 vs. CAP-NLS 

Structural Use Metal (2811) 161 20% 77% 69% 0.90 vs. CAP-NLS 

30% 82% 76% 0.93 vs. CAP-NLS 

40% 87% 81% 0.93 vs. CAP-NLS 

50% 90% 87% 0.97 vs. CAP-NLS 

100% 95% 91% 0.96 vs. CAP-NLS 

Plastics (2520) 249 20% 54% 53% CDA ties for Best Method 

30% 57% 57% CDA ties for Best Method 

40% 57% 57% CDA ties for Best Method 

50% 60% 60% CDA ties for Best Method 

100% 64% 64% CDA ties for Best Method 

Bakeries (1541) 250 20% 72% 61% 0.85 vs. CAP 

30% 77% 71% 0.92 vs. CAP 

40% 78% 78% CDA ties for Best Method 

50% 85% 82% 0.96 vs. CAP 

100% 99% 99% CDA ties for Best Method 

 

Table 5. Ratio of CDA to Best Model performance 

 

Table 6 shows that the best estimator in the Chilean manufacturing dataset is perhaps more closely related 

to the learning set size regardless of the residual noise level. CAP-NLS is dominant for very small learning 

set sizes (less than 50 observations). CAP-NLS, CAP and CDA perform similarly for larger datasets. The 

additional structure of CAP-NLS relative to CAP seems to lose its benefits as the learning set size increases 

for our application datasets, which is a much more direct statement than we could make from extrapolating 

the results across the three small noise settings in Example 3.3.  Some insights obtained from evaluating 
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estimators on the actual application dataset are not observed from those on the simulated data. For instance, 

our simulated data examples show potential problems when fitting the CDA model at high dimensionalities 

or high noise settings, yet for the application datasets considered, CDA is a reliable production function 

estimator at learning sets of all considered sizes. 

 

 

 

 

Table 6. Most frequently selected Best Method for different sample size ranges.  

 

4.4. Estimator performance measures as a function of subsample size and surveying implications 

We apply the results from our framework to make recommendations about the minimal size that a randomly-

sampled production survey needs to represent a census. We compute simulation-based confidence intervals 

on 𝑅𝐹𝑆
2  across the replicates of our RLT results. As mentioned, increased testing set variance as the learning 

set size increases does not seem to be large enough to affect the variance of our estimates across the different 

learning and testing set sizes considered. Based on Table 4, we label  CAP-NLS as the Best Method across 

the different survey sizes for all industries, except Bakeries, for which CAP is identied as the Best Method. 

Figure 4 shows the learning subset-specific results for the Best Method in terms of goodness-of-fit, 𝑅𝐹𝑆
2 , for 

the industries. We note that the variance of 𝑅𝐹𝑆
2  and overall predictive power is significantly enhanced by 

the inclusion of the in-sample component of the expected full set error. In Appendix E, we further explore 

the sensitivity of the results shown in Figure 4 to our assumption of a finite population of firms and discuss 

the consequences of considering an infinite amount of unobserved firms when assessing the predictive 

capabilities of our estimators, thus only evaluating estimator performance in terms of predictive error. 

 Learning Set Size 

Times selected as “Best Method” 29 - 50 51 - 80 81 - 149 150+ 

CAP-NLS 7 5 3 4 

CAP 3 3 4 3 

CDA 5 2 2 2 
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The mean goodness-of-fit increases in survey subsample size for all industries with different degrees of 

diminishing returns. The results are of significant practical importance for countries and organizations that 

do not conduct annual censuses. Although the goodness-of-fit results we obtain are specific to the particular 

census data sets, under mild assumptions they can still guide survey design in the years following the census. 

Specifically, to use the data from the census year to inform the sample size needed in the following (non-

census) years, requires assuming that both the set of establishments within an industry and the complexity 

of the production function do not changed significantly over the time period.  For example based on the 

Chilean 2010 census data, if production functions with 75% of the predictive power of a census-fitted 

production function are desired in 2011, the relative survey sample size needs to be approximately 40%, 

45%, <20%, <20%,and 25% for industry codes 2899, 2010, 2811, 2520, and 1541, respectively.
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Figure 4. Best Method’s fit on the full census, 𝑅𝐹𝑢𝑙𝑙
2 , as a function of relative subset size for selected 

industries. CAP-NLS is the Best Method for industry codes 2899, 2010, 2811, and 2520, whereas CAP is 

the Best Method for industry code 1541. 

 

5. Conclusions 

This paper has two main contributions to the production function estimation literature. Firstly and 

most importantly, we constructed a framework to test the adequateness of a production function estimator 

on real data. Specifically, we established a procedure based on repeated learning-testing and parametric 
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bootstrapping that is able to assess the quality of subsample-fitted production functions to fit full survey 

(census) samples. Further, this procedure estimates the relative quality of the subsample-fitted production 

function to that of one fitted with a full sample. Using our framework, we demonstrated for our application 

that unlike for simulated data, CAP-NLS, CAP and a Cobb-Douglas specification performed similarly. Our 

functional estimator selection procedure is widely applicable, and thus should be routinely used for model 

selection of econometrically-estimated production functions. Finally, we discovered that the commonly-

used Cobb Douglas production function results in very competitive approximations on the Chilean 

manufacturing dataset at all learning set sizes if an additive residual is used.  

Secondly, we introduced CAP-NLS, a nonparametric estimator, which imposes global optimization 

and no refitting relative to CAP, and additional smoothing relative to CNLS. We formulated a 

homoscedastic version of CAP-NLS as a series of quadratic programs, which improves computational 

performance. We demonstrated that CAP-NLS’ additional structure relative to CAP and parsimonious 

structure relative to CNLS translates into superior performance, smaller sensitivity to noise and input vector 

dimensionality,  increased robustness in learning-to-full estimation and a faster empirical rate of 

convergence on simulated data when the noise level is high relative to the full variance of the output. When 

the noise level is relatively low to the full variance of the output, CAP-NLS’s performance is similar to CAP 

and better than CNLS.  

Our results highlight the need for production function estimators that are reliable on a survey-to-full 

census basis. In this regard, both “first generation” production function/frontier estimators, such as DEA 

and SFA, as well as “second generation” generalizations, such as CNLS and CWB were developed ignoring 

this performance-measurement criterion. Furthermore, our framework demonstrated that methods, which 

are based on optimization of specific observed datasets, can have important challenges when survey data is 

used to estimate an industry population-level production function. Thus, we conclude that a new generation 
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of estimators which is able to overcome these challenges is needed. CAP and CAP-NLS, along other 

smoothed versions of Least Squares-based estimators, such as the estimators in Yagi et al. (2015) and 

Mazumder et al. (2015), are members of this new generation.  

Further work can be done in applying our estimator selection framework to a broader array of datasets, 

as we have restricted this exposition to the largest industries in the Chilean manufacturing dataset. 

Theoretical research related to CAP-NLS, such as proving consistency and setting bounds on CAP-NLS’ 

fast rate of convergence remain open. Incorporation of smoothing strategies to CAP-NLS, such as the one 

presented in Mazumder et al. (2015), also are outstanding future lines of work.  



 

41 
 
 

References 

Afriat, Sydney N., "The construction of utility functions from expenditure data," International 

Economic Review 8 (1967), 67-77. 

Afriat, Sydney N., "Efficiency estimation of production functions," International Economic 

Review 13 (1972), 568-598. 

Aigner, Dennis J., C.A. Knox Lovell, and Peter Schmidt, “Formulation and Estimation of 

Stochastic Frontier Production Function Models,” Journal of Econometrics 6 (1977), 21–37. 

Akaike, Hirotugu,"A new look at the statistical model identification," IEEE Transactions on 

Automatic Control 19 (1974), 716–723. 

Allen, David M., “The relationship between variable selection and data augmentation and a 

method for prediction,” Technometrics 16 (1974), 125–127. 

Andor, Mark and Frederik Hesse, “The StoNED age: the departure into a new era of efficiency 

analysis? A Monte Carlo comparison of StoNED and the “oldies” (SFA and DEA),” Journal of 

Productivity Analysis 41 (2014), 85-109. 

Arlot, Sylvain and Alain Celisse, “A survey of cross-validation procedures for model selection,” 

Statistics Surveys 4 (2010), 40—79. 

Balázs, Gábor, András György, and Csaba Szepesvári, "Near-optimal max-affine estimators for 

convex regression," Proceedings of the Eighteenth International Conference on Artificial 

Intelligence and Statistics (2015), 56-64. 

Banker, Rajiv D., Abraham Charnes, and William W. Cooper, “Some models for estimating 

technical and scale inefficiencies in data envelopment analysis,” Management Science 30 

(1984), 1078–1092. 

Barro, Robert J., and Xavier Sala-I-Martin, Economic Growth (Boston, MA: MIT Press, 2004). 

Breiman, Leo, Jerome H. Friedman, Richard Olshen, and Charles Stone, Classification and 

regression trees (Belmont, CA: Wadsworth Advanced Books and Software, 1984). 

Breiman, Leo, “The little bootstrap and other methods for dimensionality selection in regression: 

X-Fixed predictor error.” Journal of the American Statistical Association 87 (1992), 738-754. 

Burman, Prabir, “A comparative study of ordinary cross-validation, v-fold cross-validation and the 

repeated learning-testing methods.” Biometrika 76 (1989), 503–514. 



 

42 
 
 

Chen, Xiaohong, “Large Sample Sieve Estimation of Semi-Nonparametric Models,” in: J.J. 

Heckman and E.E. Leamer, (eds.), Handbook of Econometrics, 6 (North Holland: Elsevier, 

2007). 

Du, Pang, Christopher F. Parmeter, and Jeffrey S. Racine, “Nonparametric Kernel Regression with 

Multiple Predictors and Multiple Shape Constraints,” Statistica Sinica 23 (2013), 1347-1371. 

Efron, Bradley, “The estimation of prediction error: covariance penalties and cross-validation,” 

Journal of the American Statistical Association 99 (2004), 619–642. 

Emrouznejad, Ali, Barnett R. Parker, and Gabriel Tavares, “Evaluation of research in efficiency 

and productivity: a survey and analysis of the first 30 years of scholarly literature in DEA,” 

Socio-Economic Planning Sciences 42 (2008), 151–157. 

Fort, Teresa C., John Haltiwanger, Ron Jarmin, and Javier Miranda, “How firms respond to 

business cycles: The role of firm age and firm size,” IMF Economic Review 61 (2013), 520-559. 

Foster, Lucia, John Haltiwanger, and Chad Syverson, “Reallocation, firm turnover, and efficiency: 

Selection on productivity or profitability?” American Economic Review 98 (2008), 394-425. 

Geisser, Seymour, “The predictive sample reuse method with applications,” Journal of the 

American Statistical Association 70 (1975), 320–328. 

Greene, William, “The econometric approach to efficiency analysis” in H.O. Fried, C.A.K. Lovell, 

S.S. Schmidt (eds.), The Measurement of Productive Efficiency: Techniques and Applications 

(Oxford: Oxford University Press, 1993). 

Hannah, Lauren A. and David Dunson, “Multivariate Convex Regression with Adaptive 

Partitioning,” Journal of Machine Learning Research 14 (2013), 3207–3240. 

Hastie, Trevor, Robert Tibshirani, and Jerome H. Friedman, The Elements of Statistical Learning: 

Data Mining, Inference, and Prediction (New York, NY: Springer, 2009). 

Huang, Ruitong, and Csaba Szepesvári, "A finite-sample generalization bound for semiparametric 

regression: Partially linear models," Proceedings of the Seventeenth International Conference 

on Artificial Intelligence and Statistics (2014), 402-410.  

Kuosmanen, Timo, "Representation Theorem for Convex Nonparametric Least Squares," The 

Econometrics Journal 11 (2008), 308-325.  

Lee, Chia-Yen, Andrew L. Johnson, Erick Moreno-Centeno and Timo Kuosmanen, "A more 

efficient algorithm for convex nonparametric least squares," European Journal of Operational 

Research 227 (2013), 391-400. 

Mallows, Colin L., “Some Comments on CP,” Technometrics 15 (1973), 661–675. 



 

43 
 
 

Mazumder, Rahul, Arkopal Choudhury, Garud Iyengar and Bodhisattva Sen, "A Computational 

Framework for Multivariate Convex Regression and its Variants," arXiv preprint:1509.08165 

(2015). 

Mekaroonreung, Mathee and Andrew L. Johnson, “Estimating the Shadow Prices of SO2 and NOx 

for U.S. Coal Power Plants: A Convex Nonparametric Least Squares Approach,” Energy 

Economics 34 (2012), 723-732. 

Olesen, Ole B. and Niels C. Petersen, “Indicators of Ill-Conditioned Data Sets and Model 

Misspecification in Data Envelopment Analysis: An Extended Facet Approach,” Management 

Science 42 (1996), 205-219. 

Preciado Arreola, Jose L. and Andrew L. Johnson, "Estimating Stochastic Production Frontiers: A 

One-stage Multivariate Semi-Nonparametric Bayesian Concave Regression Method," arXiv 

preprint: 1510.01772 (2015). 

Shao, Jun, “Linear model selection by cross-validation,” Journal of the American Statistical 

Association 88 (1993), 486–494. 

