
1 
 

Estimating Stochastic Production Frontiers: A One-stage Multivariate 

Semi-Nonparametric Bayesian Concave Regression Method 

José Luis Preciado Arreola† and Andrew L. Johnson*† 

Abstract 

This paper describes a method to estimate a production frontier that satisfies the axioms of 

monotonicity and concavity in a non-parametric Bayesian setting. An inefficiency term that 

allows for significant departure from prior distributional assumptions is jointly estimated in 

a single stage with parametric prior assumptions. We introduce heteroscedasticity into the 

inefficiency terms by local hyperplane-specific shrinkage hyperparameters and impose 

monotonicity using bound-constrained local nonlinear regression. Our minimum-of-

hyperplanes estimator imposes concavity. Our Monte Carlo simulation experiments 

demonstrate that the frontier and efficiency estimations are competitive, economically 

sound, and allow for the analysis of larger datasets than existing nonparametric methods. 

We validate the proposed method using data from 2007-2010 for Japan’s concrete industry.  
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1. Introduction  

The estimation of flexible production, cost, and utility functions that globally satisfy certain 

second order shape restrictions consistent with economic theory, such as monotonicity and 

convexity/concavity, remains challenging (Diewert and Wales, 1987). Isotonic Regression, 

Constraint Weighted Bootstrapping, and Data Sharpening have been devised to impose 

such restrictions (Henderson and Parmeter, 2009), but no solution methods so far are able 

to both impose concavity and handle very large datasets. Motivated by the challenge, we 

are also interested in models that allow for firms to make errors in optimization and thus 

model firm inefficiency. Because the inefficiency is not directly measurable, we use a 

Stochastic Frontier Analysis (SFA) framework (Aigner et al., 1977). Recently, several non-

parametric estimators that include inefficiency, such as Kumbhakar et al. (2007)’s 

estimator, Stochastic Nonparametric Envelopment of Data (Kuosmanen and Kortelainen, 

2012), and Constraint Weighted Bootstrapping (Du, Parmeter and Racine, 2013) have been 

devised, but even these methods are limited by computational issues or homoscedasticity 

assumptions on the inefficiency term or both. To the best of our knowledge, Kumbhakar et 

al. (2007) is the only frontier production function estimation method that allows the 

inefficiency term to be heteroscedastic without additional observable variables that predict 

inefficiency; however, this method does not impose shape constraints.  

A survey of the relevant literature indicates that Banker and Maindiratta (1992) are 

the first to propose an estimator with second order shape restrictions and a composed error 

term; however, their maximum likelihood methods are only tractable for small instances 

and no applications or Monte Carlo studies of their method have been reported. Allon et al. 

(2005) use entropy methods, but little is known about their estimator’s computational 
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performance for datasets of more than a few hundred observations.  Least Squares 

approaches, such as Convex Nonparametric Least Squares (CNLS) (Kuosmanen, 2008) or 

the Penalized Least Squares splines approach by Wu and Sickles (2013), which allow 

estimation of production frontiers with minimal assumptions about the residual term require 

a separable and homoscedastic distribution for the inefficiency term.1 Constraint Weighted 

Bootstrapping (CWB) (Du, Parmeter and Racine (2013)) can impose a vast array of 

derivative-based constraints, including both monotonicity and concavity. The concavity 

constraints in CNLS and CWB require satisfying 𝑂(𝑛2) constraints simultaneously which 

is computationally difficult (Lee et al. 2013). Moreover, their use in a stochastic frontier 

setting requires a two-stage procedure, such as Kuosmanen and Kortelainen (2012), which 

does not allow a feedback structure between the frontier estimation procedure and the 

inefficiency estimation procedure. Thus, prior distributional assumptions about the 

inefficiency distribution, namely the family of distributions and homoscedasticity, are 

imposed throughout the frontier estimation procedure. 

An alternative two-stage procedure by Simar and Zelenyuk (2011) adapts the Local 

Maximum Likelihood method developed by Kumbhakar et al. (2007) to shape constrained 

estimation by using Data Envelopment Analysis on the fitted values obtained from the 

Local Maximum Likelihood method. The approach is constrained by the Local Maximum 

Likelihood method, and scalability appears to be limited to a few hundred observations 

(Kumbhakar et al., 2007).  

                                                           
1 While the homoscedastic assumption can be relaxed by using a specific parametric form on 

heteroscedasticity, see Kuosmanen and Kortelainen (2012), general models of heteroscedasticity are not 

available. 
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The first Bayesian SFA semiparametric estimators in the general multivariate 

setting proposed by Koop and Poirier (2004) and Griffin and Steel (2004) do not address 

the imposition of a concavity constraint on the estimations. O’Donnell and Coelli (2005) 

impose homogeneity, monotonicity, and convexity in inputs on a parametric multi-output, 

multi-input production frontier for a Panel dataset by means of a Metropolis-Hastings (M-

H) random walk algorithm and restricting the Hessian matrix. While the approach is 

feasible in the parametric setting, a nonparametric equivalent requires numerical estimates 

of the production function derivatives, similar to Du et al. (2013), and significant 

computational effort.  

When shape restrictions between the dependent variable and each regressor are 

imposed separately, Shively et al. (2011) estimate Bayesian shape-constrained 

nonparametric regressions using fixed and free-knot smoothing splines. The knots are 

endogenously inferred using a Reversible Jump Markov Chain Monte Carlo (RJMCMC) 

(Green 1995) algorithm. Unfortunately, the method can result in complex and numerous 

conditions, and consequently low acceptance rates within the parameter-sampling rejection 

algorithm. Furthermore, the RJMCMC algorithm cannot be directly extended to a general 

multivariate setting.  Meyer, Hackstadt and Hoeting (2011), who sample from a set of basis 

functions for which the imposition of concavity constraints only relies on the non-

negativity of their coefficients, thus reducing complexity, avoid rejection sampling or M-H 

methods. Nevertheless, the monotonicity and concavity constraints are still imposed only 

separately between each regressor and the dependent variable and a partial linear model 

form is assumed for the multivariate case. 

The only Bayesian semi-nonparametric constrained method for a general 

multivariate context is the Neural Cost Function (Michaelides et al. 2015). Even though it 
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can impose shape restrictions a priori to estimate a cost function, the method relies on an 

exogenous model selection criterion to select the number of intermediate variables, focuses 

on an average cost function rather than a frontier, and potentially has an overfitting problem 

due to near perfect correlation between predicted and actual costs.  

Hannah and Dunson (2013) and Hannah and Dunson (2011) propose two adaptive 

regression-based multivariate nonparametric convex regression methods for estimating 

conditional means: Least-Squares based Convex Adaptive Partitioning (CAP), and a 

Bayesian method, Multivariate Bayesian Convex Regression (MBCR), both of which scale 

well in large data. Unlike CAP, the Markov Chain Monte Carlo nature of MBCR (Hannah 

and Dunson, 2011, henceforth H-D) allows to create extensions of the method in a modular 

manner and without risking its convergence guarantees. MBCR approximates a general 

convex multivariate regression function with the maximum value of a random collection of 

hyperplanes. Additions, removals, and changes of proposed hyperplanes are done through a 

RJMCMC algorithm. MBCR’s attractive features include the block nature of its parameter 

updating, which causes parameter estimate autocorrelation to drop to zero in tens of 

iterations in most cases, the ability to span all convex multivariate functions without need 

for any acceptance-rejection samplers, scalability to a few thousand observations, and 

relaxation of the homoscedastic noise assumption.  

To model inefficiency, this paper extends MBCR to an MBCR-based semi-

nonparametric SFA method. Developing our estimator in the Bayesian context allows us to 

learn about the inefficiency distribution beyond prior assumptions and to obtain 

heteroscedastic firm-specific inefficiency estimates that are shrunk both to local variance 

parameters and to a common population value. The shape constrained frontier and the 

components of the error term are jointly estimated in a single stage. The proposed method, 
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MBCR with Inefficiency (henceforth MBCR-I) is computationally efficient and provides 

straightforward inference, returning the posterior distributions of the estimated parameters. 

These characteristics are unique among the estimators available in the literature. 

Specifically, MBCR-I is unique among SFA estimators in the literature by combining a 

one-stage framework, shape constraints on the frontier, heteroscedastic posterior 

distributions of inefficiency that can depart from the homoscedastic prior, a heteroscedastic 

error term, and computational feasibility for large datasets.  

The remainder of this paper is organized as follows. Section 2 describes the SFA 

model that we use to fit the observed data, the H-D’s MBCR regression method, and our 

proposed method, MBCR-I) and its characteristics.  Section 3 presents our Monte Carlo 

simulations for comparing the performance of MBCR-I against Stochastic Nonparametric 

Envelopment of Data (StoNED), a nonparametric method to fit production frontiers, on the 

basis of three criteria: functional estimation accuracy, mean inefficiency estimation 

accuracy and estimator variability across replicates from the same DGP for several 

generated datasets.  Further, we discuss MBCR-I’s capability to produce full-dimensional 

hyperplanes (Olesen and Petersen, 2003) and the dataset characteristics for which MBCR-I 

use is recommended. Section 4 discusses several extensions allowing MBCR-I to model 

time trends of the frontier shift for Panel data and datasets with contextual variables. 

Section 5 applies MBCR-I to estimate a production frontier for the Japanese concrete 

industry and analyzes the substitution rates, most productive scale size, and inefficiency 

estimates. Section 6 summarizes MBCR-I’s features, empirical results, and strengths and 

limitations, and sets directions for future research.  
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2. Methodology 

2.1 Production frontier model 

We define the regression model for our semi-nonparametric estimation procedure as 

                                                                      𝑌 = 𝑓(𝑿)𝑒𝜀,                                                          (1)                                                                

where 𝑌 represents observed output, 𝑓(𝑿) denotes the best attainable output level, given a 

certain input mix 𝑿 = (𝑋1, … , 𝑋𝑘)′, and 𝜀 = 𝑣 − 𝑢  is a composite error term obtained by 

subtracting a non-negative, skewed random variable 𝑢 representing a firm’s technical 

inefficiency from a symmetric random effect 𝑣, which we term noise, assuming a mean 0. 

For our estimation purpose, we use the firm-specific equation in (2) to derive our likelihood 

function for 𝑣𝑖 . 

                                  ln(𝑌𝑖) = ln(𝑓(𝑋1𝑖, … , 𝑋𝑘𝑖)) + 𝑣𝑖 − 𝑢𝑖 ,     𝑖 = 1, … , 𝑛                           (2) 

For notational simplicity, we let 𝑓𝑖 = 𝑓(𝑋1𝑖, … , 𝑋𝑘𝑖)  and 𝑿𝒊 = 𝑋1𝑖, … , 𝑋𝑘𝑖. This allows us 

to describe the decreasing marginal productivity (concavity) property in terms of ∇𝑓(𝑿), 

i.e., the gradient of 𝑓 with respect to 𝑿, 

                                           𝑓(𝑿𝑖) ≤ + 𝑓(𝑿𝑗) +  ∇𝑓(𝑿𝑗)𝑇(𝑿𝑖 − 𝑿𝑗) ∀𝑖, 𝑗.                              (3) 

Given that the constraints in (3) hold, the additional constraint ∇𝑓(𝑿𝑖) > 𝟎 ∀𝑖 imposes 

monotonicity. 

 

2.2 Multivariate Nonparametric Bayesian Concave Regression 

Even though equation (3) leads to a series of pairwise constraints that can be difficult to 

impose for even moderate datasets, H-D note that the global concavity constraint is met 
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automatically for the class of functions encompassing the minimums of K hyperplanes. 