Simar, Leopold and Valentin Zelenyuk, “Stochastic FDH/DEA estimators for frontier analysis,” 

Journal of Productivity Analysis 36 (2008), 1-20. 

Solow, Robert, "Technical change and the aggregate production function," Review of Economics 

and Statistics 39 (1957), 312–320. 

Stone, Mervyn, “Cross-validatory choice and assessment of statistical predictions (with discussion 

and a reply by the authors),” Journal of the Royal Statistical Society Series B 36 (1974), 111–

147.  

Syverson, Chad, "What Determines Productivity?" Journal of Economic Literature 49 (2012), 

326-365. 

White, Halbert, and Jeffrey M. Wooldridge, “Some results on sieve estimation with dependent 

observations,” in: Barnett, W.A., Powell, J., Tauchen, G. (eds.), Non-parametric and Semi-

parametric Methods in Econometrics and Statistics (Cambridge: Cambridge University Press, 

1991) 

Yagi, Daisuke, Andrew L. Johnson. and Timo Kuosmanen, “Shape constrained kernel weighted 

least squares for the estimation of production functions,” working paper Department of 

Industrial and Systems Engineering, Texas A&M University (2016). 

 

  



 

44 
 
 

Appendix A. Results for homoscedastic additive error simulated datasets 

d = 2, sigma = 0.2 nFull = 100 nFull = 200 nFull = 300 

nL/nFull Metric CAP-NLS CAP CNLS CAP-NLS CAP CNLS CAP-NLS CAP CNLS 

100% MSEFInSamp 0.0025 0.0069 0.0030 0.0014 0.0020 0.0017 0.0012 0.0019 0.0015 

100% MSEFTesting 0.0028 0.0073 292.9882 0.0014 0.0020 93.3874 0.0012 0.0019 168.9078 

100% MSEFCensus 0.0025 0.0069 0.0030 0.0014 0.0020 0.0017 0.0012 0.0019 0.0015 

80% MSEFInSamp 0.0045 0.0160 0.0054 0.0024 0.0053 0.0029 0.0019 0.0273 0.0023 

80% MSEFTesting 0.0047 0.0173 56.2393 0.0026 0.0055 414.9028 0.0019 0.0249 148.8055 

80% MSEFCensus 0.0046 0.0166 28.1224 0.0025 0.0054 207.4528 0.0019 0.0261 74.4039 

50% MSEFInSamp 0.0066 0.0145 0.0081 0.0035 0.0085 0.0041 0.0026 0.0045 0.0031 

50% MSEFTesting  0.0076 0.0169 3.6138 0.0039 0.0090 76.2141 0.0026 0.0044 819.0860 

50% MSEFCensus 0.0073 0.0162 2.5321 0.0038 0.0089 53.3511 0.0026 0.0045 573.3612 

30% MSEFInSamp 0.0093 0.0153 0.0117 0.0051 0.0081 0.0063 0.0041 0.0048 0.0047 

30% MSEFTesting 0.0112 0.0188 3.7562 0.0056 0.0087 50.9327 0.0044 0.0055 85.4171 

30% MSEFCensus 0.0108 0.0181 3.0073 0.0055 0.0086 40.7474 0.0043 0.0054 68.3346 

100% MSEYInSamp/var(Y) 56.84% 62.26% 56.25% 55.30% 55.75% 56.63% 55.32% 56.53% 54.96% 

100% MSEYTest/var(Y) 57.11% 62.96% 3.91E+03 55.36% 56.01% 1.25E+03 55.28% 56.14% 2.25E+03 

100% MSEYCensus/var(Y) 56.84% 62.26% 56.25% 55.30% 55.75% 56.63% 55.32% 56.53% 54.96% 

80% MSEYInSamp/var(Y) 59.90% 73.46% 59.64% 57.04% 60.19% 56.19% 55.80% 87.94% 56.15% 

80% MSEYTest/var(Y) 59.70% 76.45% 7.51E+02 56.83% 60.61% 5.53E+03 55.95% 86.55% 1.98E+03 

80% MSEYCensus/var(Y) 59.80% 74.96% 3.76E+02 56.94% 60.40% 2.77E+03 55.87% 87.25% 9.93E+02 

50% MSEYInSamp/var(Y) 62.70% 73.61% 65.84% 57.40% 64.56% 58.72% 55.75% 58.24% 58.69% 

50% MSEYTest /var(Y) 63.77% 76.16% 4.88E+01 58.98% 65.60% 1.02E+03 57.17% 59.53% 1.09E+04 

50% MSEYCensus/var(Y) 63.45% 75.39% 3.43E+01 58.51% 65.29% 7.12E+02 56.75% 59.14% 7.65E+03 

30% MSEYInSamp/var(Y) 67.83% 77.51% 69.24% 58.21% 62.28% 63.96% 58.19% 59.22% 59.45% 

30% MSEYTest/var(Y) 68.53% 78.59% 5.06E+01 61.23% 65.36% 6.80E+02 59.60% 60.99% 1.14E+03 

30% MSEYCensus/var(Y) 68.39% 78.38% 4.07E+01 60.62% 64.74% 5.44E+02 59.32% 60.63% 9.12E+02 

100% K (Full Census) 8.6 2.22 54.14 10.46 2.12 101.2 10.82 2.06 157.12 

100% Time (Full Census) 4.5916 0.4667 1.1398 15.9820 0.6556 7.6636 32.2248 0.7935 22.9329 

Table A1. 𝑀𝑆𝐸𝑓 , 𝑀𝑆𝐸𝐼𝑆𝑓 , 𝑀𝑆𝐸𝐹𝑆𝑓 , 𝑀𝑆𝐸𝑦, 𝑀𝑆𝐸𝐼𝑆𝑦 , 𝑀𝑆𝐸𝐹𝑆𝑦 , time, and K results for d=2, sigma = 0.2 
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d = 2, sigma = 0.3 nFull = 100 nFull = 200 nFull = 300 

nL/nF Metric CAP-NLS CAP CNLS CAP-NLS CAP CNLS CAP-NLS CAP CNLS 

100% MSEFInSamp 0.0051 0.0061 0.0057 0.0027 0.0030 0.0033 0.0019 0.0029 0.0024 

100% MSEFTesting 0.0056 0.0067 308.9863 0.0028 0.0031 102.7481 0.0019 0.0029 198.8724 

100% MSEFCensus 0.0051 0.0061 0.0057 0.0027 0.0030 0.0033 0.0019 0.0029 0.0024 

80% MSEFInSamp 0.0075 0.0122 0.0084 0.0048 0.0111 0.0057 0.0035 0.0150 0.0042 

80% MSEFTesting 0.0084 0.0144 10.9325 0.0052 0.0139 217.2453 0.0035 0.0150 116.0226 

80% MSEFCensus 0.0079 0.0133 5.4704 0.0050 0.0125 108.6255 0.0035 0.0150 58.0134 

50% MSEFInSamp 0.0118 0.0264 0.0141 0.0067 0.0349 0.0077 0.0048 0.0153 0.0055 

50% MSEFTesting  0.0134 0.0305 10.6080 0.0069 0.0353 32.6064 0.0052 0.0158 186.1256 

50% MSEFCensus 0.0129 0.0293 7.4298 0.0069 0.0352 22.8268 0.0051 0.0156 130.2895 

30% MSEFInSamp 0.0134 0.0215 0.0176 0.0100 0.1021 0.0116 0.0067 0.0410 0.0079 

30% MSEFTesting 0.0155 0.0273 3.4131 0.0110 0.1009 36.0041 0.0071 0.0442 51.8847 

30% MSEFCensus 0.0151 0.0261 2.7340 0.0108 0.1012 28.8056 0.0070 0.0436 41.5094 

100% MSEYInSamp/var(Y) 74.31% 76.22% 75.10% 74.42% 75.12% 74.71% 72.98% 73.45% 73.56% 

100% MSEYTest/var(Y) 75.95% 76.71% 2.45E+03 73.81% 74.00% 8.16E+02 73.35% 74.12% 1.58E+03 

100% MSEYCensus/var(Y) 74.31% 76.22% 75.10% 74.42% 75.12% 74.71% 72.98% 73.45% 73.56% 

80% MSEYInSamp/var(Y) 81.35% 80.78% 79.21% 74.35% 80.49% 75.79% 74.37% 81.15% 75.88% 

80% MSEYTest/var(Y) 78.35% 82.96% 8.76E+01 75.66% 82.41% 1.73E+03 74.34% 83.33% 9.22E+02 

80% MSEYCensus/var(Y) 79.85% 81.87% 4.42E+01 75.01% 81.45% 8.63E+02 74.35% 82.24% 4.61E+02 

50% MSEYInSamp/var(Y) 82.81% 93.18% 84.80% 77.92% 97.76% 74.87% 73.90% 83.22% 77.84% 

50% MSEYTest /var(Y) 82.42% 95.97% 8.50E+01 77.47% 99.92% 2.60E+02 75.97% 84.34% 1.48E+03 

50% MSEYCensus/var(Y) 82.54% 95.13% 5.98E+01 77.60% 99.28% 1.82E+02 75.35% 84.00% 1.04E+03 

30% MSEYInSamp/var(Y) 92.83% 94.09% 83.86% 76.69% 155.28% 83.18% 77.15% 102.55% 76.05% 

30% MSEYTest/var(Y) 84.12% 93.45% 2.78E+01 80.81% 152.02% 2.87E+02 77.63% 106.96% 4.13E+02 

30% MSEYCensus/var(Y) 85.87% 93.58% 2.24E+01 79.99% 152.67% 2.29E+02 77.53% 106.08% 3.30E+02 

100% K (Full Census) 8.84 2.16 49.78 9.84 2.12 94.96 10.7 2.26 143.94 

100% Time (Full Census) 4.6754 0.4517 1.1370 15.0989 0.6220 7.6569 30.8449 0.7676 22.5022 

Table A2. 𝑀𝑆𝐸𝑓 , 𝑀𝑆𝐸𝐼𝑆𝑓 , 𝑀𝑆𝐸𝐹𝑆𝑓 , 𝑀𝑆𝐸𝑦, 𝑀𝑆𝐸𝐼𝑆𝑦 , 𝑀𝑆𝐸𝐹𝑆𝑦 , time, and K results for d=2, sigma = 0.3 
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d = 2, sigma = 0.4 nFull = 100 nFull = 200 nFull = 300 

nL/nF Metric CAP-NLS CAP CNLS CAP-NLS CAP CNLS CAP-NLS CAP CNLS 

100% MSEFInSamp 0.0076 0.0099 0.0087 0.0041 0.0059 0.0048 0.0027 0.1022 0.0033 

100% MSEFTesting 0.0081 0.0105 281.3251 0.0043 0.0064 198.6378 0.0027 0.1093 89.5596 

100% MSEFCensus 0.0076 0.0099 0.0087 0.0041 0.0059 0.0048 0.0027 0.1022 0.0033 

80% MSEFInSamp 0.0124 0.0408 0.0136 0.0062 0.1578 0.0073 0.0054 0.0112 0.0063 

80% MSEFTesting 0.0125 0.0398 10.2707 0.0064 0.1723 118.2487 0.0055 0.0115 198.9407 

80% MSEFCensus 0.0125 0.0403 5.1422 0.0063 0.1650 59.1280 0.0054 0.0113 99.4735 

50% MSEFInSamp 0.0177 0.1723 0.0200 0.0117 0.0647 0.0129 0.0074 0.0720 0.0085 

50% MSEFTesting  0.0193 0.2279 3.2368 0.0127 0.0584 147.9070 0.0080 0.0729 720.6396 

50% MSEFCensus 0.0188 0.2112 2.2717 0.0124 0.0603 103.5388 0.0078 0.0726 504.4503 

30% MSEFInSamp 0.0232 0.0693 0.0265 0.0129 0.0381 0.0146 0.0105 0.0176 0.0118 

30% MSEFTesting 0.0262 0.0731 6.4528 0.0134 0.0435 15.3265 0.0114 0.0193 50.9989 

30% MSEFCensus 0.0256 0.0723 5.1675 0.0133 0.0424 12.2641 0.0112 0.0190 40.8015 

100% MSEYInSamp/var(Y) 85.84% 89.82% 86.93% 87.64% 87.10% 87.54% 85.04% 137.2% 86.46% 

100% MSEYTest/var(Y) 87.57% 88.80% 1.47E+03 85.72% 86.78% 1.04E+03 85.22% 140.6% 4.67E+02 

100% MSEYCensus/var(Y) 85.84% 89.82% 86.93% 87.64% 87.10% 87.54% 85.04% 137.2% 86.46% 

80% MSEYInSamp/var(Y) 94.60% 104.3% 91.38% 85.43% 167.1% 85.79% 86.12% 85.62% 88.40% 

80% MSEYTest/var(Y) 90.15% 104.2% 5.44E+01 86.65% 173.0% 6.17E+02 86.26% 89.31% 1.04E+03 

80% MSEYCensus/var(Y) 92.37% 104.3% 2.77E+01 86.04% 170.1% 3.09E+02 86.19% 87.46% 5.19E+02 