Moreover, H-D prove that the piecewise planar functions estimated by the MBCR 

algorithm are able to consistently estimate any continuous and concave function. Thus, 

following H-D, we estimate the function  

                                                        𝑓(𝑿) = min
𝑘∈{1,…,𝐾}

𝛼𝑘 + 𝛽𝑘
𝑇𝑿                                                (4) 

to approximate the concave function 𝑓(𝑿).  

The estimation procedure in H-D is based on proposing additions, relocations, and 

removals of hyperplanes, the coefficients of which are determined by fitting Bayesian 

linear regressions. The MBCR algorithm fits 𝐾(𝑡) approximating hyperplanes at a given 

iteration t. Given the current 𝐾(𝑡) hyperplanes, H-D partition the set of all observations into 

subsets 𝐶𝑘, 𝑘 ∈ {1, … , 𝐾}, term each subset a basis region, and define each one by 𝐶𝑘 =

 {𝑖: 𝑘 = arg  min
𝑘∈{1,… ,𝐾}

𝛼𝑘 + 𝛽𝑘
𝑇𝑿𝑖}. The MBCR algorithm decides the type of move based 

on the current status of the Markov Chain. After choosing the type of move, the procedures 

(see Figure 1) are: 

If a hyperplane is added: The basis region is split, which creates two proposed basis 

regions. To divide each region, we consider L different proposal splitting knots and M 

different proposal search directions along each knot,2 i.e, each region now has LM splitting 

proposals.  

If a hyperplane is relocated: The current basis regions are kept except for minor 

changes due to refitting. 

                                                           
2 The number of hyperplanes estimated is sensitive to the knot and direction selection criteria when adding a 

hyperplane. Hannah and Dunson (2011)  create the  knot and direction proposals randomly and we also 

implement this knot and direction proposal generation scheme.  
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If a hyperplane is removed: Basis regions are proposed for the 𝐾(𝑡) − 1 remaining 

hyperplanes.  

Regardless of the move type chosen at iteration t, the hyperplane coefficients for 

each new basis region proposal are obtained after refitting. As is common in Bayesian 

analysis, prior distributional assumptions are placed on the parameters to be estimated by 

Bayesian linear regression for each basis region. Due to the difficulties resulting from the 

homoscedasticity assumption, H-D specify hyperplane-specific Gaussian noise 

distributions with variances (𝜎𝑘
2)𝑘=1

𝐾 .  

 

2.3 A multiplicative production frontier 

To fit the model described in (1) using (2), we assume 𝑣𝑖 follows the Gaussian mixture 

distribution 𝑣𝑖~ N(ln(𝑌𝑖) − ln(𝑓𝑖) + 𝑢𝑖 , 𝜎[𝑖]
2 ), where 𝜎[𝑖]

2  is the noise variance of the basis 

region that includes the 𝑖𝑡ℎ observation. Unlike H-D, which consider a conjugate 

Multivariate Normal-Inverse Gamma (NIG) prior for estimating the proposal distributions 

of the hyperplane coefficients (𝛼𝑘, 𝛽𝑘)𝑘=1
𝐾  and the hyperplane-specific noise variances 

(𝜎𝑘
2)𝑘=1

𝐾 , we cannot rely on such conjugate proposal distributions for (𝛼𝑘, 𝛽𝑘)𝑘=1
𝐾 . 

Specifically, the logarithm operator applied to 𝑓𝑖̂ prevents the Multivariate Normal 

distribution on (𝛼𝑘, 𝛽𝑘)𝑘=1
𝐾  from being conjugate, given the Gaussian mixture likelihood 

function on 𝑣𝑖, shown in (5). We prioritize computational performance and forgo the ability 

to draw from the full posterior distributions of (𝛼𝑘 , 𝛽𝑘)𝑘=1
𝐾 , instead estimating the 

hyperplane parameters by nonlinear least squares with a lower bound of 0 for all 𝛽𝑘’s to 
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impose monotonicity.3 Like Denison, Mallick and Smith (1998), who compute regression 

coefficients by least squares, but conduct the remaining analysis on a Bayesian framework, 

we conduct a Bayesian analysis of the remaining parameters to preserve the key MBCR 

property of the endogenous estimation of 𝐾. Recalling equation (4), we estimate  𝑓𝑖 =

𝑓(𝑿𝑖; 𝜃) by 

                     𝑌𝑖 = 𝑓𝑖 ∙ 𝑒𝑣𝑖 ∙ 𝑒−𝑢𝑖 ,             𝑣𝑖~𝑁(ln(𝑌𝑖) − ln(𝑓𝑖) + 𝑢𝑖 , 𝜎[𝑖]
2 ),        𝑢𝑖~𝐻            (5) 

𝛽𝑘 > 𝟎 ,      𝜎𝑘
2 ~𝐼𝐺(𝑎, 𝑏),     𝑘 = 1, … , 𝐾 

                                                         𝐾 − 1 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆). 

As mentioned, 𝛽𝑘 > 𝟎, 𝑘 = 1, … , 𝐾 are necessary to impose monotonicity, 

whereas the concavity constraints are automatically satisfied, given the construction of the 

function set from which we choose 𝑓. Initially, we consider different options for H, the 

distribution of the prior inefficiency terms 𝑢𝑖, the most general of which correspond to the 

Gamma distribution with two unknown continuous parameters, Γ(𝑃, 𝜃) as in Tsionas 

(2000).  While Tsionas (2000) is able to estimate the shape parameter P, which Ritter and 

Simar (1997) show to be difficult in a frequentist setting unless several thousand 

observations are available, Tsionas obtains parameter estimates close to their true 

valuesonly when at least 1000 observations are available. Moreover, since Tsionas (2000) 

estimates P and 𝜃 in a parametric regression setting, we expect that in a nonparametric 

setting this moderate-sample bias will be larger if P is at all identifiable. In fact, our 

experiments with generated datasets indicate that P is not identifiable in our nonparametric 

setting, even if a few thousand observations are available and a single input is considered. 

                                                           
3 Given a vague prior on each (𝛼𝑘, 𝛽𝑘), this is equivalent to the Maximum a Posteriori (MAP) estimate 

obtained from a Bayesian estimation; see Appendix A for a fully Bayesian version of the algorithm. 



11 
 

Therefore, we evaluate scenarios considering the Exponential and Half-Normal prior 

inefficiency distributions first presented in van den Broeck et al. (1994). Moreover, we 

place a Poisson prior on the number of hyperplanes, K. While this prior is not to be 

multiplied against the likelihood function in order to obtain a posterior distribution, we still 

need it to determine the addition, relocation, and removal probabilities at each iteration of 

MBCR as described by equations (6), where 𝑐 ∈ (0,0.5] is a tunable parameter. 

  𝑏𝐾(𝑡) = 𝑐 𝑚𝑖𝑛 {1,
𝑝(𝐾(𝑡)+1)

𝑝(𝐾(𝑡))
} ,    𝑑𝐾(𝑡) = 𝑐 𝑚𝑖𝑛 {1,

𝑝(𝐾(𝑡)−1)

𝑝(𝐾(𝑡))
},    𝑟𝐾(𝑡) = 1 − 𝑏𝐾(𝑡) −  𝑑𝐾(𝑡)    (6) 

Equation (7) describes the mathematical program used to fit the hyperplanes and obtain 

(𝛼𝑘, 𝛽𝑘)𝑘=1
𝐾 , where 𝑌𝑖[𝑘] and 𝑿𝑖[𝑘] refer to the ith observation in basis region 𝐶𝑘 and 𝑛𝑘 

refers to the number of observations in the basis region. Due to the conjugacy of the IG 

prior with each 𝜎𝑘
2, we can easily sample these posterior variances for each of the proposed 

basis regions by using (8). For all cases, we assume that 𝜃, the scale parameter of our prior 

inefficiency distribution, has a prior Γ (𝑤0) distribution, as shown in (9). We also assume 

𝑤0 = −1/ln (𝜏∗) and that 𝜏∗ is a prior estimate of the median Technical Efficiency. The 

posterior distributions for either the Exponential or the Half-Normal prior assumptions on 

𝑢𝑖 are the Truncated Normals shown in (9a) and (9b), respectively, and 𝜀𝑖 = 𝑙𝑛(𝑌𝑖) −

ln (𝑥𝑖
′𝛽) denotes the residuals. 

            min
𝛼𝑘,𝛽𝑘

∑ ((𝑙𝑛(𝑌𝑖)
𝑛𝑘
𝑖=1 + 𝑢𝑖 − 𝑙𝑛(𝛼𝑘 + 𝛽𝑘

𝑇𝑿𝑖))2 subject to 𝛽𝑘 > 0,    𝑘 = 1, … , 𝐾       (7) 

             𝜎𝑘
2 ~𝐼𝐺(𝑎𝑘

∗, 𝑏𝑘
∗),     𝑘 = 1, … , 𝐾, where                                                                        (8) 

             𝑎𝑘
∗ =  𝑎̃ +

𝑛𝑘

2
   ,   𝑏𝑘

∗ = 𝑏̃ +
1

2
 (∑ (𝑙𝑛(

𝑛𝑘
𝑖=1 𝑌𝑖[𝑘]) + 𝑢𝑖 − 𝑙𝑛(𝛼𝑘 + 𝛽𝑘

𝑇𝑿𝑖[𝑘]))2) 

             𝑢𝑖| … ∝ exp (−1/2𝜎𝑢𝑖

2 ⋅  (𝜇𝑢𝑖
− 𝑢𝑖)),   𝑢𝑖 ≥ 0, 𝑖 = 1, … , 𝑛  where                        (9a) 

             𝜇𝑢𝑖
= −(𝜀𝑖 + 𝜃𝜎[𝑖]

2 )   𝜎𝑢𝑖

2 =  𝜎[𝑖]
2  
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              𝑢𝑖| … ∝ exp (−1/2𝜎𝑢𝑖

2 ⋅ (𝜇𝑢𝑖
− 𝑢𝑖)),   𝑢𝑖 ≥ 0, 𝑖 = 1, … , 𝑛  where                        (9b) 

              𝜇𝑢𝑖
=  

−𝜎0𝑢
2 𝜀𝑖

𝜎0𝑢
2 +𝜎[𝑖]

2 ,   𝜎𝑢𝑖

2 =  
𝜎0𝑢

2 𝜎[𝑖]
2

𝜎0𝑢
2 +𝜎[𝑖]

2  

             𝜃| … ~Γ(𝑛+1, w0+ ∑ 𝑢i
𝑛
i=1 )                                                                                              (10) 

 

2.4 The Proposed MBCR-I Algorithm 

We propose an algorithm, MBCR-I, with a smoothed and a non-smooth variant.  Our 

Metropolis-Hastings algorithm first calculates the block (𝛼𝑘, 𝛽𝑘, 𝜎𝑘
2)𝑘=1

𝐾  from our 

multiplicative error version of MBCR, then draws the block (𝑢𝑖)𝑖=1
𝑛  on a Gibbs step, and 

ends by drawing 𝜃 on another Gibbs step. After verifying that MBCR’s fast convergence is 

around 100 iterations for the examples presented in H-D,4 we consider a burn-in period for 

the Metropolis-Hastings sampling algorithm of 150 iterations which is safely beyond the 

needed convergence period. Then, we monitor mean squared error at iteration t, MSEy (t) = 

1

𝑛
∑ (𝑌̂𝑖 − 𝑌𝑖)2𝑛

𝑖=1 , where 𝑌̂𝑖 = 𝑓̂𝑖𝑒
−𝑢̂𝑖. We declare that the MBCR-I algorithm has reached 

stationarity when the running median does not change significantly and the variability 

across iterations is constant for at least 200 iterations.5 Finally, as we usually obtain a few 

hundred draws from the sampling algorithm, we average the functional estimates across 

iterations to obtain a smoothed estimator, or we select a single iteration for a non-smooth 

estimator, resulting in two versions of the MBCR-I algorithm, henceforth MBCR-I S and 

MBCR-I NS. We find that the non-smooth estimator performs better in small datasets for 

which the inefficiency model is mis-specified, although it relies on a heuristic criterion to 

select the best iteration and inference is not possible, whereas the smoothed estimator 

                                                           
4 The numerical results are available from the authors upon request.  
5 Under this stopping criterion, MBCR-I rarely needs more than 1000 iterations to reach stationarity. 
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performs well in all other settings, without relying on heuristics and inference is available 

directly from MBCR-I’s output.  

Our iteration selection criterion for the non-smooth estimator is motivated by 

observing that for small sample sizes (𝑛 < 200), MBCR-I can overfit the data with highly 

flexible inefficiency terms. To prevent overfitting, we choose a stationary iteration with 

relatively conservative MSEy. 6 Finally, we note that as n increases, the iteration selection 

criterion becomes irrelevant at 𝑛 ≥300 as the variability decreases across the iterations. 

This decrease in variability is the reason why the smoothed and non-smooth estimators are 

increasingly similar in 𝑛. We summarize the MBCR-I algorithm as follows: 

0. Let 𝑡 = 1, K = 1 and set 𝑡𝐵𝑢𝑟𝑛−𝑖𝑛, draw (𝑢𝑖)𝑖=1
𝑛  and 𝜃 from their priors. 

1. Use MBCR to get ((𝛼𝑘, 𝛽𝑘, 𝜎𝑘
2)𝑘=1

𝐾 , 𝐾)(𝑡). 

2. Draw (𝑢𝑖
(𝑡))𝑖=1

𝑛  from (9a) or (9b), depending on the prior assumption. 

3. Draw 𝜃(𝑡) from (10). 

4. If 𝑡 > 𝑡𝐵𝑢𝑟𝑛−𝑖𝑛, save ((𝛼𝑘, 𝛽𝑘, 𝜎𝑘
2)𝑘=1

𝐾 , (𝑢𝑖)𝑖=1
𝑛 , 𝜃, 𝐾)(𝑡) draw and compute 

    𝑀𝑆𝐸𝑦
(𝑡) =

1

𝑛
∑ (𝑌̂𝑖 − 𝑌𝑖)

2𝑛
𝑖=1 . Otherwise, go back to 1. 

5. Stop when the cumulative median of 𝑀𝑆𝐸𝑦 meets the stationarity criterion. Otherwise, 

go back to 1. 

6a. To obtain a smoothed estimator: Average (𝑓𝑖)𝑖=1
𝑛  across the stationary iterations for the 

𝑓 estimator and average mean inefficiency across the stationary iterations to obtain 𝐸(𝑢̅)̂. 

                                                           
6 Our simulations consider the iteration with maximum 𝑀𝑆𝐸𝑦 within the described subset of iterations. 
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6b. To obtain a non-smooth estimator: Choose an iteration according to the iteration 

selection criterion and return the parameters ((𝛼𝑘, 𝛽𝑘)𝑘=1
𝐾 , (𝑢𝑖)𝑖=1

𝑛 , 𝜃, 𝐾) associated with 

that iteration.  

 

2.5 Additional computational considerations due to inefficiency modeling 

Incorporating inefficiency into the MBCR algorithm requires the following adaptations and 

augmentations. First, we need an efficient and robust Truncated Normal sampler for the 

inefficiency terms to quickly  sample from extreme tails and avoid stalling. We use a 

MATLAB implementation of Chopin’s (2011) fast truncated normal sampling algorithm by 

Mazet (2014), because other samplers do not achieve the degree of accuracy or posterior 

coverage needed to make MBCR-I computationally feasible. Second, as described in the 

MBCR-I algorithm, at any given iteration t, we sample the inefficiency draws (𝑢𝑖)𝑖=1
𝑛  as a 

block after computing the hyperplane coefficients and simulating the associated variances 

as a different parameter block. Here, the only step of the algorithm in which the model size 

is allowed to change is when we draw the block ((𝛼𝑘, 𝛽𝑘, 𝜎𝑘
2)𝑘=1

𝐾 , 𝐾).  

Nevertheless, we observe that due to the differences in the (𝑢𝑖)𝑖=1
𝑛  values from 

iteration t to iteration t+1, the number of hyperplanes supporting a positive number of 

observations can change even if the move at iteration t+1 is only a relocation (or 

conversely, the number of hyperplanes supporting a positive number of observations 

remains the same even if the move is an addition or removal). We automatically reject such 

proposal distributions and we draw different (𝑢𝑖)𝑖=1
𝑛  values, given the (𝛼𝑘, 𝛽𝑘, 𝜎𝑘

2)𝑘=1
𝐾  of 

iteration t. If this rejection policy results in stalling, measured as the time taken to generate 

the (t+1)th draw compared to the average time to generate a draw, we restart the Markov 
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Chain ((𝛼𝑘, 𝛽𝑘)𝑘=1
𝐾 , (𝑢𝑖)𝑖=1

𝑛 , 𝜃, 𝐾) at its value on a randomly chosen previous iteration. The 

restarting policy is analogous to H-D’s chain restarting policy when the number of tries to 

produce the (t+1)th draw of the chain goes above a preset threshold. Third, we run a small 

number of warm-up iterations, i.e., 20, in our simulation scenarios. In these iterations, 

which are a subset of the burn-in iterations, we draw (𝑢𝑖)𝑖=1
𝑛  from their prior, and we run 

MBCR to get a good initial guess of K, as opposed to the K = 1 starting value chosen by H-

D. Otherwise, the  (𝑢𝑖)𝑖=1
𝑛  draws from the initial iterations will be heavily overestimated 

and complicate, or even prevent, the MBCR-I algorithm from running fluently. An 

alternative to the warm-up iterations is to use the multiplicative-error MBCR estimates of 

((𝛼𝑘, 𝛽𝑘)𝐾
𝑘=1, 𝐾) for the same dataset. Section 5 and Appendix C below illustrate our use of 

the latter strategy when analyzing the Japanese concrete industry. 

 

2.6 MBCR-I as a one-stage estimator for stochastic frontiers 

Unlike StoNED (Kuosmanen and Kortelainen, 2012) and Constraint Weighted 

Bootstrapping (CWB) (Du et al. 2013), the ability of MBCR-I to significantly depart from 

prior distributional assumptions on  𝑢𝑖 makes the method more robust against model mis-

specifications for the inefficiency term. Our posteriors show that besides globally shrinking 

the inefficiency terms using either 𝜃 or 𝜎0𝑢
2 , we can locally shrink them with the 𝜎[𝑖]

2  

parameters.7 Moreover, within the bounds established by the shrinking parameters, doing 

so allows each 𝑢𝑖 to have a potentially different posterior distribution. In Section 3, we 

explain how the posterior specification in (9a) allows a significantly better prediction of 

                                                           
7 Shrinking refers to the common parameter shrinkage concept in Hierarchical Regression Models (HRM), 

where parameters are constrained by a common distribution. For further discussion see Gelman and Hill 

(2006). 
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mean inefficiency and the production frontier when the inefficiency distribution is mis-

specified. Our posterior specifications are not a source of additional inaccuracy when the 

prior distributions are in fact correct. Finally, the use of a one-stage framework imposes a 

correctly-skewed distribution of 𝜀𝑖 at each iteration of the MBCR-I algorithm and avoids 

the wrong skewness issues of two-stage methods (see, for example, Almanidis and Sickles, 

2012). 

 

3. Monte Carlo Simulations 

This section describes Monte Carlo simulations and their results comparing the 

performance of MBCR-I versus StoNED on the Data Generation Processes (DGPs) used in 

Kuosmanen and Kortelainen (2012), some of which are presented in Simar and Zelenyuk 

(2011).8 These DGPs, henceforth Example 1 through 4, are based on Cobb-Douglas 

production functions and they explore the performance of both estimators as 

dimensionality, noise-to-signal ratio, and sample size vary. Example 2 is added to the 

DGPs in Kuosmanen and Kortelainen (2012) for completeness, as they do not include a 

bivariate input example. Example 4 assesses the robustness of each method against mis-

specification on the prior inefficiency distribution. For all four examples we consider three 

noise-to-signal scenarios, 𝜌𝑛𝑡𝑠 = 1,2,3, and vary the number of observations, 𝑛 =

100, 200, 300, and 500. StoNED is the only shape constrained frontier estimation method 

that can handle more than a few hundred observations under a multiplicative error 

assumption, and therefore is the most natural benchmark for comparison. 

                                                           
8 CWB is a state-of-the-art two-stage method that can be used to estimate production frontiers. Nevertheless, 

its application is not straightforward for the proposed DGPs, because the CWB formulation in Du, Parmeter 

and Racine (2013) considers an additive error structure. 
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We compare the estimators based on criteria including quality and degree of 

variability in frontier estimates and quality of the inefficiency estimate. We measure the 

frontier estimation performance as 𝑀𝑆𝐸 𝑓 =
1

𝑛
∑ (𝑓𝑖 − 𝑓𝑖)2𝑛

𝑖=1 . As measures of degree of 

variability in our frontier estimates, we also report the number of replications needed to 

obtain stable estimates in terms of near-constant mean and standard deviation of 𝑀𝑆𝐸 𝑓. 

Instead of using 𝑀𝑆𝐸 𝑢 =
1

𝑛
∑ (𝑢̂𝑖 − 𝑢𝑖)2𝑛

𝑖=1  to measure the accuracy of our inefficiency 

estimation as in Kuosmanen and Kortelainen (2012), we use 𝐸(𝑢̅)̂ − 𝐸(𝑢̅) =  
1

𝑛
∑ 𝑢̂𝑖

𝑛
𝑖=1 −

1

n
∑ 𝑢𝑖

𝑛
𝑖=1 , the mean inefficiency prediction deviation.9 MBCR-I is advantageous because its 

estimates typically are more consistent with production theory. Specifically, we report the 

number of observations supported by fully dimensional hyperplanes and the percentage of 

replicates for which StoNED has negatively skewed residuals.  

For MBCR-I, we conduct a MATLAB implementation, considering an Exponential 

prior with parameter 𝜃. We randomly draw the prior values used for the  𝜃  parameter from 

ranges described in each of the examples. In Tables 1-8 we show results for both MBCR-I 

S and MBCR-I NS. In the case of StoNED, since multiplicative CNLS is a mathematical 

program with a generally nonlinear objective function its solutions are sensitive to the 

choice of starting point and solver. Thus, we conduct several implementations of CNLS and 

select the one with the lowest 𝑀𝑆𝐸 𝑓 for each example. Our MATLAB CNLS 

implementations use the built-in fmincon solver and the KNITRO solver. Our GAMS 

implementations uses the MINOS 5.5 solver. For every implementation, we consider 

                                                           
9 The metric 𝑀𝑆𝐸 𝑢 focuses on firm specific efficiency estimates from the Jondrow et al. (1982) estimator 

that have been shown to be inconsistent, Greene (2008). Instead, we measure the quality of the inefficiency 

estimate based on the population parameter 𝐸(𝑢̅).  



18 
 

different starting points, such as the (global) optimal solution of additive CNLS, single 

hyperplane solutions, and full vectors of zeros. 

 

3.1 Evaluation Based on Four Data Generation Processes 

Example 1: Univariate Cobb-Douglas frontier with homoscedastic inefficiency terms 

We fit the univariate Cobb-Douglas frontier 𝑌𝑖 = 𝑥𝑖
0.5𝑒−𝑢𝑖𝑒𝑣𝑖, considering a homoscedastic 

DGP with 𝑢𝑖~Expo(𝜇𝑢 = 𝜎𝑢 = 1/6) and 𝑣𝑖~𝑁(0, 𝜎𝑣
2), where 𝜎𝑣 = 𝜌𝑛𝑡𝑠𝜎𝑢. We randomize 

the nearly uniformative prior on 𝜃 across replicates by choosing 𝑣0 = 1  and drawing 𝑤0 

uniformly on the (0.1, 0.2) range. Table 1 shows that in terms of 𝑀𝑆𝐸 𝑓, StoNED only 

outperforms MBCR-I S for a noise-to-signal ratio of 1 and less than 300 observations.  