50% MSEYInSamp/var(Y) 98.44% 172.8% 91.64% 90.43% 114.1% 88.98% 85.72% 120.9% 90.70% 

50% MSEYTest /var(Y) 93.82% 202.4% 1.77E+01 90.55% 114.2% 7.71E+02 88.04% 121.2% 3.75E+03 

50% MSEYCensus/var(Y) 95.21% 193.5% 1.27E+01 90.51% 114.2% 5.40E+02 87.34% 121.1% 2.63E+03 

30% MSEYInSamp/var(Y) 108.9% 126.7% 95.09% 88.67% 102.8% 94.60% 90.55% 89.48% 87.85% 

30% MSEYTest/var(Y) 97.4% 121.8% 3.45E+01 91.05% 106.7% 8.07E+01 89.86% 93.94% 2.67E+02 

30% MSEYCensus/var(Y) 99.7% 122.8% 2.78E+01 90.58% 105.9% 6.48E+01 90.00% 93.04% 2.13E+02 

100% K (Full Census) 8.34 2.18 46.24 10.02 2.32 93.9 10.66 2.12 137.24 

100% Time (Full Census) 4.5859 0.4570 1.1464 15.6152 0.6628 7.4554 30.7520 0.7735 23.0779 

Table A3. 𝑀𝑆𝐸𝑓 , 𝑀𝑆𝐸𝐼𝑆𝑓 , 𝑀𝑆𝐸𝐹𝑆𝑓 , 𝑀𝑆𝐸𝑦, 𝑀𝑆𝐸𝐼𝑆𝑦 , 𝑀𝑆𝐸𝐹𝑆𝑦 , time, and K results for d=2, sigma = 0.4 
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d = 3, sigma = 0.2 nFull = 100 nFull = 200 nFull = 300 

nL/nF Metric CAP-NLS CAP CNLS CAP-NLS CAP CNLS CAP-NLS CAP CNLS 

100% MSEFInSamp 0.0031 0.0173 0.0048 0.0019 0.0026 0.0031 0.0014 0.0042 0.0024 

100% MSEFTesting 0.0034 0.0205 591.2154 0.0020 0.0028 1240.0575 0.0014 0.0045 1174.2546 

100% MSEFCensus 0.0031 0.0173 0.0048 0.0019 0.0026 0.0031 0.0014 0.0042 0.0024 

80% MSEFInSamp 0.0047 0.0099 0.0074 0.0033 0.0046 0.0050 0.0025 0.0038 0.0040 

80% MSEFTesting 0.0053 0.0114 53.6331 0.0035 0.0051 357.0193 0.0027 0.0041 907.1555 

80% MSEFCensus 0.0050 0.0106 26.8203 0.0034 0.0048 178.5121 0.0026 0.0039 453.5797 

50% MSEFInSamp 0.0075 0.0088 0.0121 0.0048 0.0083 0.0070 0.0036 0.0083 0.0055 

50% MSEFTesting  0.0098 0.0116 4.6067 0.0055 0.0094 142.5195 0.0039 0.0090 251.8661 

50% MSEFCensus 0.0091 0.0107 3.2283 0.0053 0.0091 99.7658 0.0038 0.0087 176.3079 

30% MSEFInSamp 0.0097 0.0106 0.0136 0.0060 0.0115 0.0089 0.0049 0.0090 0.0072 

30% MSEFTesting 0.0142 0.0154 21.3351 0.0073 0.0127 11.9207 0.0054 0.0099 59.9345 

30% MSEFCensus 0.0133 0.0145 17.0708 0.0070 0.0125 9.5384 0.0053 0.0097 47.9491 

100% MSEYInSamp/var(Y) 63.59% 87.57% 68.17% 63.43% 63.62% 66.10% 62.58% 66.11% 64.01% 

100% MSEYTest/var(Y) 65.53% 91.51% 9.03E+03 63.48% 64.59% 1.89E+04 63.06% 67.74% 1.79E+04 

100% MSEYCensus/var(Y) 63.59% 87.57% 68.17% 63.43% 63.62% 66.10% 62.58% 66.11% 64.01% 

80% MSEYInSamp/var(Y) 70.73% 75.78% 72.11% 63.46% 68.47% 68.10% 63.76% 65.27% 65.78% 

80% MSEYTest/var(Y) 68.51% 77.83% 8.20E+02 65.82% 68.11% 5.45E+03 64.42% 66.61% 1.39E+04 

80% MSEYCensus/var(Y) 69.62% 76.81% 4.10E+02 64.64% 68.29% 2.73E+03 64.09% 65.94% 6.93E+03 

50% MSEYInSamp/var(Y) 68.40% 75.73% 82.11% 66.79% 74.56% 72.78% 66.68% 75.56% 71.31% 

50% MSEYTest /var(Y) 75.48% 78.17% 7.10E+01 69.01% 74.97% 2.18E+03 66.79% 74.47% 3.85E+03 

50% MSEYCensus/var(Y) 73.35% 77.44% 4.99E+01 68.34% 74.85% 1.52E+03 66.76% 74.80% 2.69E+03 

30% MSEYInSamp/var(Y) 78.10% 74.93% 80.60% 70.43% 77.42% 77.07% 67.33% 76.20% 72.97% 

30% MSEYTest/var(Y) 82.29% 84.11% 3.26E+02 71.58% 79.81% 1.83E+02 68.90% 75.67% 9.16E+02 

30% MSEYCensus/var(Y) 81.46% 82.27% 2.61E+02 71.35% 79.33% 1.46E+02 68.59% 75.77% 7.33E+02 

100% K (Full Census) 8.46 2.42 60.88 11.46 2.64 125.88 12.42 2.46 193.14 

100% Time (Full Census) 5.0010 0.5231 1.2491 23.2401 0.9280 8.6596 49.3375 1.1707 28.3374 

Table A4. 𝑀𝑆𝐸𝑓 , 𝑀𝑆𝐸𝐼𝑆𝑓 , 𝑀𝑆𝐸𝐹𝑆𝑓 , 𝑀𝑆𝐸𝑦, 𝑀𝑆𝐸𝐼𝑆𝑦 , 𝑀𝑆𝐸𝐹𝑆𝑦 , time, and K results for d=3, sigma = 0.2
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d = 3, sigma = 0.3 nFull = 100 nFull = 200 nFull = 300 

nL/nF Metric CAP-NLS CAP CNLS CAP-NLS CAP CNLS CAP-NLS CAP CNLS 

100% MSEFInSamp 0.0052 0.0699 0.0078 0.0034 0.0094 0.0053 0.0026 0.0053 0.0044 

100% MSEFTesting 0.0057 0.0753 782.2253 0.0035 0.0095 717.8571 0.0026 0.0055 1235.0907 

100% MSEFCensus 0.0052 0.0699 0.0078 0.0034 0.0094 0.0053 0.0026 0.0053 0.0044 

80% MSEFInSamp 0.0095 0.0429 0.0144 0.0058 0.0303 0.0088 0.0041 0.1537 0.0064 

80% MSEFTesting 0.0104 0.0491 119.1442 0.0064 0.0312 768.1003 0.0043 0.1663 926.5316 

80% MSEFCensus 0.0099 0.0460 59.5793 0.0061 0.0307 384.0546 0.0042 0.1600 463.2690 

50% MSEFInSamp 0.0145 0.0218 0.0209 0.0090 0.0835 0.0129 0.0063 0.0146 0.0091 

50% MSEFTesting  0.0191 0.0323 56.0073 0.0096 0.0964 70.1889 0.0066 0.0165 271.2729 

50% MSEFCensus 0.0178 0.0291 39.2114 0.0094 0.0925 49.1361 0.0065 0.0160 189.8938 

30% MSEFInSamp 0.0192 0.0240 0.0244 0.0124 0.0195 0.0176 0.0092 0.0619 0.0132 

30% MSEFTesting 0.0246 0.0365 13.3936 0.0142 0.0253 12.1662 0.0114 0.0651 163.4610 

30% MSEFCensus 0.0235 0.0340 10.7197 0.0138 0.0242 9.7365 0.0110 0.0645 130.7715 

100% MSEYInSamp/var(Y) 81.47% 140.1% 83.67% 80.86% 86.12% 84.10% 80.94% 82.65% 82.01% 

100% MSEYTest/var(Y) 83.26% 144.3% 6.87E+03 81.36% 86.59% 6.31E+03 81.08% 83.64% 1.09E+04 

100% MSEYCensus/var(Y) 81.47% 140.1% 83.67% 80.86% 86.12% 84.10% 80.94% 82.65% 82.01% 

80% MSEYInSamp/var(Y) 87.78% 117.4% 88.21% 82.03% 105.0% 84.68% 81.09% 211.6% 82.48% 

80% MSEYTest/var(Y) 87.35% 121.4% 1.05E+03 83.82% 105.4% 6.75E+03 81.96% 224.3% 8.14E+03 

80% MSEYCensus/var(Y) 87.56% 119.4% 5.24E+02 82.93% 105.2% 3.38E+03 81.52% 217.9% 4.07E+03 

50% MSEYInSamp/var(Y) 86.60% 93.3% 102.68% 86.16% 155.6% 90.00% 85.57% 95.36% 87.30% 

50% MSEYTest /var(Y) 95.05% 106.4% 4.93E+02 87.03% 163.2% 6.18E+02 84.56% 93.36% 2.38E+03 

50% MSEYCensus/var(Y) 92.51% 102.5% 3.45E+02 86.77% 160.9% 4.33E+02 84.86% 93.96% 1.67E+03 

30% MSEYInSamp/var(Y) 103.7% 103.6% 94.49% 93.63% 93.34% 95.45% 86.37% 135.5% 90.32% 

30% MSEYTest/var(Y) 99.94% 110.3% 1.19E+02 90.61% 100.5% 1.08E+02 88.68% 135.9% 1.44E+03 

30% MSEYCensus/var(Y) 100.7% 108.9% 9.50E+01 91.22% 99.09% 8.64E+01 88.22% 135.8% 1.15E+03 

100% K (Full Census) 8.32 2.22 56.74 11.12 2.54 122.6 12.16 2.54 184.08 

100% Time (Full Census) 5.0325 0.5227 1.2846 23.2854 0.9178 8.6964 49.1229 1.1300 27.6230 

Table A5. 𝑀𝑆𝐸𝑓 , 𝑀𝑆𝐸𝐼𝑆𝑓 , 𝑀𝑆𝐸𝐹𝑆𝑓 , 𝑀𝑆𝐸𝑦, 𝑀𝑆𝐸𝐼𝑆𝑦 , 𝑀𝑆𝐸𝐹𝑆𝑦 , time, and K results for d=3, sigma = 0.3 
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d = 3, sigma = 0.4 nFull = 100 nFull = 200 nFull = 300 

nL/nF Metric CAP-NLS CAP CNLS CAP-NLS CAP CNLS CAP-NLS CAP CNLS 

100% MSEFInSamp 0.0096 0.3470 0.0126 0.0051 0.0437 0.0078 0.0039 0.0836 0.0061 

100% MSEFTesting 0.0104 0.3180 940.7160 0.0052 0.0429 1025.0415 0.0040 0.0848 1404.5695 

100% MSEFCensus 0.0096 0.3470 0.0126 0.0051 0.0437 0.0078 0.0039 0.0836 0.0061 

80% MSEFInSamp 0.0154 0.0340 0.0195 0.0089 0.0247 0.0138 0.0056 0.0240 0.0086 

80% MSEFTesting 0.0181 0.0397 75.3542 0.0092 0.0258 669.2816 0.0061 0.0267 1050.6757 

80% MSEFCensus 0.0168 0.0369 37.6869 0.0090 0.0252 334.6477 0.0058 0.0253 525.3422 

50% MSEFInSamp 0.0204 0.0294 0.0280 0.0125 0.0322 0.0171 0.0105 0.0478 0.0142 

50% MSEFTesting  0.0261 0.0372 12.2046 0.0136 0.0331 77.9379 0.0118 0.0544 287.5137 

50% MSEFCensus 0.0243 0.0349 8.5516 0.0132 0.0328 54.5617 0.0114 0.0524 201.2638 

30% MSEFInSamp 0.0389 0.0442 0.0405 0.0183 0.0353 0.0226 0.0131 0.0948 0.0168 

30% MSEFTesting 0.0483 0.0601 0.6002 0.0197 0.0399 30.7514 0.0144 0.0928 100.0441 

30% MSEFCensus 0.0464 0.0570 0.4882 0.0194 0.0389 24.6056 0.0142 0.0932 80.0387 

100% MSEYInSamp/var(Y) 89.07% 273.1% 91.86% 88.32% 109.2% 90.42% 87.63% 129.5% 88.18% 

100% MSEYTest/var(Y) 90.90% 256.6% 5.07E+03 88.10% 108.4% 5.52E+03 88.02% 131.6% 7.57E+03 

100% MSEYCensus/var(Y) 89.07% 273.1% 91.86% 88.32% 109.2% 90.42% 87.63% 129.5% 88.18% 

80% MSEYInSamp/var(Y) 95.48% 105.2% 92.29% 89.25% 98.0% 92.15% 87.62% 97.0% 88.14% 

80% MSEYTest/var(Y) 95.07% 106.6% 4.07E+02 90.25% 99.1% 3.61E+03 88.51% 99.5% 5.66E+03 

80% MSEYCensus/var(Y) 95.28% 105.9% 2.04E+02 89.75% 98.5% 1.80E+03 88.06% 98.3% 2.83E+03 

50% MSEYInSamp/var(Y) 85.30% 97.7% 100.18% 92.62% 105.5% 93.88% 93.03% 115.0% 95.24% 

50% MSEYTest /var(Y) 99.39% 105.4% 6.67E+01 92.90% 103.3% 4.21E+02 92.29% 115.3% 1.55E+03 

50% MSEYCensus/var(Y) 95.17% 103.1% 4.70E+01 92.82% 103.9% 2.95E+02 92.51% 115.2% 1.09E+03 

30% MSEYInSamp/var(Y) 110.8% 115.5% 105.7% 99.43% 104.5% 98.59% 93.00% 139.7% 93.92% 

30% MSEYTest/var(Y) 111.5% 118.0% 4.11E+00 95.83% 106.7% 1.67E+02 93.29% 135.4% 5.40E+02 

30% MSEYCensus/var(Y) 111.4% 117.5% 3.50E+00 96.55% 106.3% 1.33E+02 93.23% 136.3% 4.32E+02 

100% K (Full Census) 7.84 2.38 54.3 11.3 2.56 115.12 12.38 2.82 178.82 

100% Time (Full Census) 4.9215 0.5182 1.2876 24.9839 0.9162 8.7400 49.3384 1.1136 28.9099 

Table A6. 𝑀𝑆𝐸𝑓 , 𝑀𝑆𝐸𝐼𝑆𝑓 , 𝑀𝑆𝐸𝐹𝑆𝑓 , 𝑀𝑆𝐸𝑦, 𝑀𝑆𝐸𝐼𝑆𝑦 , 𝑀𝑆𝐸𝐹𝑆𝑦 , time, and K results for d=3, sigma = 0.4 
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d = 4, sigma = 0.2 nFull = 100 nFull = 200 nFull = 300 

nL/nF Metric CAP-NLS CAP CNLS CAP-NLS CAP CNLS CAP-NLS CAP CNLS 

100% MSEFInSamp 0.0038 0.0082 0.0072 0.0023 0.0031 0.0048 0.0017 0.0022 0.0040 

100% MSEFTesting 0.0041 0.0084 366.5847 0.0023 0.0034 1201.9533 0.0018 0.0023 2096.6968 

100% MSEFCensus 0.0038 0.0082 0.0072 0.0023 0.0031 0.0048 0.0017 0.0022 0.0040 

80% MSEFInSamp 0.0056 0.0101 0.0105 0.0036 0.0049 0.0071 0.0026 0.0055 0.0054 

80% MSEFTesting 0.0067 0.0120 13.2270 0.0038 0.0054 569.4433 0.0028 0.0063 1140.8696 

80% MSEFCensus 0.0061 0.0110 6.6187 0.0037 0.0052 284.7252 0.0027 0.0059 570.4375 

50% MSEFInSamp 0.0082 0.0109 0.0154 0.0058 0.0209 0.0105 0.0039 0.0113 0.0083 

50% MSEFTesting  0.0094 0.0157 10.0245 0.0069 0.0237 70.0020 0.0043 0.0107 268.5121 

50% MSEFCensus 0.0090 0.0143 7.0218 0.0066 0.0229 49.0046 0.0042 0.0109 187.9609 

30% MSEFInSamp 0.0115 0.0117 0.0180 0.0073 0.0107 0.0130 0.0057 0.0073 0.0109 

30% MSEFTesting 0.0170 0.0175 0.6706 0.0094 0.0150 3.4263 0.0062 0.0088 43.7317 

30% MSEFCensus 0.0159 0.0164 0.5401 0.0089 0.0141 2.7436 0.0061 0.0085 34.9876 

100% MSEYInSamp/var(Y) 74.08% 80.8% 78.81% 70.22% 71.6% 75.13% 69.41% 70.2% 73.67% 

100% MSEYTest/var(Y) 73.24% 80.5% 6.13E+03 70.48% 72.2% 2.01E+04 69.21% 70.1% 3.51E+04 

100% MSEYCensus/var(Y) 74.08% 80.8% 78.81% 70.22% 71.6% 75.13% 69.41% 70.2% 73.67% 

80% MSEYInSamp/var(Y) 74.18% 83.0% 83.62% 72.95% 75.1% 78.13% 71.70% 76.0% 75.65% 

80% MSEYTest/var(Y) 77.47% 86.4% 2.22E+02 72.82% 75.5% 9.52E+03 71.34% 77.2% 1.91E+04 

80% MSEYCensus/var(Y) 75.82% 84.7% 1.11E+02 72.88% 75.3% 4.76E+03 71.52% 76.6% 9.54E+03 

50% MSEYInSamp/var(Y) 79.00% 80.7% 85.27% 74.82% 100.6% 84.26% 73.76% 85.1% 79.74% 

50% MSEYTest /var(Y) 81.97% 92.7% 1.68E+02 77.66% 105.9% 1.17E+03 73.56% 84.4% 4.49E+03 

50% MSEYCensus/var(Y) 81.08% 89.1% 1.18E+02 76.81% 104.3% 8.20E+02 73.62% 84.6% 3.14E+03 

30% MSEYInSamp/var(Y) 90.9% 81.0% 93.2% 76.33% 81.7% 91.78% 74.66% 76.8% 85.30% 

30% MSEYTest/var(Y) 94.8% 95.7% 1.19E+01 82.06% 91.5% 5.80E+01 76.49% 80.8% 7.32E+02 

30% MSEYCensus/var(Y) 94.0% 92.7% 9.69E+00 80.92% 89.6% 4.66E+01 76.12% 80.0% 5.86E+02 

100% K (Full Census) 7.04 2.02 63.02 11.7 2.16 132.46 12.92 2.08 192.36 

100% Time (Full Census) 4.0210 0.4488 1.3800 35.6645 1.2499 9.3455 78.7762 1.6994 31.3752 

Table A7. 𝑀𝑆𝐸𝑓 , 𝑀𝑆𝐸𝐼𝑆𝑓 , 𝑀𝑆𝐸𝐹𝑆𝑓 , 𝑀𝑆𝐸𝑦, 𝑀𝑆𝐸𝐼𝑆𝑦 , 𝑀𝑆𝐸𝐹𝑆𝑦 , time, and K results for d=4, sigma = 0.2 
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d = 4, sigma = 0.3 nFull = 100 nFull = 200 nFull = 300 

nL/nF Metric CAP-NLS CAP CNLS CAP-NLS CAP CNLS CAP-NLS CAP CNLS 

100% MSEFInSamp 0.0068 0.0138 0.0126 0.0042 0.0267 0.0084 0.0028 0.0042 0.0061 

100% MSEFTesting 0.0074 0.0157 330.2075 0.0043 0.0294 956.4055 0.0028 0.0043 2061.1434 

100% MSEFCensus 0.0068 0.0138 0.0126 0.0042 0.0267 0.0084 0.0028 0.0042 0.0061 

80% MSEFInSamp 0.0113 0.0198 0.0199 0.0063 0.1558 0.0127 0.0051 0.0505 0.0098 

80% MSEFTesting 0.0123 0.0227 6.9686 0.0061 0.1795 231.3875 0.0054 0.0542 846.5812 

80% MSEFCensus 0.0118 0.0213 3.4943 0.0062 0.1677 115.7001 0.0053 0.0523 423.2955 

50% MSEFInSamp 0.0156 0.0245 0.0255 0.0096 0.0188 0.0177 0.0066 0.0188 0.0122 

50% MSEFTesting  0.0196 0.0330 1.7114 0.0110 0.0222 126.0220 0.0070 0.0193 256.3481 

50% MSEFCensus 0.0184 0.0305 1.2056 0.0106 0.0212 88.2207 0.0069 0.0192 179.4474 

30% MSEFInSamp 0.0245 0.0259 0.0350 0.0139 0.0176 0.0216 0.0100 0.0517 0.0178 

30% MSEFTesting 0.0364 0.0400 5.9935 0.0159 0.0229 1.7440 0.0110 0.0516 54.2180 

30% MSEFCensus 0.0340 0.0372 4.8018 0.0155 0.0218 1.3996 0.0108 0.0517 43.3780 

100% MSEYInSamp/var(Y) 89.37% 95.0% 93.88% 85.47% 106.8% 90.39% 84.48% 86.0% 88.02% 

100% MSEYTest/var(Y) 88.84% 96.5% 3.03E+03 86.19% 109.1% 8.78E+03 84.41% 85.9% 1.89E+04 

100% MSEYCensus/var(Y) 89.37% 95.0% 93.88% 85.47% 106.8% 90.39% 84.48% 86.0% 88.02% 

80% MSEYInSamp/var(Y) 91.03% 99.2% 101.05% 88.41% 225.7% 93.76% 87.36% 129.0% 91.44% 

80% MSEYTest/var(Y) 93.10% 102.8% 6.48E+01 87.61% 246.9% 2.12E+03 87.22% 132.1% 7.77E+03 

80% MSEYCensus/var(Y) 92.06% 101.0% 3.29E+01 88.01% 236.3% 1.06E+03 87.29% 130.5% 3.88E+03 

50% MSEYInSamp/var(Y) 94.78% 98.7% 97.20% 89.65% 97.0% 99.59% 88.63% 98.6% 93.33% 

50% MSEYTest /var(Y) 99.77% 112.2% 1.65E+01 91.70% 102.0% 1.16E+03 88.39% 99.8% 2.35E+03 

50% MSEYCensus/var(Y) 98.27% 108.1% 1.19E+01 91.08% 100.5% 8.10E+02 88.46% 99.5% 1.65E+03 

30% MSEYInSamp/var(Y) 111.2% 100.6% 108.9% 91.16% 93.8% 105.01% 89.08% 129.2% 97.61% 

30% MSEYTest/var(Y) 115.3% 118.6% 5.58E+01 96.58% 103.1% 1.68E+01 91.62% 129.1% 4.98E+02 

30% MSEYCensus/var(Y) 114.5% 115.0% 4.49E+01 95.50% 101.3% 1.37E+01 91.11% 129.1% 3.99E+02 

100% K (Full Census) 6.94 2.26 59.42 11.94 2.22 122.16 12.4 2.18 192.14 

100% Time (Full Census) 3.8932 0.4635 1.3946 36.0235 1.2504 9.5493 73.5000 1.6338 31.5927 

Table A8. 𝑀𝑆𝐸𝑓 , 𝑀𝑆𝐸𝐼𝑆𝑓 , 𝑀𝑆𝐸𝐹𝑆𝑓 , 𝑀𝑆𝐸𝑦, 𝑀𝑆𝐸𝐼𝑆𝑦 , 𝑀𝑆𝐸𝐹𝑆𝑦 , time, and K results for d=4, sigma = 0.3 



 

52 
 
 

d = 4, sigma = 0.4 nFull = 100 nFull = 200 nFull = 300 

nL/nF Metric CAP-NLS CAP CNLS CAP-NLS CAP CNLS CAP-NLS CAP CNLS 

100% MSEFInSamp 0.0091 0.0333 0.0162 0.0061 0.0109 0.0120 0.0044 0.0151 0.0088 

100% MSEFTesting 0.0104 0.0336 269.5879 0.0063 0.0123 1809.4380 0.0044 0.0149 2638.1731 

100% MSEFCensus 0.0091 0.0333 0.0162 0.0061 0.0109 0.0120 0.0044 0.0151 0.0088 

80% MSEFInSamp 0.0183 0.0637 0.0296 0.0110 0.0194 0.0177 0.0078 0.0270 0.0141 

80% MSEFTesting 0.0200 0.0755 14.6548 0.0120 0.0206 378.6360 0.0084 0.0279 671.0586 

80% MSEFCensus 0.0191 0.0696 7.3422 0.0115 0.0200 189.3269 0.0081 0.0274 335.5364 

50% MSEFInSamp 0.0300 0.0387 0.0424 0.0160 0.0289 0.0272 0.0109 0.0369 0.0189 

50% MSEFTesting  0.0371 0.0489 3.0819 0.0170 0.0320 26.7000 0.0119 0.0383 403.4055 

50% MSEFCensus 0.0349 0.0459 2.1701 0.0167 0.0311 18.6981 0.0116 0.0379 282.3895 

30% MSEFInSamp 0.0411 0.0441 0.0526 0.0225 0.0361 0.0367 0.0159 0.0257 0.0274 

30% MSEFTesting 0.0562 0.0620 1.6564 0.0258 0.0450 102.2316 0.0166 0.0291 32.9122 

30% MSEFCensus 0.0532 0.0585 1.3356 0.0251 0.0432 81.7926 0.0164 0.0284 26.3352 

100% MSEYInSamp/var(Y) 95.67% 107.2% 97.55% 92.30% 95.2% 96.74% 90.89% 97.5% 94.13% 

100% MSEYTest/var(Y) 94.65% 107.7% 1.51E+03 92.55% 95.9% 1.01E+04 91.05% 97.0% 1.47E+04 

100% MSEYCensus/var(Y) 95.67% 107.2% 97.55% 92.30% 95.2% 96.74% 90.89% 97.5% 94.13% 