MBCR-I S and StoNED perform similarly for a noise-to-signal ratio of 1 and 𝑛 ≥ 300. For 

𝜌𝑛𝑡𝑠 = 2,3, MBCR-I S outperforms StoNED for all 𝑛.10 In terms of the quality of 

efficiency estimates, all of the estimators perform similarly for a noise-to-signal ratio of 1, 

but the MBCR-I estimators are superior when there is a larger noise-to-signal ratio. Finally, 

the results for StoNED show that non-full dimensional hyperplanes support 1%-8% of the 

observations.  

Table 2 shows that the percentage of replicates with a negatively skewed 𝜀𝑖 

distribution for StoNED is non-decreasing for the noise-to-signal ratio, 𝜌𝑛𝑡𝑠, and non-

increasing in the sample size, 𝑛, as expected. As explained in the previous section, this 

problem does not affect MBCR-I, because it is a one-stage method and automatically 

                                                           
10 We display results for our MATLAB fmincon implementation, which outperforms Kuosmanen and 

Kortelainen’s (2012) results for a low noise-to-signal ratio, 𝜌𝑛𝑡𝑠 = 1, and has similar performance in 

Kuosmanen and Kortelainen’s high noise-to-signal ratio, 𝜌𝑛𝑡𝑠 = 2. We did not compare performance when 

𝜌𝑛𝑡𝑠 = 3, because Kuosmanen and Kortelainen do not estimate this scenario. See Kuosmanen and Kortelainen 

(2012) for a demonstration of StoNED’s superior performance relative to standard implementations of SFA and 

DEA for all scenarios that included 𝜌𝑛𝑡𝑠 > 0. 
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imposes correct skewness on the distribution of 𝜀𝑖. For 𝑀𝑆𝐸 𝑓, both methods need a small 

number of replicates to reach relatively constant11 values;  StoNED needs only 10 replicates 

for all scenarios, whereas MBCR-I needs 20 replicates for 2 of the 12 considered scenarios 

We attribute the variability of MBCR-I’s prediction error, which is smaller both in absolute 

and relative terms as quantified by the standard deviation and the coefficient of variation of 

𝑀𝑆𝐸 𝑓 across all replicates, as the result of non-smooth MBCR-I fitting the production 

frontier with a smaller number of hyperplanes than StoNED. 

 

Example 2: Bivariate Cobb-Douglas frontier with homoscedastic inefficiency terms 

We fit the bivariate Cobb-Douglas frontier 𝑌𝑖 = 𝑥1𝑖
0.4𝑥2𝑖

0.5𝑒−𝑢𝑖𝑒𝑣𝑖, where we consider a 

homoscedastic distribution for both noise and inefficiency, 𝑢𝑖~expo(𝜇𝑢 = 𝜎𝑢 = 1/6) and 

𝑣𝑖~𝑁(0, 𝜎𝑣
2), where 𝜎𝑣 = 𝜌𝑛𝑡𝑠𝜎𝑢

12, the same inefficiency assumptions as in Example 1. 

We also consider the same prior assumptions for 𝜃 as in Example 1.  MBCR-I’s estimators 

performance in terms of functional fit, MSE f, is better in all scenarios with a noise-to-

signal ratio greater than 1. Despite StoNED’s lower MSE f in the 𝜌𝑛𝑡𝑠 = 1 scenarios, 

MBCR-I’s estimates give a more economically sound description of the frontier, because 

more of its hyperplanes are full-dimensional. In Example 2, non-full dimensional 

hyperplanes support between 14% and 23% of the observations for StoNED, whereas it is 

always less than 6% for MBCR-I. Finally, MBCR-I NS performs well when the number of 

observations is low and MBCR-I S well estimates inefficiency consistently. 

                                                           
11 We define relatively constant as within a 5% difference across replicates for both the running mean and 

running standard deviation of 𝑀𝑆𝐸 𝑓.  
12 To make the CNLS problem feasible to solve, we reduced our optimality tolerance from 10-10 to 10-4 for the 

𝑛 =500 scenarios on our GAMS with MINOS 5.5 implementation. Kuosmanen and Kortelainen (2012) did 

not perform 𝑛 =500 simulation scenarios in any of their multivariate examples. 
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Table 3 shows that predictions of the mean inefficiency are competitive for both 

StoNED and the MBCR-I estimators across the different scenarios varying the noise-to-

signal ratio and number of observations, with the exception of the 𝜌𝑛𝑡𝑠 = 3 scenarios, 

where only MBCR-I S performs well. In Example 1 and the less noisy scenarios of 

Example 2, StoNED’s functional estimates improve, as measured by 𝑀𝑆𝐸 𝑓, as the number 

of observations increases typical of any consistent estimator. However, in the high 

dimensionality and high noise scenarios for Example 2, StoNED’s ability to fit the 

function, measured by 𝑀𝑆𝐸 𝑓, decreases as the number of observations increases. 

StoNED’s erratic performance relates to the increase in local optima for the optimization 

problem associated with the first step of StoNED, CNLS, and occurs across all of the 

MATLAB and GAMS implementations. Even though we implement versions of CNLS 

which use global solvers,13 the solvers cannot find solutions for data instances with more 

than 100 observations. MBCR-I, which uses an adaptive partitioning strategy rather than a 

full dataset optimization strategy does not suffer from these solution algorithm complexity 

issues.  

Table 4 shows that the percentage of negatively skewed replicates also exhibits 

roughly consistent behavior throughout the different noise-to-signal ratio and the number of 

observations. However, for this more computationally challenging example, the percentage 

of negatively skewed replicates for StoNED is in general higher than in Example 1, and 

thus predicts negligible inefficiency levels more frequently. Further, both StoNED and 

MBCR-I need more replicates for their estimates to stabilize if compared with the simpler 

                                                           
13 We attempted to use global nonlinear optimization algorithms such as MSNLP, BARON and ANTIGONE. 
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Example 1. However, we note that MBCR-I functional estimate converges in significantly 

less replicates than StoNED.  

 

Example 3: Trivariate Cobb-Douglas frontier with homoscedastic inefficiency terms 

We consider the Trivariate Cobb-Douglas frontier, 𝑦𝑖 =  𝑥1,𝑖
0.4𝑥2,𝑖

0.3𝑥3,𝑖
0.2𝑒−𝑢𝑖𝑒𝑣𝑖. The 

distributional assumptions for the noise and inefficiency terms are the same as those of 

Examples 1 and 2, 𝑢𝑖~expo(𝜇𝑢 = 1/6) and 𝑣𝑖~𝑁(0, 𝜎𝑣
2). Prior assumptions on 𝜃 are the 

same as in previous examples. Table 5 shows that in this higher-dimensional setting, CNLS 

has  a poor functional fit, MSE f, for scenarios with a large number of observations, 𝑛 = 

500, and for scenarios with a high noise-to-signal ratio,  𝜌𝑛𝑡𝑠 = 3.14  

While the results for the noise-to-signal ratio equal to 1 scenarios are similar to 

Examples 1 and 2, with the MBCR-I estimators only being competitive in some of the 

scenarios in Example 3, the proportion of observations supported by non fully-dimensional 

hyperplanes fit by StoNED first-stage, CNLS, increases and ranges between 6% and 42%. 

For larger noise-to-signal ratios, 𝜌𝑛𝑡𝑠 = 2,3, the performance comparison is similar to 

Examples 1 and 2, with MBCR-I S performing the best in most of the scenarios. The 

variability in the functional fit, Standard Deviation of 𝑀𝑆𝐸 𝑓, and negative skewness 

results in Table 6 show behavior similar to Examples 1 and 2, with MBCR-I showing a 

lower inter-replicate variability in functional fit, 𝑀𝑆𝐸 𝑓.  

 

Example 4: Trivariate Cobb-Douglas frontier with heteroscedastic inefficiency terms 

                                                           
14 Again, the StoNED results from our GAMS with MINOS 5.5 implementation were similar or better than 

Kuosmanen and Kortelainen (2012). Kuosmanen and Kortelainen (2012) did not consider 𝑛 =500 scenarios. 

To make the CNLS problem feasible to solve, we reduced our optimality tolerance from 10-10 to 10-2 for the 𝑛 

=500 scenarios. 
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We consider a heteroscedastic inefficiency DGP, where 𝑢𝑖|𝒙𝑖~𝑁+(0, 𝜎0𝑢(𝑥1,𝑖 +  𝑥2,𝑖)), 

where 𝜎𝑢 = 0.3. The noise distribution is a homoscedastic Normal 𝑣𝑖~𝑁(0, 𝜎𝑣
2), where 

𝜎𝑣 =  𝜌𝑛𝑡𝑠 ∙ 𝜎𝑢 ∙ √(𝜋 − 2)/𝜋. The production frontier is 𝑦𝑖 =  𝑥1,𝑖
0.4𝑥2,𝑖

0.3𝑥3,𝑖
0.2𝑒−𝑢𝑖𝑒𝑣𝑖, as 

in Example 3. The hyperparameter for our Exponential prior on inefficiency,  𝜃, is lower 

than in Examples 1, 2, and 3 due to the scale of the data, although still nearly uninformative 

with 𝑣0 = 1  and 𝑤0 drawn uniformly from the range (0, 0.1). Unlike Tables 1, 3, and 5, we 

include an additional set of results for StoNED from a different implementation.15 We note 

that even if this alternative implementation has better functional fit, MSE f has inconsistent 

behavior with regard to the percentage or negatively-skewed replicates. 

Table 7 shows that the functional fit, MSE f, for the MBCR-I estimators is lower for 

all scenarios, with MBCR-I NS having significantly better performance when the number 

of observations is small and both MBCR-I estimators perform similarly for the larger 𝑛 

scenarios. Reasons for MBCR-I’s good functional fit are the updating of prior assumptions 

about the inefficiency term and incorporating hyperplane-specific noise variances into the 

posterior distribution of the observation’s inefficiency term, 𝑢𝑖. Moreover, MBCR-I’s mean 

inefficiency predictions are more accurate in 10 of the 12 scenarios. Conversely, StoNED’s 

predictions for the mean inefficiency level are highly biased (even for 𝜌𝑛𝑡𝑠 = 1); however, 

this bias becomes smaller for our alternative implementation used in scenarios with 500 

observations.  

Comparing MBCR-I’s results in Table 7 with MBCR-I’s results for the correctly 

specified DGP in Table 5 shows that the heteroscedastic inefficiency specification only has 

                                                           
15 The GAMS with MINOS 5.5 implementation is our main implementation for this example. The additional 

results are from our MATLAB fmincon implementation. Our main implementation was similar to the MSE f 

results in Kuosmanen and Kortelainen (2012) for all 𝜌𝑛𝑡𝑠 = 1 scenarios. None of our implementations 

achieved Kuosmanen and Kortelainen (2012)’s  𝜌𝑛𝑡𝑠 = 2, 𝑛 = 300 MSE f results. 
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a significantly detrimental impact on MSE f  for 4 of the 12 scenarios.  Besides these, the 

MSE f results for the heteroscedastic inefficiency example are at most 20% larger, and in 

fact smaller in the majority of scenarios. For both StoNED and MBCR-I, the percentage of 

observations supported by non fully-dimensional hyperplanes is similar to Example 3. We 

conclude that even for moderate sample sizes and large noise-to-signal ratios, MBCR-I is 

relatively robust to mis-specification of the inefficiency term. Finally, the DGP mis-

specification impacts the variability of MBCR-I’s functional fit across replicates less than 

StoNED’s as measured by the Standard Deviation of MSE f column in Table 8. 