80% MSEYInSamp/var(Y) 97.00% 122.5% 104.83% 96.52% 99.8% 99.05% 93.59% 104.3% 97.10% 

80% MSEYTest/var(Y) 99.77% 130.9% 8.28E+01 95.53% 100.4% 2.12E+03 93.79% 104.7% 3.75E+03 

80% MSEYCensus/var(Y) 98.38% 126.7% 4.19E+01 96.02% 100.1% 1.06E+03 93.69% 104.5% 1.88E+03 

50% MSEYInSamp/var(Y) 104.1% 104.4% 102.41% 96.18% 102.0% 104.83% 95.41% 108.7% 99.18% 

50% MSEYTest /var(Y) 109.4% 116.1% 1.81E+01 97.83% 106.3% 1.50E+02 95.27% 110.2% 2.25E+03 

50% MSEYCensus/var(Y) 107.8% 112.6% 1.30E+01 97.33% 105.0% 1.05E+02 95.32% 109.8% 1.58E+03 

30% MSEYInSamp/var(Y) 118.2% 107.6% 112.0% 98.40% 105.2% 113.07% 96.25% 101.3% 104.57% 

30% MSEYTest/var(Y) 120.1% 123.3% 1.01E+01 103.16% 114.0% 5.72E+02 97.59% 104.7% 1.85E+02 

30% MSEYCensus/var(Y) 119.7% 120.2% 8.34E+00 102.21% 112.2% 4.58E+02 97.32% 104.0% 1.48E+02 

100% K (Full Census) 6.94 2.02 56.82 11.8 2.38 122.26 12.22 2.1 185.84 

100% Time (Full Census) 3.8504 0.4765 1.4262 35.9447 1.2765 9.8326 75.0789 1.6454 32.8098 

Table A9. 𝑀𝑆𝐸𝑓 , 𝑀𝑆𝐸𝐼𝑆𝑓 , 𝑀𝑆𝐸𝐹𝑆𝑓 , 𝑀𝑆𝐸𝑦, 𝑀𝑆𝐸𝐼𝑆𝑦 , 𝑀𝑆𝐸𝐹𝑆𝑦 , time, and K results for d=4, sigma = 0.4 
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d = 2, sigma = 0.01 nFull = 100 nFull = 200 nFull = 300 

nL/nF Metric CAP-NLS CAP CNLS CAP-NLS CAP CNLS CAP-NLS CAP CNLS 

100% MSEFInSamp 0.0000 0.0003 0.0000 0.0000 0.0003 0.0000 0.0000 0.0003 0.0000 

100% MSEFTesting 0.0000 0.0003 87.9100 0.0000 0.0003 76.2429 0.0000 0.0003 55.3655 

100% MSEFCensus 0.0000 0.0003 0.0000 0.0000 0.0003 0.0000 0.0000 0.0003 0.0000 

80% MSEFInSamp 0.0001 0.0002 0.0000 0.0000 0.0003 0.0000 0.0000 0.0003 0.0000 

80% MSEFTesting 0.0001 0.0004 69.4946 0.0000 0.0003 138.3418 0.0000 0.0003 252.9521 

80% MSEFCensus 0.0001 0.0003 34.7473 0.0000 0.0003 69.1709 0.0000 0.0003 126.4761 

50% MSEFInSamp 0.0001 0.0002 0.0000 0.0000 0.0002 0.0000 0.0000 0.0003 0.0000 

50% MSEFTesting  0.0003 0.0004 34.5701 0.0001 0.0004 251.8564 0.0000 0.0003 74.6915 

50% MSEFCensus 0.0002 0.0004 24.1991 0.0001 0.0003 176.2995 0.0000 0.0003 52.2840 

30% MSEFInSamp 0.0002 0.0002 0.0001 0.0001 0.0002 0.0000 0.0000 0.0002 0.0000 

30% MSEFTesting 0.0005 0.0005 1.5433 0.0001 0.0004 38.2043 0.0001 0.0003 132.1729 

30% MSEFCensus 0.0005 0.0005 1.2346 0.0001 0.0004 30.5635 0.0001 0.0003 105.7384 

100% MSEYInSamp/var(Y) 0.32% 0.33% 0.33% 0.31% 0.33% 0.33% 0.30% 0.31% 0.31% 

100% MSEYTest/var(Y) 0.34% 0.34% 3.89E+06 0.31% 0.32% 1.34E+06 0.31% 0.32% 5.68E+05 

100% MSEYCensus/var(Y) 0.32% 0.33% 0.33% 0.31% 0.33% 0.33% 0.30% 0.31% 0.31% 

80% MSEYInSamp/var(Y) 0.37% 0.38% 0.40% 0.33% 0.34% 0.34% 0.31% 0.30% 0.33% 

80% MSEYTest/var(Y) 0.39% 0.41% 4.81E+05 0.34% 0.35% 1.36E+06 0.32% 0.33% 3.06E+06 

80% MSEYCensus/var(Y) 0.38% 0.39% 1.20E+05 0.33% 0.34% 3.40E+05 0.32% 0.32% 7.66E+05 

50% MSEYInSamp/var(Y) 0.44% 0.46% 0.46% 0.35% 0.37% 0.40% 0.33% 0.34% 0.36% 

50% MSEYTest /var(Y) 0.45% 0.55% 8.25E+03 0.38% 0.37% 8.22E+05 0.35% 0.35% 5.04E+05 

50% MSEYCensus/var(Y) 0.44% 0.52% 4.05E+03 0.37% 0.37% 4.03E+05 0.34% 0.35% 2.47E+05 

30% MSEYInSamp/var(Y) 0.44% 0.55% 0.47% 0.37% 9.80% 0.44% 0.36% 0.38% 0.40% 

30% MSEYTest/var(Y) 0.47% 0.63% 4.53E+07 0.42% 9.29% 1.58E+05 0.39% 0.40% 1.08E+06 

30% MSEYCensus/var(Y) 0.47% 0.62% 2.90E+07 0.41% 9.39% 1.01E+05 0.39% 0.40% 6.88E+05 

100% K (Full Census) 9.1200 2.0000 89.6600 11.1000 2.0000 159.2000 12.0000 2.0600 221.3200 

100% Time (Full Census) 5.0034 0.4731 1.0831 16.5378 0.6387 7.0558 32.8468 0.7533 21.8691 

Table A10. 𝑀𝑆𝐸𝑓 , 𝑀𝑆𝐸𝐼𝑆𝑓 , 𝑀𝑆𝐸𝐹𝑆𝑓 , 𝑀𝑆𝐸𝑦, 𝑀𝑆𝐸𝐼𝑆𝑦 , 𝑀𝑆𝐸𝐹𝑆𝑦 , time, and K results for d=2, sigma = 0.01 
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d = 2, sigma = 0.05 nFull = 100 nFull = 200 nFull = 300 

nL/nF Metric CAP-NLS CAP CNLS CAP-NLS CAP CNLS CAP-NLS CAP CNLS 

100% MSEFInSamp 0.0003 0.0004 0.0004 0.0002 0.0004 0.0002 0.0001 0.0003 0.0002 

100% MSEFTesting 0.0003 0.0005 344.2265 0.0002 0.0004 104.3058 0.0001 0.0004 208.4270 

100% MSEFCensus 0.0003 0.0004 0.0004 0.0002 0.0004 0.0002 0.0001 0.0003 0.0002 

80% MSEFInSamp 0.0004 0.0005 0.0005 0.0003 0.0005 0.0004 0.0002 0.0004 0.0002 

80% MSEFTesting 0.0006 0.0007 56.7960 0.0003 0.0005 163.3753 0.0002 0.0004 276.1076 

80% MSEFCensus 0.0005 0.0006 28.3982 0.0003 0.0005 81.6878 0.0002 0.0004 138.0539 

50% MSEFInSamp 0.0006 0.0008 0.0008 0.0004 0.0005 0.0005 0.0003 0.0004 0.0003 

50% MSEFTesting  0.0009 0.0012 22.0658 0.0005 0.0007 237.7376 0.0004 0.0005 212.6012 

50% MSEFCensus 0.0008 0.0011 15.4463 0.0005 0.0006 166.4165 0.0003 0.0005 148.8209 

30% MSEFInSamp 0.0008 0.0009 0.0010 0.0005 0.0006 0.0006 0.0004 0.0005 0.0005 

30% MSEFTesting 0.0012 0.0014 1.5623 0.0007 0.0007 34.0284 0.0005 0.0006 92.0718 

30% MSEFCensus 0.0011 0.0013 1.2501 0.0006 0.0007 27.2228 0.0005 0.0006 73.6575 

100% MSEYInSamp/var(Y) 7.21% 7.54% 7.46% 7.12% 7.63% 7.12% 6.93% 7.55% 7.03% 

100% MSEYTest/var(Y) 7.46% 7.94% 9.08E+03 7.08% 7.63% 2.75E+03 6.94% 7.55% 5.50E+03 

100% MSEYCensus/var(Y) 7.21% 7.54% 7.46% 7.12% 7.63% 7.12% 6.93% 7.55% 7.03% 

80% MSEYInSamp/var(Y) 7.71% 8.09% 7.92% 7.22% 7.60% 7.42% 7.08% 7.59% 7.11% 

80% MSEYTest/var(Y) 8.16% 8.37% 1.50E+03 7.50% 7.94% 4.31E+03 7.16% 7.70% 7.29E+03 

80% MSEYCensus/var(Y) 7.94% 8.23% 7.49E+02 7.36% 7.77% 2.16E+03 7.12% 7.65% 3.64E+03 

50% MSEYInSamp/var(Y) 8.37% 8.57% 8.58% 7.75% 8.19% 7.97% 7.60% 7.71% 7.34% 

50% MSEYTest /var(Y) 8.93% 9.70% 5.82E+02 7.94% 8.38% 6.27E+03 7.59% 8.03% 5.61E+03 

50% MSEYCensus/var(Y) 8.76% 9.36% 4.08E+02 7.88% 8.32% 4.39E+03 7.59% 7.94% 3.93E+03 

30% MSEYInSamp/var(Y) 9.05% 8.80% 9.46% 8.08% 7.84% 8.29% 7.76% 8.08% 7.76% 

30% MSEYTest/var(Y) 9.73% 10.29% 4.13E+01 8.41% 8.56% 8.98E+02 7.91% 8.28% 2.43E+03 

30% MSEYCensus/var(Y) 9.59% 9.99% 3.31E+01 8.34% 8.42% 7.18E+02 7.88% 8.24% 1.94E+03 

100% K (Full Census) 9.1600 2.0000 75.3400 10.7400 2.0600 133.4800 11.4400 2.0400 192.1800 

100% Time (Full Census) 4.9175 0.4587 1.1222 16.5608 0.6480 7.6042 32.8749 0.7590 23.0120 

Table A11. 𝑀𝑆𝐸𝑓 , 𝑀𝑆𝐸𝐼𝑆𝑓 , 𝑀𝑆𝐸𝐹𝑆𝑓 , 𝑀𝑆𝐸𝑦, 𝑀𝑆𝐸𝐼𝑆𝑦 , 𝑀𝑆𝐸𝐹𝑆𝑦 , time, and K results for d=2, sigma = 0.05 
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d = 2, sigma = 0.3 nFull = 100 nFull = 200 nFull = 300 

nL/nF Metric CAP-NLS CAP CNLS CAP-NLS CAP CNLS CAP-NLS CAP CNLS 

100% MSEFInSamp 0.0008 0.0009 0.0010 0.0005 0.0006 0.0007 0.0003 0.0005 0.0004 

100% MSEFTesting 0.0009 0.0010 370.9240 0.0005 0.0007 218.0245 0.0003 0.0005 141.7350 

100% MSEFCensus 0.0008 0.0009 0.0010 0.0005 0.0006 0.0007 0.0003 0.0005 0.0004 

80% MSEFInSamp 0.0015 0.0017 0.0018 0.0008 0.0010 0.0011 0.0006 0.0007 0.0007 

80% MSEFTesting 0.0017 0.0020 130.4580 0.0009 0.0011 219.5168 0.0007 0.0008 329.2754 

80% MSEFCensus 0.0016 0.0018 65.2299 0.0009 0.0011 109.7589 0.0006 0.0007 164.6381 

50% MSEFInSamp 0.0020 0.0029 0.0027 0.0013 0.0013 0.0015 0.0009 0.0010 0.0011 

50% MSEFTesting  0.0025 0.0039 17.0756 0.0015 0.0014 170.5202 0.0010 0.0011 133.5198 

50% MSEFCensus 0.0024 0.0036 11.9537 0.0014 0.0014 119.3646 0.0010 0.0011 93.4642 

30% MSEFInSamp 0.0023 0.0036 0.0032 0.0018 0.0485 0.0022 0.0013 0.0016 0.0016 

30% MSEFTesting 0.0029 0.0049 1266.1997 0.0021 0.0473 74.8704 0.0017 0.0018 195.1175 

30% MSEFCensus 0.0028 0.0047 1012.9604 0.0020 0.0475 59.8968 0.0017 0.0018 156.0943 

100% MSEYInSamp/var(Y) 23.69% 24.05% 24.10% 23.12% 23.92% 24.00% 22.91% 23.38% 23.42% 

100% MSEYTest/var(Y) 24.22% 24.41% 8.24E+03 23.43% 23.69% 4.85E+03 23.11% 23.47% 3.15E+03 

100% MSEYCensus/var(Y) 23.69% 24.05% 24.10% 23.12% 23.92% 24.00% 22.91% 23.38% 23.42% 

80% MSEYInSamp/var(Y) 25.59% 25.72% 26.51% 23.90% 24.30% 24.29% 23.44% 23.09% 23.85% 

80% MSEYTest/var(Y) 26.09% 26.65% 2.90E+03 24.28% 24.66% 4.88E+03 23.71% 23.89% 7.32E+03 

80% MSEYCensus/var(Y) 25.84% 26.19% 1.45E+03 24.09% 24.48% 2.44E+03 23.58% 23.49% 3.66E+03 

50% MSEYInSamp/var(Y) 27.58% 28.44% 28.24% 24.69% 25.37% 26.31% 24.04% 24.21% 25.23% 

50% MSEYTest /var(Y) 27.97% 30.96% 3.80E+02 25.65% 25.46% 3.79E+03 24.62% 24.80% 2.97E+03 

50% MSEYCensus/var(Y) 27.85% 30.20% 2.66E+02 25.36% 25.43% 2.65E+03 24.44% 24.62% 2.08E+03 

30% MSEYInSamp/var(Y) 27.61% 30.93% 28.78% 25.47% 130.87% 27.62% 24.95% 25.93% 26.40% 

30% MSEYTest/var(Y) 28.78% 33.28% 2.81E+04 27.01% 127.47% 1.66E+03 26.26% 26.41% 4.34E+03 

30% MSEYCensus/var(Y) 28.54% 32.81% 2.25E+04 26.70% 128.15% 1.33E+03 26.00% 26.31% 3.47E+03 

100% K (Full Census) 8.9200 2.1000 61.9200 10.6600 2.1200 120.6400 11.1800 2.1000 169.9800 

100% Time (Full Census) 4.8844 0.4632 1.1780 16.5917 0.6587 7.6625 33.8377 0.7826 23.3258 

Table A12. 𝑀𝑆𝐸𝑓 , 𝑀𝑆𝐸𝐼𝑆𝑓 , 𝑀𝑆𝐸𝐹𝑆𝑓 , 𝑀𝑆𝐸𝑦, 𝑀𝑆𝐸𝐼𝑆𝑦 , 𝑀𝑆𝐸𝐹𝑆𝑦, time, and K results for d=2, sigma = 0.1 
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d = 3, sigma = 0.2 nFull = 100 nFull = 200 nFull = 300 

nL/nF Metric CAP-NLS CAP CNLS CAP-NLS CAP CNLS CAP-NLS CAP CNLS 

100% MSEFInSamp 0.0001 0.0006 0.0001 0.0002 0.0006 0.0000 0.0003 0.0007 0.0000 

100% MSEFTesting 0.0002 0.0008 413.5722 0.0002 0.0007 423.1706 0.0003 0.0007 714.7379 

100% MSEFCensus 0.0001 0.0006 0.0001 0.0002 0.0006 0.0000 0.0003 0.0007 0.0000 

80% MSEFInSamp 0.0003 0.0005 0.0001 0.0001 0.0006 0.0001 0.0001 0.0006 0.0000 

80% MSEFTesting 0.0005 0.0009 32.9737 0.0002 0.0008 187.1054 0.0002 0.0007 429.8912 

80% MSEFCensus 0.0004 0.0007 16.4869 0.0002 0.0007 93.5527 0.0001 0.0007 214.9456 

50% MSEFInSamp 0.0004 0.0004 0.0001 0.0002 0.0005 0.0001 0.0002 0.0006 0.0001 

50% MSEFTesting  0.0009 0.0010 4.2185 0.0004 0.0008 79.8074 0.0003 0.0008 325.6861 

50% MSEFCensus 0.0007 0.0008 2.9529 0.0004 0.0007 55.8652 0.0002 0.0007 227.9803 

30% MSEFInSamp 0.0004 0.0004 0.0001 0.0003 0.0005 0.0001 0.0002 0.0005 0.0001 

30% MSEFTesting 0.0012 0.0012 0.3865 0.0007 0.0009 20.5994 0.0004 0.0008 80.4559 

30% MSEFCensus 0.0011 0.0011 0.3092 0.0006 0.0008 16.4795 0.0004 0.0008 64.3647 

100% MSEYInSamp/var(Y) 0.95% 2.61% 0.58% 1.12% 2.86% 0.55% 1.41% 2.99% 0.53% 

100% MSEYTest/var(Y) 1.29% 3.46% 1.63E+04 1.30% 3.26% 1.67E+04 1.55% 3.22% 2.83E+04 

100% MSEYCensus/var(Y) 0.95% 2.61% 0.58% 1.12% 2.86% 0.55% 1.41% 2.99% 0.53% 

80% MSEYInSamp/var(Y) 1.44% 2.39% 0.68% 0.94% 2.74% 0.59% 0.87% 2.73% 0.57% 

80% MSEYTest/var(Y) 2.31% 3.81% 1.30E+03 1.24% 3.51% 7.40E+03 1.07% 3.30% 1.70E+04 

80% MSEYCensus/var(Y) 1.88% 3.10% 6.52E+02 1.09% 3.12% 3.70E+03 0.97% 3.02% 8.50E+03 

50% MSEYInSamp/var(Y) 1.88% 2.03% 0.69% 1.33% 2.54% 0.65% 0.99% 2.70% 0.61% 

50% MSEYTest /var(Y) 3.88% 4.35% 1.67E+02 1.99% 3.67% 3.15E+03 1.44% 3.50% 1.29E+04 

50% MSEYCensus/var(Y) 3.28% 3.65% 1.17E+02 1.79% 3.33% 2.21E+03 1.31% 3.26% 9.01E+03 

30% MSEYInSamp/var(Y) 1.99% 2.02% 0.73% 1.70% 2.27% 0.69% 1.30% 2.42% 0.66% 

30% MSEYTest/var(Y) 5.22% 5.27% 1.53E+01 3.06% 4.00% 8.14E+02 2.07% 3.60% 3.18E+03 

30% MSEYCensus/var(Y) 4.57% 4.62% 1.22E+01 2.79% 3.65% 6.51E+02 1.91% 3.37% 2.54E+03 

100% K (Full Census) 8.5200 2.0000 94.7200 11.7800 2.1600 185.3600 12.5600 2.1600 272.9800 

100% Time (Full Census) 5.4161 0.5377 1.1190 25.9682 0.8869 7.8553 53.5792 1.1314 26.0566 

Table A13. 𝑀𝑆𝐸𝑓 , 𝑀𝑆𝐸𝐼𝑆𝑓 , 𝑀𝑆𝐸𝐹𝑆𝑓 , 𝑀𝑆𝐸𝑦, 𝑀𝑆𝐸𝐼𝑆𝑦 , 𝑀𝑆𝐸𝐹𝑆𝑦 , time, and K results for d=3, sigma = 0.01 
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d = 3, sigma = 0.3 nFull = 100 nFull = 200 nFull = 300 

nL/nF Metric CAP-NLS CAP CNLS CAP-NLS CAP CNLS CAP-NLS CAP CNLS 

100% MSEFInSamp 0.0005 0.0012 0.0006 0.0003 0.0008 0.0004 0.0003 0.0007 0.0003 

100% MSEFTesting 0.0006 0.0014 762.8861 0.0004 0.0008 975.1576 0.0004 0.0008 823.8718 

100% MSEFCensus 0.0005 0.0012 0.0006 0.0003 0.0008 0.0004 0.0003 0.0007 0.0003 

80% MSEFInSamp 0.0008 0.0010 0.0009 0.0004 0.0008 0.0006 0.0004 0.0009 0.0005 

80% MSEFTesting 0.0011 0.0013 144.0639 0.0005 0.0010 601.6849 0.0004 0.0010 608.9285 

80% MSEFCensus 0.0009 0.0012 72.0324 0.0005 0.0009 300.8427 0.0004 0.0010 304.4645 

50% MSEFInSamp 0.0011 0.0011 0.0013 0.0007 0.0010 0.0009 0.0005 0.0009 0.0007 

50% MSEFTesting  0.0018 0.0018 12.5961 0.0009 0.0013 122.5333 0.0007 0.0011 627.3650 

50% MSEFCensus 0.0016 0.0016 8.8177 0.0008 0.0012 85.7736 0.0006 0.0010 439.1557 

30% MSEFInSamp 0.0013 0.0014 0.0015 0.0008 0.0009 0.0010 0.0006 0.0009 0.0008 

30% MSEFTesting 0.0025 0.0027 4.1813 0.0012 0.0014 68.7782 0.0009 0.0013 236.6423 

30% MSEFCensus 0.0023 0.0024 3.3453 0.0011 0.0013 55.0228 0.0008 0.0012 189.3140 

100% MSEYInSamp/var(Y) 10.41% 13.20% 10.94% 10.06% 11.54% 10.32% 10.08% 11.49% 10.08% 

100% MSEYTest/var(Y) 10.86% 13.76% 2.73E+04 10.23% 11.87% 3.50E+04 10.32% 11.77% 2.95E+04 

100% MSEYCensus/var(Y) 10.41% 13.20% 10.94% 10.06% 11.54% 10.32% 10.08% 11.49% 10.08% 

80% MSEYInSamp/var(Y) 12.04% 13.18% 12.23% 10.41% 11.68% 10.92% 10.19% 12.07% 10.60% 

80% MSEYTest/var(Y) 12.62% 13.62% 5.16E+03 10.81% 12.47% 2.16E+04 10.46% 12.52% 2.18E+04 

80% MSEYCensus/var(Y) 12.33% 13.40% 2.58E+03 10.61% 12.07% 1.08E+04 10.33% 12.29% 1.09E+04 

50% MSEYInSamp/var(Y) 13.32% 13.50% 13.74% 11.33% 12.67% 12.11% 10.69% 12.22% 11.31% 

50% MSEYTest /var(Y) 15.36% 15.39% 4.52E+02 12.15% 13.70% 4.39E+03 11.35% 12.70% 2.25E+04 

50% MSEYCensus/var(Y) 14.75% 14.82% 3.16E+02 11.90% 13.39% 3.07E+03 11.15% 12.56% 1.57E+04 

30% MSEYInSamp/var(Y) 13.49% 14.98% 13.83% 11.67% 12.72% 12.25% 11.10% 12.27% 12.06% 

30% MSEYTest/var(Y) 17.97% 18.55% 1.50E+02 13.20% 13.92% 2.47E+03 12.10% 13.45% 8.48E+03 

30% MSEYCensus/var(Y) 17.08% 17.83% 1.20E+02 12.90% 13.68% 1.97E+03 11.90% 13.21% 6.79E+03 

100% K (Full Census) 8.7400 2.4600 80.1600 11.8400 2.3400 154.8200 12.6800 2.2200 229.7600 

100% Time (Full Census) 5.5555 0.5153 1.2451 25.9777 0.9054 8.4133 55.2034 1.1440 27.9051 

Table A14. 𝑀𝑆𝐸𝑓 , 𝑀𝑆𝐸𝐼𝑆𝑓 , 𝑀𝑆𝐸𝐹𝑆𝑓 , 𝑀𝑆𝐸𝑦, 𝑀𝑆𝐸𝐼𝑆𝑦 , 𝑀𝑆𝐸𝐹𝑆𝑦 , time, and K results for d=3, sigma = 0.05 
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d = 3, sigma = 0.4 nFull = 100 nFull = 200 nFull = 300 

nL/nF Metric CAP-NLS CAP CNLS CAP-NLS CAP CNLS CAP-NLS CAP CNLS 

100% MSEFInSamp 0.0012 0.0019 0.0018 0.0008 0.0018 0.0011 0.0006 0.0010 0.0008 

100% MSEFTesting 0.0014 0.0022 978.6187 0.0009 0.0019 1562.1317 0.0006 0.0010 1432.7275 

100% MSEFCensus 0.0012 0.0019 0.0018 0.0008 0.0018 0.0011 0.0006 0.0010 0.0008 

80% MSEFInSamp 0.0019 0.0062 0.0027 0.0012 0.0021 0.0018 0.0010 0.0013 0.0014 

80% MSEFTesting 0.0026 0.0068 83.7592 0.0014 0.0023 545.8418 0.0011 0.0015 711.7752 

80% MSEFCensus 0.0023 0.0065 41.8809 0.0013 0.0022 272.9218 0.0010 0.0014 355.8883 

50% MSEFInSamp 0.0028 0.0031 0.0040 0.0017 0.0035 0.0025 0.0013 0.0016 0.0019 

50% MSEFTesting  0.0038 0.0043 2.3712 0.0019 0.0038 128.7269 0.0015 0.0019 272.2648 

50% MSEFCensus 0.0035 0.0039 1.6611 0.0019 0.0037 90.1096 0.0015 0.0018 190.5859 

30% MSEFInSamp 0.0031 0.0049 0.0047 0.0022 0.0049 0.0034 0.0017 0.0032 0.0025 

30% MSEFTesting 0.0050 0.0076 0.3994 0.0029 0.0058 32.1949 0.0020 0.0037 216.3175 