 

3.2 Discussion of Simulation Results and recommendations to use MBCR-I 

As Tables 1–8 show, MBCR-I is best for scenarios with relatively noisy data and/or when 

the inefficiency distribution is unknown.16 Relative to the benchmark method StoNED, 

MBCR-I is also competitive for lower noise-to-signal ratios in datasets where 𝑛 ≥ 300. 

Due to MBCR-I’s one-stage nature, the residuals from this estimator are correctly skewed 

even for smaller datasets. Since the iteration-selection criterion is of no clear benefit for the 

sample sizes where MBCR-I is recommended, we choose the MBCR-I S estimator, because 

it eliminates the heuristic component of our algorithm. We also note that MBCR-I requires 

significantly higher computational times than CNLS for 𝑛 < 500,  partly because it gives a 

full posterior distribution of results rather than a point estimate. Nevertheless, due to its 

adaptive regression nature, MBCR-I only fits regression parameters for subsets of the 

                                                           
16 An example of possible mis-specification of the inefficiency term appears in public sector applications 

where firms do not compete and efficient behavior does not result. Therefore, the distribution of inefficiency 

is unlikely to have a mode of zero and thus both an exponential or half-normal assumption regarding the 

inefficiency distributions is mis-specified.   
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dataset and so computational time increases slowly in 𝑛. 17 At 𝑛 = 500, the computational 

time for both MBCR-I and Multiplicative-error StoNED is about 45 minutes.18 MBCR-I is 

the only feasible existing axiomatic concavity constrained frontier estimation method to fit 

datasets with 1000 ≤ 𝑛 ≤ 6000 observations. Thus, we recommend MBCR-I S for most 

datasets with 300 ≤ 𝑛 ≤ 6000, or for smaller datasets when imposing the proper skewness 

on the residual distributions is needed. Oh et al. (2015) and Crispim Sarmento et al. (2015) 

analyze datasets where Multiplicative CNLS is not applicable due to dataset size, but both 

papers report successfully applying variants of MBCR-I.19  

We also recommend MBCR-I when inference on the frontier is needed. As a 

Bayesian method, MBCR-I produces credible intervals for MBCR-I S, our smoothed 

estimator, unlike CAP and StoNED, where it is computationally burdensome, even for 

moderate datasets, to obtain inference results by running the method repeatedly followed by 

bagging, smearing, or random partitioning (Hannah and Dunson, 2012). Finally, we 

recommend MBCR-I when obtaining a higher rate of fully dimensional hyperplanes is an 

important property of the frontier to be estimated. 

 

4. Extensions 

We consider several extensions to MBCR-I to make the method useful for a larger set of 

applications. We note that more general models for each extension are possible and are 

avenues for future research. 

                                                           
17 MBCR-I’s computational time increased from ~10 min for 𝑛 = 100 to ~45 min for 𝑛 = 500, whereas it 

increased from ~0.03min for 𝑛 = 100 to ~45 min for 𝑛 = 500 for Multiplicative CNLS. 
18 The CNLS speed-up algorithm proposed by Lee et al. (2013) on an additive error setting did not show time 

savings in our multiplicative setting. 
19 While MBCR-I integrates inefficiency into MBCR, it also has computational differences, as described in 

Section 2.5. Some of these are exploited to allow the inclusions of z-variables as discussed in Section 4. 
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4.1 Flexible Time Trend 

MBCR-I is attractive for use with Panel data because it can fit shape constrained production 

frontiers for moderate datasets. To model technical progress over time, we consider a 

vector of dummy time effects to act as frontier-shifting factors (Baltagi and Griffin, 1988). 

We estimate the following model, 

 

                               𝑌𝑖𝑡 = 𝑓(𝑿𝑖𝑡)𝑒𝑣𝑖𝑡𝑒−𝑢𝑖𝑒𝜸𝒅𝑖𝑡 ,                  𝑖 = 1, . . , 𝑛;   𝑡 = 1, … 𝑇                 (11) 

 

We let 𝜸 = (𝛾2, … , 𝛾𝑇) and 𝒅𝑖𝑡 is a row vector of dummy variables which has a 1 on the (t-

1)th entry (and is a zero vector for observations on the first time period) and zeros on all 

other entries. Recalling MBCR-I’s Gaussian mixture likelihood function, we know the 

hyperplane-specific noise variances (𝜎𝑘
2)𝑘=1

𝐾  from the MBCR step of our algorithm (step 

1). We let 𝑫 = (𝒅11, … , 𝒅𝑛𝑇)′, collect the (𝜎[𝑖]
2 )𝑖=1

𝑛  terms on diagonal matrix Σ𝑣 and 

consider the Multivariate Normal prior 𝜸~𝑀𝑉𝑁(𝜇𝛾0, Σ𝛾0) to obtain the conjugate posterior 

shown in (12). Then, we add a step between steps 3 and 4 to draw 𝜸(𝑡). Specifically,  

 

            𝜸| … ~𝑀𝑉𝑁(𝜇𝛾1, Σ𝛾1),     𝑘 = 1, … , 𝐾, where                                                             (12) 

            𝜇𝛾1 = (Σ𝛾0
−1 + 𝑫′Σ𝑣

−1𝑫)−1(Σ𝛾0
−1𝜇𝛾0 + 𝑫′Σ𝑣

−1𝑫𝜸̂) 

            Σ𝛾1 = (Σ𝛾0
−1 + 𝑫′Σ𝑣

−1𝑫)−1, 

 

where 𝜸̂ is the OLS estimator of 𝑟𝑖 = 𝑙𝑛 (𝑌𝑖) − 𝑙𝑛 (𝑓𝑖) + 𝑢𝑖 using 𝑫 as a predictor. Since 

drawing from (12) is not computationally demanding, this estimator gives roughly the same 
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computational performance as MBCR-I for 𝑛𝑇 observations, thus opening the possibility to 

fit nonparametric multiplicative production frontiers to Panel datasets up to a few thousand 

observations.  To adapt the MBCR-I algorithm to Panel data, we modify equations (9a) or 

(9b) to draw (𝑢𝑖)𝑖=1
𝑛  using information from the whole Panel rather than one observation. 

In the exponential inefficiency prior case, we consider the posterior hyperparameters 

analogous to O’Donnell and Griffiths (2006), who also consider a Gaussian mixture 

likelihood.  

 

 𝜎𝑢𝑖
2 = [∑ 𝜎[𝑖𝑡]

−2𝑇
𝑡=1 ]

−1
,          𝜇𝑢𝑖 = {∑ (𝜎[𝑖𝑡]

−2)[ln(𝑓𝑖) + 𝜸𝒅𝑖𝑡 − ln(𝑌𝑖)] − 𝜃𝑇
𝑡=1 } ∑ 𝜎[𝑖𝑡]

−2𝑇
𝑡=1     (13) 

 

4.2 Contextual Variables 

Incorporating contextual variables allows MBCR-I to estimate production functions that are 

multiplicatively affected by factors beyond a firm’s control, or factors that are not inputs, 

but that the firm can control (see Johnson and Kuosmanen, 2011). We consider a 

parametric specification for the effect of contextual variables and fit the model 

 

                                             𝑌𝑖 = 𝑓(𝑿𝑖)𝑒𝑣𝑖𝑒−𝑢𝑖𝑒𝜹𝒛𝑖 ,                  𝑖 = 1, . . , 𝑛,                             (14) 

 

where 𝒛𝑖𝑡 = (𝑧1𝑖𝑡, … , 𝑧𝑅𝑖𝑡)′ is the R-dimensional vector of z-variables for firm i at time t 

and 𝜹 = (𝛿1, … , 𝛿𝑅) are the coefficients for each contextual variable. We note that (14) is 

the same as (11), with 𝜹 and 𝒛𝑖 playing the role of 𝜸 and 𝑑𝑖𝑡, respectively. Thus, the 

posterior simulation approach is the same as (12) with matrix 𝒁 = (𝒛′
11, … , 𝒛′

𝑛𝑇)′ in place 

of 𝑫 and the prior parameters (𝜇𝛿0, Σ𝛿0) in place of (𝜇𝛾0, Σ𝛾0). We can also include both 
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contextual variables and time effects with a common covariance matrix between their 

regression coefficients.  

 

5. Empirical Application  

Japan’s recent plan for economic reforms, popularly termed “Abenomics”, is lead by Prime 

Minister Shinzo Abe. The Prime Minister has recommended increased activity in the 

construction sector as an important economic driver, yet many politicians and pundits argue 

that Japan’s construction industry is inefficient (“Japan and Abenomics”, 2013). Our 

empirical application investigates the efficiency of operations in the Japanese concrete 

industry, a critical component of the country’s construction industry.   

We construct a dataset using the Census of Manufacturers collected by Japan’s 

Ministry of Economy, Trade and Industry (METI) for concrete products. The data include 

all establishments in Japan with at least four workers.20 We define Capital and Labor as the 

input variables and Value Added as the output variable. Capital and Value Added are 

measured in tens of thousands of Yen and Labor is measured in number of Employees. We 

report results for Cross Sectional datasets for 2007 and 2010 and a balanced Panel dataset 

for 2007-2010. See Appendix B for the Cross Sectional results for 2008 and 2009. We note 

even our smallest Cross Sectional dataset of 1,652 observations exceeds the capacity of 

existing methods to fit a semi-nonparametric shape constrained production function. Table 

9 presents summary statistics.  

                                                           
20 The equation used to calculate value added is different for firms with more than 30 employees than for 

firms with less than 30 employees. Excluding the firms with more than 30 employees did not result in 

significant changes to our frontier estimates, thus we present results for the full dataset. 



28 
 

We specify prior values for the parameters 𝐾, (𝜎𝑘
2)𝑘=1

𝐾 , 𝑣0,  𝑤0, 𝜃, 𝜸, 𝜹.  To 

determine the prior for 𝐾, we run multiplicative-error MBCR (without modeling 

inefficiency), and hypothesize that this prior value of 𝐾 is likely to be larger than the 

number of hyperplanes estimated by MBCR-I, because MBCR will capture more of the 

output variability with functional complexity, whereas MBCR-I can also use inefficiency. 

Unlike the 𝐾 = 1 assumption, our MBCR-based prior on  𝐾  implies that we have the prior 

belief that the frontier has curvature and is more complex than a linear function. See 

Appendix C for a detailed discussion.21 Additionally, we consider priors 𝑣0 = 1, 𝑤0 = 0.1 

and 𝜃 = 𝑣0𝑤0 for the inefficiency-related parameters. Finally, we consider a wide-support, 

nearly uninformative prior 𝐼𝐺(1,0.01) for each 𝜎𝑘
2. In the Panel model, we consider 𝜸 and 

𝜹 to have near-vague 𝑀𝑉𝑁(0, M) prior distributions, where 𝑀 = 𝑑𝑖𝑎𝑔𝑇(2000). 

Due to our multiplicative error structure and the use of logarithms, we eliminate 

firms with negative Value Added (~1% of the initial observations). After an initial fit, 3% 

of the observations significantly deviate from our prediction. These observations 

correspond to the largest observations in terms of Capital, Value Added, or both, and thus 

we exclude these observations as outliers. Firm exclusion is consistent across all datasets.  