30% MSEFCensus 0.0047 0.0071 0.3205 0.0028 0.0056 25.7566 0.0019 0.0036 173.0545 

100% MSEYInSamp/var(Y) 30.88% 33.47% 33.26% 30.17% 32.97% 31.16% 29.39% 30.50% 30.05% 

100% MSEYTest/var(Y) 31.74% 33.95% 2.76E+04 30.31% 33.29% 4.40E+04 29.87% 30.97% 4.04E+04 

100% MSEYCensus/var(Y) 30.88% 33.47% 33.26% 30.17% 32.97% 31.16% 29.39% 30.50% 30.05% 

80% MSEYInSamp/var(Y) 32.80% 44.99% 35.55% 31.14% 33.94% 33.14% 30.56% 31.56% 31.42% 

80% MSEYTest/var(Y) 35.25% 47.03% 2.36E+03 31.69% 34.37% 1.54E+04 30.79% 32.05% 2.01E+04 

80% MSEYCensus/var(Y) 34.02% 46.01% 1.18E+03 31.42% 34.15% 7.69E+03 30.68% 31.81% 1.00E+04 

50% MSEYInSamp/var(Y) 36.51% 38.92% 37.60% 32.65% 36.69% 34.75% 32.46% 33.44% 33.41% 

50% MSEYTest /var(Y) 38.51% 39.85% 6.71E+01 33.41% 38.79% 3.63E+03 32.38% 33.21% 7.67E+03 

50% MSEYCensus/var(Y) 37.91% 39.57% 4.71E+01 33.18% 38.16% 2.54E+03 32.40% 33.28% 5.37E+03 

30% MSEYInSamp/var(Y) 35.28% 45.37% 38.53% 34.52% 43.72% 38.14% 32.68% 36.12% 35.10% 

30% MSEYTest/var(Y) 42.10% 49.42% 1.16E+01 36.16% 44.05% 9.07E+02 33.56% 38.26% 6.09E+03 

30% MSEYCensus/var(Y) 40.73% 48.61% 9.32E+00 35.83% 43.99% 7.26E+02 33.39% 37.83% 4.88E+03 

100% K (Full Census) 8.4200 2.5800 69.2400 11.6200 2.4400 140.6800 12.7000 2.3800 211.5800 

100% Time (Full Census) 5.3340 0.5241 1.2568 24.1476 0.9520 8.8607 53.7186 1.1511 29.1077 

Table A15. 𝑀𝑆𝐸𝑓 , 𝑀𝑆𝐸𝐼𝑆𝑓 , 𝑀𝑆𝐸𝐹𝑆𝑓 , 𝑀𝑆𝐸𝑦, 𝑀𝑆𝐸𝐼𝑆𝑦 , 𝑀𝑆𝐸𝐹𝑆𝑦, time, and K results for d=3, sigma = 0.1 
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d = 4, sigma = 0.2 nFull = 100 nFull = 200 nFull = 300 

nL/nF Metric CAP-NLS CAP CNLS CAP-NLS CAP CNLS CAP-NLS CAP CNLS 

100% MSEFInSamp 0.0003 0.0007 0.0001 0.0003 0.0007 0.0001 0.0004 0.0007 0.0001 

100% MSEFTesting 0.0005 0.0010 161.6089 0.0003 0.0009 365.6785 0.0005 0.0008 584.3493 

100% MSEFCensus 0.0003 0.0007 0.0001 0.0003 0.0007 0.0001 0.0004 0.0007 0.0001 

80% MSEFInSamp 0.0004 0.0005 0.0001 0.0003 0.0007 0.0001 0.0003 0.0007 0.0001 

80% MSEFTesting 0.0008 0.0011 8.6689 0.0005 0.0009 204.9950 0.0004 0.0009 263.8065 

80% MSEFCensus 0.0006 0.0008 4.3345 0.0004 0.0008 102.4976 0.0003 0.0008 131.9033 

50% MSEFInSamp 0.0005 0.0005 0.0001 0.0004 0.0006 0.0001 0.0003 0.0006 0.0001 

50% MSEFTesting  0.0013 0.0014 1.2656 0.0007 0.0010 25.1762 0.0005 0.0009 91.1381 

50% MSEFCensus 0.0011 0.0011 0.8860 0.0006 0.0009 17.6233 0.0004 0.0008 63.7967 

30% MSEFInSamp 0.0008 0.0006 0.0001 0.0005 0.0005 0.0001 0.0004 0.0006 0.0001 

30% MSEFTesting 0.0017 0.0016 0.1625 0.0010 0.0013 1.8949 0.0007 0.0010 22.4333 

30% MSEFCensus 0.0015 0.0014 0.1301 0.0009 0.0011 1.5159 0.0007 0.0009 17.9467 

100% MSEYInSamp/var(Y) 1.91% 3.98% 0.89% 1.78% 4.14% 0.81% 2.40% 4.11% 0.77% 

100% MSEYTest/var(Y) 2.83% 5.40% 8.12E+03 2.21% 4.81% 1.84E+04 2.75% 4.68% 2.94E+04 

100% MSEYCensus/var(Y) 1.91% 3.98% 0.89% 1.78% 4.14% 0.81% 2.40% 4.11% 0.77% 

80% MSEYInSamp/var(Y) 2.42% 3.23% 0.95% 1.94% 3.86% 0.88% 1.78% 4.03% 0.84% 

80% MSEYTest/var(Y) 4.67% 5.88% 4.36E+02 2.87% 5.11% 1.03E+04 2.30% 4.84% 1.33E+04 

80% MSEYCensus/var(Y) 3.54% 4.56% 2.18E+02 2.40% 4.48% 5.15E+03 2.04% 4.44% 6.63E+03 

50% MSEYInSamp/var(Y) 3.26% 2.86% 0.90% 2.28% 3.32% 0.93% 1.96% 3.60% 0.88% 

50% MSEYTest /var(Y) 7.25% 7.28% 6.36E+01 4.20% 5.45% 1.27E+03 3.07% 5.14% 4.58E+03 

50% MSEYCensus/var(Y) 6.05% 5.95% 4.45E+01 3.62% 4.81% 8.86E+02 2.73% 4.68% 3.21E+03 

30% MSEYInSamp/var(Y) 4.70% 3.30% 0.99% 2.77% 3.02% 1.02% 2.27% 3.36% 0.93% 

30% MSEYTest/var(Y) 9.04% 8.50% 8.17E+00 5.72% 6.80% 9.52E+01 4.20% 5.73% 1.13E+03 

30% MSEYCensus/var(Y) 8.17% 7.46% 6.54E+00 5.13% 6.04% 7.62E+01 3.81% 5.25% 9.02E+02 

100% K (Full Census) 7.2600 2.0000 96.1600 11.8800 2.0000 190.2800 12.5000 2.0600 276.8200 

100% Time (Full Census) 4.3435 0.4711 1.1840 37.5370 1.2684 8.2187 75.3199 1.6647 26.7982 

Table A16. 𝑀𝑆𝐸𝑓 , 𝑀𝑆𝐸𝐼𝑆𝑓 , 𝑀𝑆𝐸𝐹𝑆𝑓 , 𝑀𝑆𝐸𝑦, 𝑀𝑆𝐸𝐼𝑆𝑦 , 𝑀𝑆𝐸𝐹𝑆𝑦 , time, and K results for d=4, sigma = 0.01 
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d = 4, sigma = 0.3 nFull = 100 nFull = 200 nFull = 300 

nL/nF Metric CAP-NLS CAP CNLS CAP-NLS CAP CNLS CAP-NLS CAP CNLS 

100% MSEFInSamp 0.0007 0.0010 0.0009 0.0005 0.0009 0.0007 0.0005 0.0008 0.0005 

100% MSEFTesting 0.0009 0.0012 440.3271 0.0006 0.0010 1105.7870 0.0006 0.0009 630.5477 

100% MSEFCensus 0.0007 0.0010 0.0009 0.0005 0.0009 0.0007 0.0005 0.0008 0.0005 

80% MSEFInSamp 0.0009 0.0024 0.0013 0.0007 0.0010 0.0009 0.0005 0.0009 0.0007 

80% MSEFTesting 0.0014 0.0029 20.5826 0.0009 0.0012 701.4585 0.0007 0.0011 1027.9976 

80% MSEFCensus 0.0011 0.0026 10.2919 0.0008 0.0011 350.7297 0.0006 0.0010 513.9992 

50% MSEFInSamp 0.0012 0.0014 0.0016 0.0009 0.0011 0.0012 0.0007 0.0010 0.0009 

50% MSEFTesting  0.0021 0.0023 2.8493 0.0012 0.0015 43.0414 0.0010 0.0013 281.3078 

50% MSEFCensus 0.0018 0.0020 1.9949 0.0011 0.0013 30.1293 0.0009 0.0012 196.9158 

30% MSEFInSamp 0.0015 0.0014 0.0020 0.0011 0.0014 0.0015 0.0008 0.0011 0.0012 

30% MSEFTesting 0.0025 0.0026 0.2964 0.0017 0.0020 3.9116 0.0013 0.0016 45.9066 

30% MSEFCensus 0.0023 0.0024 0.2375 0.0016 0.0019 3.1296 0.0012 0.0015 36.7255 

100% MSEYInSamp/var(Y) 14.39% 15.53% 15.32% 13.42% 15.10% 14.27% 13.43% 14.89% 13.50% 

100% MSEYTest/var(Y) 15.15% 16.60% 1.98E+04 13.81% 15.78% 4.98E+04 13.72% 15.36% 2.84E+04 

100% MSEYCensus/var(Y) 14.39% 15.53% 15.32% 13.42% 15.10% 14.27% 13.43% 14.89% 13.50% 

80% MSEYInSamp/var(Y) 15.24% 21.56% 16.96% 14.36% 15.53% 15.23% 13.73% 15.29% 14.44% 

80% MSEYTest/var(Y) 17.22% 24.05% 9.27E+02 15.22% 16.76% 3.16E+04 14.26% 16.11% 4.63E+04 

80% MSEYCensus/var(Y) 16.23% 22.81% 4.64E+02 14.79% 16.15% 1.58E+04 13.99% 15.70% 2.32E+04 

50% MSEYInSamp/var(Y) 16.60% 16.98% 17.15% 14.90% 15.80% 16.48% 14.51% 15.54% 15.04% 

50% MSEYTest /var(Y) 20.50% 21.37% 1.28E+02 16.42% 17.72% 1.94E+03 15.57% 17.08% 1.27E+04 

50% MSEYCensus/var(Y) 19.33% 20.05% 9.00E+01 15.96% 17.15% 1.36E+03 15.25% 16.61% 8.87E+03 

30% MSEYInSamp/var(Y) 19.00% 17.01% 19.47% 15.70% 16.93% 18.51% 14.86% 15.72% 16.31% 

30% MSEYTest/var(Y) 22.59% 22.90% 1.35E+01 18.81% 20.15% 1.76E+02 17.02% 18.44% 2.07E+03 

30% MSEYCensus/var(Y) 21.87% 21.72% 1.08E+01 18.19% 19.51% 1.41E+02 16.59% 17.90% 1.65E+03 

100% K (Full Census) 7.0800 2.0000 76.1800 11.8400 2.0600 154.8800 12.7800 2.0600 229.4800 

100% Time (Full Census) 4.1409 0.4665 1.3064 35.8179 1.2787 9.3666 77.7415 1.6637 29.6764 

Table A17. 𝑀𝑆𝐸𝑓 , 𝑀𝑆𝐸𝐼𝑆𝑓 , 𝑀𝑆𝐸𝐹𝑆𝑓 , 𝑀𝑆𝐸𝑦, 𝑀𝑆𝐸𝐼𝑆𝑦 , 𝑀𝑆𝐸𝐹𝑆𝑦 , time, and K results for d=4, sigma = 0.05 
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d = 4, sigma = 0.4 nFull = 100 nFull = 200 nFull = 300 

nL/nF Metric CAP-NLS CAP CNLS CAP-NLS CAP CNLS CAP-NLS CAP CNLS 

100% MSEFInSamp 0.0015 0.0018 0.0025 0.0010 0.0013 0.0017 0.0008 0.0012 0.0014 

100% MSEFTesting 0.0017 0.0022 322.4462 0.0010 0.0015 1624.4689 0.0009 0.0013 2548.5803 

100% MSEFCensus 0.0015 0.0018 0.0025 0.0010 0.0013 0.0017 0.0008 0.0012 0.0014 

80% MSEFInSamp 0.0025 0.0030 0.0043 0.0015 0.0017 0.0025 0.0012 0.0015 0.0019 

80% MSEFTesting 0.0031 0.0043 20.1828 0.0017 0.0020 398.8514 0.0013 0.0017 1202.0194 

80% MSEFCensus 0.0028 0.0036 10.0935 0.0016 0.0019 199.4270 0.0012 0.0016 601.0107 

50% MSEFInSamp 0.0031 0.0060 0.0055 0.0021 0.0025 0.0035 0.0017 0.0030 0.0029 

50% MSEFTesting  0.0044 0.0073 0.4835 0.0026 0.0030 49.4704 0.0019 0.0033 372.3199 