 

5.1 Posterior estimated frontier and interpretation 

Table 10 shows the fitting statistics for the two datasets. The number of hyperplanes needed 

by our Gaussian Mixture model is relatively small, which implies that firms operate in a 

few clusters with locally constant marginal productivity. We estimate a median inefficiency 

                                                           
21 This assumption did not have a significant impact on our parameter estimates compared to the 𝐾 = 1 

assumption, but helped MBCR-I to be more computationally efficient and resulted in the insights summarized 

in Appendix C. 
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of 28-29% for the Cross Sectional and 45% for the Panel datasets, respectively. The 

percentage of output variability explained by the joint production function and inefficiency 

model is between 66-76% for the Cross Sectional and above 80% for the Panel datasets, 

respectively. The number of hyperplanes fitted for the Panel dataset is larger, due to both 

MBCR-I’s ability to produce finer estimates of the production function when more data is 

available, and to the lower noise level of the firms operating throughout the study period. 

We report the percentage of output variation explained by our model and the part that 

remains unexplained we report as noise in the columns labeled % Model and % Noise, 

respectively. 

Tables 11a, 11b, and 11c show the economic quantities of interest for MBCR-I S, 

i.e., the marginal productivities of Capital and Labor, Capital to Labor Elasticity of 

Substitution and Technical Efficiency of the fitted production frontier models according to 

their minimum, maximum, and quartile-specific values across observations. Table 11c, 

however, shows Technical Efficiencies on a firm-specific basis, rather than an observation-

specific basis. While we observe non-constant elasticities of substitution across the 

samples, Tables 11a and 11b show that a single component of their respective Gaussian 

mixtures support at least half of the observations, indicating that a majority group faces the 

same marginal productivity and Elasticity of Substitution. Regarding Technical Efficiency, 

in 2010 413 out of 1,652 establishments (25%) operate below 53% efficiency. This level of 

inefficiency is consistent across all years and the Panel dataset analysis, indicating a large 

potential for improvement for this subset of establishments. The Cross Sectional results for 

2007 and 2010 (and the 2008 and 2009 results in Appendix B), are similar in most of the 

estimated frontier and efficiency characteristics, indicating firm’s consistency performance 
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over time.  Table 11c shows that the Panel data model gives a smoother, more detailed 

estimate of the frontier.  

The lower Technical Efficiency levels for the Panel model are conservative 

estimates, because as Table 12 shows, the frontier contracts in each time period after 

2007are likely due to the global financial crisis. Given that 2007 is the base year for the 

Panel analysis and that our assumption about uniform yearly frontier shifts across firms is 

an approximation, we suggest that firm-specific inefficiency terms absorb some of the 

frontier shrinkage effect. Finally, we note that the frontier multiplier for year t is given by 

𝑒𝛾𝑡 , as defined in Section 4.1.Table 12 shows Maximum a Posteriori (MAP)22 and 90% 

credible interval values for the year-specific frontier shifts for the Panel model. 

Table 13 shows the Most Productive Scale size results, conditional on Capital/Labor 

ratio distributions at the 10, 25, 50, 75, and 90 percentiles (see Appendix D for a full 

discussion). Firm-specific technical efficiencies are lower at all quantiles for Cross 

Sectional versus the Panel data results. The Capital/Labor ratio distribution is similar for 

the Cross Sectional and Panel datasets. The MPSS results for the Panel dataset are similar 

to those of 2007, the reference year for the Panel, which is another indication of 

consistency across the estimated frontiers. The Cross Sectional results show higher MPSS 

for 2010, suggesting technical progress over the timespan. Table 12 also confirms that the 

global financial crisis of 2007 has a significant effect on the future output of 

establishments. 

 

                                                           
22 The MAP value is the highest density point of the simulated posterior distribution for the parameter of 

interest. 
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6. Conclusions 

This paper described MBCR-I, a one-stage Bayesian semi non-parametric method to fit 

concave and monotonic stochastic frontiers using Reversible Jump Markov Chain Monte 

Carlo techniques. Computational modifications allowed for both the presence of 

inefficiency and the multiplicative residuals structure of the standard SFA model. MBCR-

I’s performance in the Monte Carlo simulation study showed increased accuracy in large 

noise-to-signal ratio scenarios versus StoNED and for large sample sizes at any noise-to-

signal ratio. MBCR-I handled datasets of a few thousand observations efficiently, which 

suggested its use for long panels of moderate samples and very large cross sections. 

MBCR-I was increasingly robust to mis-specification of the inefficiency model due to its 

ability to learn from data and to consider locally shrunk individual inefficiency posteriors.  

MBCR-I was empirically tested by using data on Japan’s concrete firms operating 

between 2007 and 2010. Computation of input productivities, elasticities of substitution, 

inefficiency distributions, frontier-shifting effects and most productive scale sizes were 

demonstrated. MBCR-I’s Bayesian framework made straightforward inference possible for 

the frontier-shifting effects. 

There was limited evidence for the criticism that important parts of the construction 

industry offered significant room for efficiency improvements. Between 2007–2010, 

efficiency levels were stable at relatively high levels. Japan was significantly affected by 

the global financial crisis (Fukao and Yuan, 2009) as shown by the value-added output 

steadily declined over the 2007-2010 time period. 

We believe that the work described in this paper is the first model that allows a 

shaped constrained production frontier to be estimated nonparametrically and relaxes the 

homoscedastic assumption on the inefficiency term for the analysis of cross sectional data. 
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Our experiments revealed the tradeoffs between modeling the frontier and the inefficiency 

term, i.e., more flexible models of the inefficiency term lead to coarser estimates of the 

production frontier and vice versa.  

Future research should consider a more extensive exploration of the tradeoffs. A 

second research path should consider developing contextual variable models that do not 

rely on parametric assumptions. While we obtained credible intervals for all estimated 

parameters, given our non-linear least squares step to draw the hyperplane-specific 

regression coefficients, our credible intervals on both the production frontier and contextual 

variables were conditional on the point estimates obtained in that step. Although this 

assumption is not unreasonable, because it considers the best hyperplane fits conditional on 

all other parameters, future research, should also extend MBCR-I to draw the regression 

coefficients with a more efficient Bayesian algorithm in order to obtain full posterior 

distributions (and credible intervals) for the estimated parameters. Compared with StoNED, 

MBCR-I fitted a very small number of hyperplanes on highly clustered datasets, especially 

for low-dimensional input vectors. Thus, future research on alternative strategies for 

proposing knots and directions when adding hyperplanes should lead to more detailed 

frontier estimations. 
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Figure 1. Three basis regions defined by the current number of hyperplanes 𝑲(𝒕) = 𝟑 

(top left). Proposed basis regions for removal of the second hyperplane (top right). 

Proposal basis regions for hyperplane addition and split of third basis region (bottom 

left). Proposal basis regions for hyperplane addition and split of third basis region 

using a different splitting knot and the same splitting direction (bottom right). 
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Table 1. Results for Example 1: Univariate Cobb-Douglas frontier with homoscedastic 

inefficiency terms 

  
MSE f 𝐸(𝑢̅)̂ − 𝐸(𝑢̅) 

% Non-Full 

Dimensional 
 

𝑛 StoNED 
MBCR-I 

NS 

MBCR-I 

S 
StoNED 

MBCR-I 

NS 

MBCR-I 

S 
StoNED 

MBCR-I 

NS 

1 

100 0.0035 0.0046 0.0036 0.01 0.01 0.01 4% 0% 

200 0.0010 0.0020 0.0024 0.01 0.01 0.01 2% 0% 

300 0.0009 0.0014 0.0007 0.01 0.01 0.01 3% 0% 

500 0.0005 0.0008 0.0006 0.01 0.01 0.01 1% 0% 

2 

100 0.0054 0.0056 0.0035 0.02 -0.02 -0.02 6% 0% 

200 0.0068 0.0052 0.0035 0.05 -0.03 -0.03 2% 0% 

300 0.0062 0.0055 0.0028 0.05 0.01 -0.05 3% 0% 

500 0.0068 0.0049 0.0023 0.07 0.05 -0.02 3% 0% 

3 

100 0.0334 0.0097 0.0153 0.09 0.00 -0.01 8% 0% 

200 0.0464 0.0054 0.0061 0.18 0.02 0.02 7% 0% 

300 0.0420 0.0059 0.0046 0.18 -0.03 -0.04 8% 0% 

500 0.0413 0.0050 

 
0.0028 0.16 -0.06 -0.07 2% 0% 

 

 

 

 

 

 

 

 

 

 

𝜌𝑛𝑡𝑠 
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Table 2. Estimator Robustness Analysis for Example 1: Univariate Cobb-Douglas 

frontier with homoscedastic inefficiency terms 

  

Replicates for MSE f 

convergence 

Standard Deviation of 

MSE f 

MSE f coefficient of 

variation 

% 

Negative 

Skew 

 

𝑛 StoNED MBCR-I StoNED MBCR-I StoNED MBCR-I StoNED 

1 

100 10 10 0.0046 0.0019 132% 42% 10% 

200 10 10 0.0011 0.0016 108% 64% 0% 

300 10 20 0.0009 0.0018 101% 128% 0% 

500 10 10 0.0005 0.0005 85% 63% 0% 

2 

100 10 10 0.0056 0.0036 104% 64% 10% 

200 10 10 0.0058 0.0018 85% 34% 0% 

300 10 10 0.0022 0.0038 35% 69% 0% 

500 10 10 0.0048 0.0047 71% 95% 0% 

3 

100 10 20 0.0246 0.0077 74% 75% 20% 

200 10 10 0.0278 0.0024 60% 45% 0% 

300 10 10 0.0167 0.0019 40% 37% 0% 

500 10 10 0.0142 0.0033 34% 57% 0% 

 

 

 

 

 

 

 

 

 

 

 

 

𝜌𝑛𝑡𝑠 
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Table 3. Results for Example 2: Bivariate Cobb-Douglas frontier with homoscedastic 

inefficiency terms 

 

  
MSE f 𝐸(𝑢̅)̂ − 𝐸(𝑢̅) 

% Non Full-

Dimensional 

 
𝜌𝑛𝑡𝑠 

 

𝑛 StoNED 
MBCR-I 

NS 

MBCR-I 

S 
StoNED 

MBCR-I 

NS 

MBCR-I 

S 
StoNED 

MBCR-I 

NS 

1 

100 0.0022 0.0032 0.0038 -0.02 -0.07 0.03 16% 2% 

200 0.0015 0.0015 0.0018 -0.02 -0.01 0.04 15% 0% 

300 0.0014 0.0020 0.0016 -0.02 -0.01 0.02 17% 0% 

500 0.0004 0.0010 0.0012 -0.01 0.01 0.02 10% 6% 

2 

100 0.0058 0.0043 0.0040 0.02 -0.09 0.01 18% 1% 

200 0.0051 0.0039 0.0050 0.01 -0.04 0.06 19% 0% 

300 0.0045 0.0040 0.0036 0.01 -0.08 0.03 20% 0% 

500 0.0047 0.0029 0.0014 0.07 -0.08 0.00 16% 0% 

3 

100 0.0237 0.0085 0.0175 0.10 -0.06 0.12 23% 0% 

200 0.0259 0.0045 0.0057 0.14 -0.11 0.00 23% 5% 

300 0.0306 0.0050 0.0046 

.. 
0.17 -0.11 -0.02 22% 2% 

500 0.0270 0.0047 0.0032 0.13 -0.12 -0.06 14% 3% 
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Table 4. Estimator Robustness Analysis for Example 2: Bivariate Cobb-Douglas 

frontier with homoscedastic inefficiency terms 

 

  

Replicates for MSE f 

convergence 

Standard Deviation of 

MSE f 

MSE f coefficient of 

variation 

% Negative 

Skew 

𝜌𝑛𝑡𝑠 𝑛 StoNED MBCR-I StoNED MBCR-I StoNED MBCR-I StoNED 

1 

100 50 10 0.0024 0.0013 113% 40% 10% 

200 50 10 0.0017 0.0007 120% 48% 10% 

300 50 40 0.0020 0.0013 145% 65% 10% 

500 10 20 0.0002 0.0007 56% 69% 0% 

2 

100 20 10 0.0032 0.0017 56% 40% 15% 

200 20 10 0.0038 0.0017 75% 43% 20% 

300 20 20 0.0024 0.0015 54% 39% 20% 

500 10 20 0.0023 0.0017 49% 58% 0% 

3 

100 20 10 0.0164 0.0045 69% 53% 15% 

200 20 10 0.0130 0.0012 50% 27% 5% 

300 20 20 0.0120 0.0024 39% 48% 0% 

500 10 10 0.0141 0.0013 52% 34% 10% 
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Table 5. Results for Example 3: Trivariate Cobb-Douglas frontier with homoscedastic 

inefficiency terms 

  
MSE f 𝐸(𝑢̅)̂ − 𝐸(𝑢̅) 

% Non Full-

Dimensional 
 

𝑛 StoNED 
MBCR-I 

NS 

MBCR-I 

S 
StoNED 

MBCR-I 

NS 

MBCR-I 

S 
StoNED 

MBCR-I 

NS 

1 

100 0.0015 0.0055 0.0056 -0.01 -0.01 0.07 33% 5% 

200 0.0014 0.0030 0.0033 -0.02 0.01 0.06 25% 12% 

300 0.0020 0.0026 0.0028 0.02 0.02 0.05 23% 1% 

500 0.0070 0.0019 0.0013 -0.08 0.01 0.03 6% 0% 

2 

100 0.0053 0.0078 0.0072 0.00 -0.07 0.04 38% 8% 

200 0.0054 0.0060 0.0070 0.03 -0.07 0.09 38% 10% 

300 0.0075 0.0047 0.0045 0.07 0.04 0.04 

.19 

34% 4% 

500 0.0147 0.0039 0.0031 0.14 -0.07 0.01 6% 6% 

3 

100 0.0286 0.0076 0.0088 0.12 -0.10 0.01 42% 2% 

200 0.0243 0.0077 0.0063 0.12 -0.10 0.01 38% 1% 

300 0.0218 0.0058 0.0042 0.13 -0.10 -0.02 32% 3% 

500 0.0257 0.0066 0.0034 0.11 -0.12 -0.04 14% 0% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝜌𝑛𝑡𝑠 
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Table 6. Estimator Robustness Analysis for Example 3: Trivariate Cobb-Douglas 

frontier with homoscedastic inefficiency terms 

  

Replicates for MSE f 

convergence 

Standard Deviation of 

MSE f 

MSE f coefficient of 

variation 

% 

Negative 

Skew 

 𝜌𝑛𝑡𝑠 𝑛 StoNED 
MBCR-

I 
StoNED MBCR-I StoNED MBCR-I StoNED 

1 

100 20 10 0.0006 0.0020 39% 37% 0% 

200 50 10 0.0010 0.0012 71% 41% 4% 

300 50 20 0.0033 0.0011 163% 43% 2% 

500 10 10 0.0054 0.0008 76% 40% 0% 

2 

100 20 10 0.0025 0.0027 48% 34% 15% 

200 20 10 0.0025 0.0017 46% 29% 10% 

300 20 20 0.0065 0.0021 87% 47% 0% 

500 10 20 0.0057 0.0015 38% 38% 0% 

3 

100 50 20 0.0204 0.0037 71% 48% 10% 

200 20 10 0.0129 0.0031 53% 41% 10% 

300 20 10 0.0130 0.0022 60% 39% 10% 

500 10 10 0.0197 0.0026 77% 40% 10% 
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Table 7. Results for Example 4: Trivariate Cobb-Douglas frontier with 

heteroscedastic inefficiency terms 

 

  
MSE f 𝐸(𝑢̅)̂ − 𝐸(𝑢̅) 

% Non Full-

Dimensional 

 

𝑛 StoNED 
MBCR-I 

NS 

MBCR-I 

S 
StoNED 

MBCR-

I 

NS 

MBCR-

I 

S 

StoNED 

MBCR-

I 

NS 

1 

100 0.0058 0.0046 0.0071 0.10 0.02 0.11 25% 6% 

200 0.0047 0.0025 0.0033 0.10 0.02 0.07 24% 4% 

300 0.0047 0.0033 0.0045 0.10 0.06 0.10 23% 1% 

500 0.0499, 0.0028 0.0015 0.0019 0.33, 0.02 0.04 0.04 27% 1% 

2 

100 0.0507 0.0127 0.0194 0.28 0.12 0.22 

..0. 

45% 0% 

200 0.0407, 0.0158 0.0064 0.0126 0.27, 0.08 0.07 0.16 35% 5% 

300 0.0590, 0.0191 0.0042 0.0052 0.33, 0.12 0.00 0.06 31% 3% 

500 0.1345, 0.0084 0.0020 0.0023 0.47, 0.05 0.03 0.03 12% 0% 

3 

100 0.1492 0.0107 0.0205 0.38, 0.28 0.04 0.18 48% 0% 

200 0.1955, 0.1286 0.0061 0.0068 0.50, 0.33 0.03 0.06 47% 4% 

300 0.2446, 0.1046 0.0050 0.0050 0.58, 0.29 0.00 0.04 30% 

5% 

5% 

500 0.2610, 0.0061 0.0034 0.0038 0.63, -0.02 0.04 0.04 20% 5% 

 

 

 

 

 

 

 

 

 

 

 

𝜌𝑛𝑡𝑠 
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Table 8. Estimator Robustness Analysis for Example 3: Trivariate Cobb-Douglas 

frontier with heteroscedastic inefficiency terms 

 

  

Replicates for MSE 

f convergence 

Standard Deviation of 

MSE f 

MSE f coefficient of 

variation 

% Neg. 

Skew 

  
𝑛 StoNED 

MBCR-

I 
StoNED 

MBCR-

I 
StoNED 

MBCR-

I 
StoNED 

1 

100 20 10 0.0041 0.0027 71% 55% 15% 

200 20 10 0.0023 0.0011 48% 44% 20% 

300 20 10 0.0028 0.0017 59% 51% 10% 

500 10 10 0.0314, 0.0019 0.0008 63%, 66% 58% 0%, 20% 

2 

100 20 10 0.0405 0.0079 80% 62% 5% 

200 20 10 0.0233, 0.0216 0.0051 57%, 

136% 

81% 10%, 70% 

300 30 10 0.0399, 0.0173 0.0032 68%, 

131% 

75% 5%, 50% 

500 10 20 0.0826, 0.0122 0.0005 61%, 146% 26% 10%, 70% 

3 

100 50 20 0.1277, 0.1428 0.0067 86%, 108% 63% 20% 

200 50 10 0.0954, 0.1088 0.0018 49%, 85% 30% 5%, 30% 

300 40 10 0.1298, 0.1010 0.0026 53%, 142% 51% 3%, 40% 

500 10 10 0.0641, 0.0028 0.0011 25%, 46% 33% 0%, 100% 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝜌𝑛𝑡𝑠 
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Table 9. Descriptive Statistics for Concrete Products Dataset  

 
Year 2007 2008 2009 2010 

Number of observations –  

Cross Sectional 

1,929 1,715 1,714 1,652 

Capital Mean 16,419 15,809 15,662 14,215 

Median 2,000 2,000 2,000 2,000 

Standard Deviation 76,401 74,300 69,332 58,486 

Labor Mean 16.68 17.51 16.60 16.32 

Median 12 13 12 12 

Standard Deviation 15.80 15.83 15.39 15.29 

Value 

Added 

Mean 19,004 18,481 18,393 16,520 

Median 11,515 11,391 11,092 10,587 

Standard Deviation 26,221 21,619 20,842 17,407 

 
Year 2007 2008 2009 2010 

Number of observations – Panel 1,382 1,382 1,382 1,382 

Capital Mean 16,313 16,475 15,901 15,536 

Median 2,000 2,000 2,000 2,000 

Standard Deviation 77,269 77,426 70,606 63,081 

Labor Mean 18.44 18.25 17.72 17.09 

Median 14 14 14 13 

Standard Deviation 16.38 16.20 15.91 15.75 

Value 

Added 

Mean 20,084 19,434 19,377 17,648 

Median 13,502 12,385 12,548 11,795 

Standard Deviation 22,475 20,264 20,665 17,839 
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Table 10. MBCR-I S Cross Sectional and Panel production frontier fitting statistics 

 
# Hyperplanes 

fitted 

Median 

Inefficiency 
% Model % Noise 

2007 2.11 29% 66% 34% 

2008 2.03 28% 75% 25% 

2009 2.60 29% 70% 30% 

2010 2.36 28% 76% 24% 

Panel 3.63 45% 81% 19% 
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Table 11a.  MBCR-I S Cross Sectional production frontier characterization for 2007 

  Marginal Product 

Elasticity of 

Substitution (x10-4) 

Technical 

Efficiency 

  Capital Labor Capital/Labor Firm-specific % 

Min 0.0446 1,013 0.4278 0.060% 

25th percentile 1.0534 1,222 8.6449 50.89% 

Median 1.0534 1,222 8.6449 70.94% 

75th percentile 1.0534 1,222 8.6449 86.61% 

Max 3.7182 1,218 43.189 99.97% 

 

Table 11b.  MBCR-I S Cross Sectional production frontier characterization for 2010 

  Marginal Product 

Elasticity of 

Substitution (x10-4) 

Technical 

Efficiency 

  Capital Labor Capital/Labor Firm-specific % 

Min 0.0289 803.1 0.3342 3.46% 

25th percentile 0.9880 1074 9.2108 52.98% 

Median 0.9880 1074 9.2108 72.80% 

75th percentile 0.9880 1074 9.2108 87.66% 

Max 6.7196 1074 98.7883 97.97% 

 

Table 11c.  MBCR-I Panel production frontier characterization 

  Marginal Product 

Elasticity of 

Substitution 

Technical 

Efficiency 

  Capital Labor 

Capital/Labor (x10-

4) Firm-specific % 

Min 0.0299 988 0.2850 2.78% 

25th percentile 0.8758 1173 7.2168 36.53% 

Median 1.8886 1318 14.0175 55.40% 

75th percentile 3.0354 1417 21.4405 77.80% 

Max 3.7157 1971 26.3485 99.95% 
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Table 12.  Time dummy variable coefficients 

 2008 2009 2010 

MAP -0.0595 -0.0628 -0.1063 

Frontier Multiplier 0.9422 0.9391 0.8992 

90% Credible 

Interval 

(0.9186, 0.9665) (0.9154, 0.9649) (0.8762, 0.9248) 
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Table 13. Most productive scale size for selected Capital/Labor ratios for Cross 

Sectional and Panel production frontiers. 

Model 
Capital/Labor 

ratio percentile 
10% 25% 50% 75% 90% 

Cross 

Sectional 

2007 

Capital/Labor 37 75 166.7 400 1,500 

MPSS Capital 2,837 4,744 7,489 10,675 14,791 

MPSS Labor 76 63 44 27 10 

Cross  

Sectional 

2010 

Capital/Labor 37.5 80.0 166.7 416.7 1451.2 

MPSS Capital 3,662 6,114 9,565 13,965 19,142 

MPSS Labor 94 79 59 36 13 

Panel 

2007–2010 

Capital/Labor 38.9 76.9 162.2 389.9 1456.0 

MPSS Capital 2,210 3,835 6,241 9,546 14,881 

MPSS Labor 57 50 38 24 10 
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Appendix A. Fully Bayesian MBCR-I 

As mentioned in Section 2.3, we solve mathematical program (7) instead of simulating 

(𝛼𝑘, 𝛽𝑘)𝑘=1
𝐾  from its posterior distribution due to the difficulty of obtaining good proposal 

distributions. Computational feasibility of the original, additive error structure, MCBR 

algorithm depends on the availability of good proposal distributions for (𝛼𝑘, 𝛽𝑘)𝑘=1
𝐾  

(Hannah and Dunson, 2011). While H-D take advantage of conjugacy to compute such 

proposal distributions, we are not able to do so due to the logarithm operator present in our 

likelihood function, ∏ 𝑁(ln(𝑌𝑖) − ln(𝛼[𝑖] + 𝛽[𝑖]
𝑇 𝑿𝑖) + 𝑢𝑖 , 𝜎[𝑖]

2 )𝑛
𝑖=1 . Here, we propose a naïve 

way to obtain full conditional posterior distributions for (𝛼𝑘, 𝛽𝑘)𝑘=1
𝐾 . The algorithm to draw 

(𝛼𝑘, 𝛽𝑘)  for each basis region is as follows: 

1. Solve mathematical program (7) to obtain candidate distribution mean estimates 

(𝛼𝑘1, 𝛽𝑘1) for the given basis region. 