50% MSEFCensus 0.0040 0.0069 0.3401 0.0024 0.0028 34.6304 0.0018 0.0032 260.6248 

30% MSEFInSamp 0.0033 0.0034 0.0060 0.0023 0.0028 0.0041 0.0021 0.0022 0.0035 

30% MSEFTesting 0.0048 0.0047 0.5589 0.0030 0.0037 11.4710 0.0024 0.0027 96.0842 

30% MSEFCensus 0.0045 0.0045 0.4483 0.0029 0.0035 9.1776 0.0024 0.0026 76.8680 

100% MSEYInSamp/var(Y) 38.72% 39.26% 41.75% 36.67% 37.81% 39.35% 36.25% 37.24% 38.10% 

100% MSEYTest/var(Y) 39.08% 40.68% 1.08E+04 36.89% 38.43% 5.45E+04 36.26% 37.44% 8.55E+04 

100% MSEYCensus/var(Y) 38.72% 39.26% 41.75% 36.67% 37.81% 39.35% 36.25% 37.24% 38.10% 

80% MSEYInSamp/var(Y) 41.10% 42.36% 47.45% 38.75% 39.00% 41.91% 37.54% 38.76% 39.88% 

80% MSEYTest/var(Y) 43.62% 47.77% 6.78E+02 39.19% 40.13% 1.34E+04 37.80% 39.28% 4.03E+04 

80% MSEYCensus/var(Y) 42.36% 45.07% 3.39E+02 38.97% 39.56% 6.69E+03 37.67% 39.02% 2.02E+04 

50% MSEYInSamp/var(Y) 43.13% 51.83% 48.51% 39.64% 41.45% 45.42% 39.32% 42.94% 43.20% 

50% MSEYTest /var(Y) 48.08% 57.66% 1.66E+01 41.71% 43.21% 1.66E+03 39.72% 44.51% 1.25E+04 

50% MSEYCensus/var(Y) 46.60% 55.91% 1.17E+01 41.09% 42.68% 1.16E+03 39.60% 44.04% 8.75E+03 

30% MSEYInSamp/var(Y) 46.76% 42.65% 51.13% 39.99% 41.21% 48.58% 39.50% 40.20% 45.14% 

30% MSEYTest/var(Y) 49.24% 49.12% 1.91E+01 43.41% 45.69% 3.85E+02 41.36% 42.13% 3.22E+03 

30% MSEYCensus/var(Y) 48.75% 47.83% 1.54E+01 42.73% 44.79% 3.08E+02 40.99% 41.74% 2.58E+03 

100% K (Full Census) 6.9800 2.0000 67.6400 11.9000 2.0400 142.6800 12.5400 2.0000 217.2600 

100% Time (Full Census) 4.0251 0.4753 1.3533 36.7225 1.2767 9.4859 75.9045 1.6847 30.9289 

Table A18. 𝑀𝑆𝐸𝑓 , 𝑀𝑆𝐸𝐼𝑆𝑓 , 𝑀𝑆𝐸𝐹𝑆𝑓 , 𝑀𝑆𝐸𝑦, 𝑀𝑆𝐸𝐼𝑆𝑦 , 𝑀𝑆𝐸𝐹𝑆𝑦, time, and K results for d=4, sigma = 0
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Appendix B. Scalability of CAP-NLS to larger datasets 

 

To demonstrate the performance of CAP-NLS in large data sets, we revisit the DGP used in Section 

3.2, specifically, 𝑌𝑖 = 𝑋𝑖1
0.4𝑋𝑖2

0.3𝑋𝑖3
0.2 + 𝜀𝑖, where 𝜀𝑖~𝑁(0, 𝜎2) , 𝜎 = 0.1 and 𝑋𝑖𝑗~𝑈𝑛𝑖𝑓(0.1,1) for 

𝑗 = 1,2,3, 𝑖 = 1, … , 𝑛, and 𝑛 = 500, 1000, 2000, 3000, and 5000. Table B1 reports the 

estimator’s performance18.  

 

n 500 1000 2000 3000 5000 

𝑅𝑀𝑆𝐸𝑓𝐿𝑒𝑎𝑟𝑛
𝐶𝐴𝑃−𝑁𝐿𝑆 0.025 0.022 0.025 0.025 0.024 

𝑅𝑀𝑆𝐸𝑓𝐿𝑒𝑎𝑟𝑛
𝐶𝐴𝑃−𝑁𝐿𝑆𝐹 0.023 0.025 0.026 0.027 0.028 

𝑀𝑆𝐸𝑦𝐿𝑒𝑎𝑟𝑛
𝐶𝐴𝑃−𝑁𝐿𝑆 0.009 0.010 0.011 0.011 0.011 

𝑀𝑆𝐸𝑦𝐿𝑒𝑎𝑟𝑛
𝐶𝐴𝑃−𝑁𝐿𝑆𝐹 0.010 0.011 0.010 0.011 0.011 

𝐾𝐶𝐴𝑃−𝑁𝐿𝑆 5 5 7 5 5 

𝐾𝐶𝐴𝑃−𝑁𝐿𝑆𝐹 4 4 5 4 4 

𝑇𝑖𝑚𝑒(𝑚𝑖𝑛)𝐶𝐴𝑃−𝑁𝐿𝑆  3 8 43 114 367 

𝑇𝑖𝑚𝑒(𝑚𝑖𝑛)𝐶𝐴𝑃−𝑁𝐿𝑆𝐹  3 5 10 11 41 

 

Table B1. Number of Hyperplanes and Runtimes for Trivariate Input Cobb-Douglas DGP on 

Larger Datasets. 

 

We first conduct standard CAP-NLS analysis and report learning errors, number of fitted 

hyperplanes and runtime results.  Runtimes for datasets up to 2000 observations are well below 

the one hour threshold, but there are significant scalability challenges for datasets larger than 2000 

observations. Thus, we apply the Fast CAP stopping criterion in Hannah and Dunson (2013), 

which measures the GCV score improvement by the addition of one more hyperplane and stops 

the algorithm if no improvement has been achieved in two consecutive additions. Unlike Fast CAP, 

                                                           
18 Due to the increased computational burden of using larger datasets, we present results for a single replicate of the 

DGP for each sample size and only include learning set results. For this section we report 𝑅𝑀𝑆𝐸 results rather than 

𝑀𝑆𝐸 ones, since the latter are very small and the differences are indistinguishable across settings. 
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however, we apply it directly to the learning error against observations. We denote the results for 

those runs with the CAP-NLSF superscript and observe that differences are minimal compared to 

following our standard partitioning strategy. This alternative stopping rule results in a highly 

scalable algorithm which can fit datasets up to 5000 observations in around 40 minutes.  
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Appendix C. Parametric Bootstrap algorithm to calculate expected optimism 

 

We apply the following algorithm from Efron (2004) to compute in-sample optimism. First, 

we assume a Gaussian density 𝑝(𝒀) = 𝑁(�̂�, �̂�2𝑰), where �̂� is the vector of estimated output values 

of the estimator for which we are assessing the in-sample optimism. We obtain �̂�2 from the 

residuals of a “big” model presumed to have negligible bias. Given CNLS’s high flexibility and 

complex description (many hyperplanes), we choose it as our “big” model. Although obtaining an 

unbiased estimate for 𝜎2 from CNLS’s residuals is complicated, i.e., there are no formal results 

regarding the effective number of parameters CNLS uses, using 𝑀𝑆𝐸𝑦𝐿𝑒𝑎𝑟𝑛
𝐶𝑁𝐿𝑆  as �̂�2 results in a 

downward biased estimator of 𝜎2. This downward bias in fact results in improved efficiency for 

the parametric bootstrap algorithm and is an example of a “little” bootstrap (Breiman, 1992). Thus, 

we let �̂� = 𝑀𝑆𝐸𝑦𝐿𝑒𝑎𝑟𝑛
𝐶𝑁𝐿𝑆 . Efron (2004) then suggests to run a large number B of simulated 

observations 𝒀∗ from 𝑝(𝒀), fit them to obtain estimates 𝒀∗̂ , and estimate 𝑐𝑜𝑣𝑖 = 𝑐𝑜𝑣(𝑌�̂�, 𝑌𝑖) 

computing  

                      𝑐𝑜𝑣𝑖̂ =  ∑ 𝑌𝑖
∗�̂�(𝑌𝑖

 ∗𝑏 − 𝑌𝑖
 ∗∙) (𝐵 − 1)⁄𝐵

𝑏=1  ;  𝑌𝑖
 ∗∙ =  ∑ 𝑌𝑖

 ∗𝑏 𝐵⁄𝐵
𝑏=1 .                    (C1)      

We select B = 500 for all our experiments based on observed convergence of the   ∑ 𝑐𝑜𝑣𝑖̂𝑛
𝑖=1  

quantity. 

Further, we note that if the researcher is not comfortable with the assumption made about the 

size of 𝑀𝑆𝐸𝑦𝐿𝑒𝑎𝑟𝑛
𝐶𝑁𝐿𝑆  relative to 𝜎2, sensitivity analysis (by adding a multiplier 𝑐 > 1 , such that 

𝑝(𝒀) = 𝑁(�̂�, 𝑐�̂�2𝑰)) can be performed. Finally, we also note that non-Gaussian distributions can 

be used to draw the bootstrapped 𝒀∗vectors. This is especially useful when considering 

inefficiency, because it can include skewed distributions also. 
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Appendix D. Cobb-Douglas results with multiplicative residual assumption for Chilean 

manufacturing data 

 

 Industry Name and Code 𝑛 Survey 

Size 
𝑅𝐹𝑆

2  𝑅𝐶𝐷𝑀
2  Ratio vs. Best Method 

Other Metal Products 

(2899) 

144 20% 50% 82% CDM is Best Method 

30% 60% 85% CDM is Best Method 

40% 64% 86% CDM is Best Method 

50% 72% 86% CDM is Best Method 

100% 88% 87% CDM ties for Best Method 

Wood (2010) 150 20% 35% 45% CDM is Best Method 

30% 40% 50% CDM is Best Method 

40% 47% 51% CDM is Best Method 

50% 52% 53% CDA ties for Best Method 

100% 66% 62% 0.94 vs. CAP-NLS 

Structural Use Metal (2811) 161 20% 77% 79% CDM ties for Best Method 

30% 82% 81% CDM ties for Best Method 

40% 87% 84% 0.97 vs. CAP-NLS 

50% 90% 85% 0.94 vs. CAP-NLS 

100% 95% 92% 0.97 vs. CAP-NLS 

Plastics (2520) 249 20% 54% 56% CDM ties for Best Method 

30% 57% 56% CDM ties for Best Method 

40% 57% 57% CDM ties for Best Method 

50% 60% 57% CDM ties for Best Method 

100% 64% 60% 0.94 vs. CAP-NLS 

Bakeries (1541) 250 20% 72% 46% 0.64 vs. CAP 

30% 77% 50% 0.65 vs. CAP 

40% 78% 50% 0.64 vs. CAP 

50% 85% 51% 0.60 vs. CAP 

100% 99% 58% 0.59 vs. CAP 

 

Table D1. Ratio of CDM to Best Model performance 
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Appendix E. Application Results for Infinite Populations 

 

In this Appendix we explore the sensitivity of our application insights in the case when predictive 

ability at any point of the production function is equally important. This represents a key departure 

from the assumptions made in the main body of the paper, as it translates into not weighting in-

sample and predictive errors. Rather, since we are interested in the descriptive ability of the fitted 

production function on an infinite number of unobserved input vectors, we only consider the 

predictive error. To illustrate the consequences of this alternative assumptions in detail, we present 

our results in Figure E1 which is analogous to Figure 4. In Figure E1 we show replicate-specific 

as well as averaged 𝑅2 values. In this case, rather than using 𝑅𝐹𝑆
2  as our predictive power indicator, 

we use 𝑅𝑃𝑟𝑒𝑑
2 = max (1 − 𝐸(𝐸𝑟𝑟𝑦)̂ 𝑉𝑎𝑟(𝑌𝐹𝑆)⁄ , 0).  

In Figure E1, we observe that for the majority of studied industries, weighting the in-

sample error with the predictive error, the direct consequence of our finite full population 

assumption, does not affect the diagnostic of the mean predictive power of our production function 

models. Using our notation, this means that for most industries the expected 𝑅𝑃𝑟𝑒𝑑
2  for each given 

subsample size did not differ greatly from 𝑅𝐹𝑆
2 . However, the 𝑅𝑃𝑟𝑒𝑑

2  figures have significantly 

higher variance than their 𝑅𝐹𝑆
2  counterparts for each subsample size. For all industries except for 

industry code 2811, we obtain at least one replicates with negligible predictive power. For some 

industries, such as Industry Codes 2520 and 1541, this causes the predictive power bound to be 

very wide (although the upper bound and mean values increase monotonically in the subsample 

size).  
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Figure E1. Best Method’s 𝑅𝑃𝑟𝑒𝑑
2  as function of relative subset size for selected industries. CAP-

NLS was chosen as Best Method for industry codes 2899, 2010, 2811 and 2520, while CDA was 

chosen for industry code 1541. 

 