2. Draw the candidate values (𝛼𝑘𝐶𝑎𝑛𝑑, 𝛽𝑘𝐶𝑎𝑛𝑑) from a (𝑑 + 1)-dimensional Multivariate 

Gaussian distribution 𝑁(𝑑+1)((𝛼𝑘1, 𝛽𝑘1), Σ𝛼,𝛽), where Σ𝛼,𝛽 = 𝜂 [

𝜎𝛼𝑘
2 ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝜎𝛽𝑑𝑘

2
], where 

𝜂 > 1 is a tunable parameter, and 𝜎𝛼𝑘
, … , 𝜎𝛽𝑑𝑘

2  are the standard errors of 𝛼𝑘1 and each 

component of 𝛽𝑘1 obtained after solving (7). 

3. Draw 𝜎𝑘𝐶𝑎𝑛𝑑
2  from (8), assuming (𝛼𝑘𝐶𝑎𝑛𝑑, 𝛽𝑘𝐶𝑎𝑛𝑑). 

4. Compute the Metropolis-Hastings acceptance probability 𝑎𝑃𝑟𝑜𝑏 for 

(𝛼𝑘𝐶𝑎𝑛𝑑, 𝛽𝑘𝐶𝑎𝑛𝑑, 𝜎𝑘𝐶𝑎𝑛𝑑
2 ) using (A1)-(A4): 
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(𝐴1)  𝑎𝑃𝑟𝑜𝑏 =
𝑝(𝛼𝑘𝐶𝑎𝑛𝑑, 𝛽

𝑘𝐶𝑎𝑛𝑑
, 𝜎𝑘𝐶𝑎𝑛𝑑

2 )𝐿𝑘(𝛼𝑘𝐶𝑎𝑛𝑑 , 𝛽
𝑘𝐶𝑎𝑛𝑑

, 𝜎𝑘𝐶𝑎𝑛𝑑
2 )

𝑞(𝛼𝑘𝐶𝑎𝑛𝑑 , 𝛽
𝑘𝐶𝑎𝑛𝑑

, 𝜎𝑘𝐶𝑎𝑛𝑑
2 |𝛼𝑘𝐶𝑢𝑟𝑟, 𝛽

𝑘𝐶𝑢𝑟𝑟
, 𝜎𝑘𝐶𝑢𝑟𝑟

2 )

𝑝(𝛼𝑘𝐶𝑢𝑟𝑟, 𝛽
𝑘𝐶𝑢𝑟𝑟

, 𝜎𝑘𝐶𝑢𝑟𝑟
2 )𝐿𝑘(𝛼𝑘𝐶𝑢𝑟𝑟, 𝛽

𝑘𝐶𝑢𝑟𝑟
, 𝜎𝑘𝐶𝑢𝑟𝑟

2 )

𝑞(𝛼𝑘𝐶𝑢𝑟𝑟, 𝛽
𝑘𝐶𝑢𝑟𝑟

, 𝜎𝑘𝐶𝑢𝑟𝑟
2 |𝛼𝑘𝐶𝑎𝑛𝑑, 𝛽

𝑘𝐶𝑎𝑛𝑑
, 𝜎𝑘𝐶𝑎𝑛𝑑

2 )
⁄  

(𝐴2)      𝑝(𝛼, 𝛽, 𝜎2)~𝑁(𝑑+1)𝐼𝐺(𝟎, 𝑀𝐼, 𝑎̃, 𝑏̃), where M is a large number and I is the identity       

matrix 

 

(𝐴3)     𝐿𝑘(𝛼, 𝛽, 𝜎2) = ∏ 𝑁(ln(𝑌𝑖) − ln(𝛼 + 𝛽𝑇𝑿𝑖) + 𝑢𝑖 , 𝜎2)𝑛𝑘
𝑖=1    

 

(𝐴4)     𝑞(𝛼2, 𝛽2, 𝜎2
2|𝛼1, 𝛽1, 𝜎2

1)~𝑁(𝑑+1)𝐼𝐺(𝜇1, Σ1, 𝑎1, 𝑏1), where (𝜇1, Σ1, 𝑎1, 𝑏1) are the 

hyperparameters associated with (𝛼1, 𝛽1, 𝜎2
1). 

 

5. If 𝑎𝑃𝑟𝑜𝑏 > 𝑈𝑛𝑖𝑓(0,1), accept draw (𝛼𝑘𝐶𝑎𝑛𝑑, 𝛽𝑘𝐶𝑎𝑛𝑑, 𝜎𝑘𝐶𝑎𝑛𝑑
2 ); otherwise, go back to step 

2. 

 

6. After accepting a predefined number 𝑛𝑏𝑖 of burn-in draws, accept the (𝑛𝑏𝑖 + 1)𝑡ℎ 

accepted draw as a valid draw from the posterior distribution of (𝛼𝑘, 𝛽𝑘, 𝜎𝑘
2). 
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Appendix B. Frontier characteristics for 2008-2009 Cross Sectional datasets 

 

Tables B1 and B2 show that the Marginal Product and Technical Efficiency quantiles are 

similar to those of 2010 for almost all cases, which is also true for the Elasticity of 

Substitution between Capital and Labor, except for its maximum values. In the case of 

MPSS shown in Table B3, the only significant departure from the results in 2007 and 2010 

are those corresponding to the lower Capital/Labor ratios in the 2008 dataset. Observing 

that 2008 has the simplest frontier shape (2.03 hyperplanes) suggests that the data in 2008 

may not be as well-behaved or as clean as in the other years. Note that the MPSS for 

Capital does not follow the monotonic trend observed for all other years and for the Panel 

dataset. 

 

Table B1.  MBCR-I S Cross Sectional production frontier characterization for 2008 

  Marginal Product 

Elasticity of 

Substitution (x10-4) 

Technical 

Efficiency 

  Capital Labor Capital/Labor Firm-specific % 

Min 0.0093 1,119 0.0767 1.26% 

25th percentile 1.1209 1,202 9.3052 51.90% 

Median 1.1209 1,206 9.3052 71.77% 

75th percentile 1.1209 1,206 9.3052 87.07% 

Max 1.4449 1,262 13.142 99.97% 
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Table B2.  MBCR-I S Cross Sectional production frontier characterization for 2009 

  Marginal Product 

Elasticity of 

Substitution (x10-4) 

Technical 

Efficiency 

  Capital Labor Capital/Labor Firm-specific % 

Min 0.0662 910 0.5608 0.97% 

25th percentile 1.0010 1,191 8.4305 50.82% 

Median 1.0010 1,191 8.4305 71.04% 

75th percentile 1.0012 1,191 8.4328 86.72% 

Max 10.0217 1,220 134.53 99.97% 

 

 

 

Table B3. Most productive scale size for selected Capital/Labor ratios for Cross 

Sectional frontiers 2008-2009. 

 

 

 

Model 

Capital/Labor 

ratio percentile 

10% 25% 50% 75% 90% 

Cross  

Sectional 

2008 

Capital/Labor 38 75 166.7 400 1,434 

MPSS Capital 5,691 10,001 15,785 12,501 14,548 

MPSS Labor 152 133 95 31 10 

Cross  

Sectional 

2009 

Capital/Labor 37.5 76.9 166.7 391.3 1,470 

MPSS Capital 3,662 6,111 9,565 13,965 19,142 

MPSS Labor 94 80 59 36 13 
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Appendix C. The flexibility tradeoff between production function and inefficiency 

distribution assumptions. 

 

The potential exists for a flexibility tradeoff between modeling the production 

function nonparametrically and modeling the unobserved inefficiency without distribution 

assumptions. Since our simulated datasets consist of well-distributed data along the input-

output space, we do not need an MBCR prior to obtain computationally efficient runs of 

MBCR-I. Nevertheless, the more clustered and uneven distribution of observations in our 

application datasets benefit computationally from a more informative prior on the curvature 

of the function given by MBCR. When we run MBCR on both datasets, the number of 

hyperplanes needed to describe the production frontier decreases when inefficiency is 

introduced. The results for MBCR-I in Table C1 and Table 10 are the same. 

 

Table C1.  Fitting statistics comparison for MBCR and MBCR-I for the Japanese 

concrete industry Dataset.  

 

MBCR # Hyperplanes 

fitted 

Median 

Inefficiency 

% SS Model % SS Noise 

Cross Sectional 2007 2.22 0% 55% 45% 

Cross Sectional 2008 2.18 0% 55% 45% 

Cross Sectional 2009 3 0% 53% 47% 

Cross Sectional 2010 4 0% 55% 45% 

Panel 4 0% 56% 54% 
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MBCR-I 

# Hyperplanes 

fitted 

Median 

Inefficiency 

% SS Model % SS Noise 

Cross Sectional 2007 2.11 29% 66% 34% 

Cross Sectional 2008 2.03 28% 75% 25% 

Cross Sectional 2009 2.60 29% 70% 30% 

Cross Sectional 2010 2.36 27% 76% 24% 

Panel 3.63 43% 81% 19% 

 

Note that an omitted inefficiency model results in a more complex nonparametric shape-

constrained frontier estimation, whereas the use of a moderately flexible inefficiency model 

results in frontier estimations with fewer hyperplanes. We believe very general inefficiency 

distribution specifications, especially non-parametric specifications considering non-

monotonic or heteroscedastic behaviors, will result in coarser production frontier estimates. 

That is, if both the frontier specification and the estimated values are very flexible,  we may 

encounter an identification problem. We emphasize that this insight is only possible due to 

the one-stage nature of MBCR-I.  
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Appendix D. A coarse grid search algorithm to compute MPSS on a multivariate 

setting. 

Calculate MPSS at a given Capital/Labor ratio as follows: 

1. Let 𝝎 = (𝜔1, … , 𝜔𝐿) be a uniform grid of 𝐿 points across the Labor axis. 

2. Set 𝑅 = 𝐶𝑎𝑝𝑖𝑡𝑎𝑙/𝐿𝑎𝑏𝑜𝑟 to a value of interest; for example, a percentile of the 

empirical Capital/Labor distribution. 

3. Evaluate the predicted frontier output value 𝑓ℓ(𝑅 ∙ 𝜔ℓ, 𝜔ℓ) for each ℓ ∈ {1, … 𝐿}. 

4. Obtain 𝛽[𝑅∙𝜔ℓ,𝜔ℓ ], the regression coefficients of the hyperplane supporting the given 

(𝑅 ∙ 𝜔ℓ, 𝜔ℓ) pair. 

5. Define a measure of aggregate input 𝐼 =  𝛽1𝑅𝜔ℓ + 𝛽2𝜔ℓ. 

6. Calculate 𝑀𝑃𝑆𝑆∗ = max
ℓ∈{1,…,𝐿}

𝑓(𝑅 ∙ 𝜔ℓ, 𝜔ℓ) /𝐼. 

 

 

 

 

 

 

 

 


