
Chapter 3
An Introduction to CNLS and StoNED
Methods for Efficiency Analysis: Economic
Insights and Computational Aspects

Andrew L. Johnson and Timo Kuosmanen

3.1 Introduction

Efficiency analysis is an interdisciplinary field that spans such disciplines as eco-
nomics, operations research and management science, and engineering. Theory and
methods of efficiency analysis are utilized in several application fields including
agriculture, banking, education, environment, health care, energy, manufacturing,
transportation, and utilities. Efficiency analysis can be performed at different levels
of aggregation: micro-applications range from individual persons, teams, produc-
tion plants, and facilities to company-level and industry-level efficiency assess-
ments, while macro-applications range from comparative efficiency assessments of
production systems or industries across countries to efficiency assessment of
national economies. Indeed, improved efficiency is one of the critical components
of productivity growth over time, which in turn is the primary driver of economic
welfare. As macro-level performance of a country is simply an aggregate of the
individual firms operating within that country, sound micro-foundations of effi-
ciency analysis are essential for macro-level productivity and efficiency analysis.
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Traditionally, the field of efficiency analysis was divided between two com-
peting paradigms:

• Data Envelopment Analysis (DEA) (Farrell 1957; Charnes et al. 1978; see the
chapter by Ray and Chen in this book)

• Stochastic Frontier Analysis (SFA) (Aigner et al. 1977; Meeusen and Van-
denbroeck 1977; see the chapter by Kumbhakar and Wang in this book).

DEA is an axiomatic, mathematical programming approach to efficiency analysis
that does not assume any particular functional form for the frontier or the distri-
bution of inefficiency. The main advantage of DEA compared to econometric,
regression-based tools is its nonparametric treatment of the frontier, building upon
axioms of production theory such as free disposability (monotonicity), convexity
(concavity), and constant returns to scale (homogeneity). However, the main
shortcoming of DEA is that it attributes all deviations from the frontier to ineffi-
ciency. In contrast, SFA utilizes parametric regression techniques, which require ex
ante specifications of the functional forms of the frontier and the inefficiency dis-
tribution. The strength of SFA is its probabilistic modeling of deviations from the
frontier, which are decomposed into an inefficiency term and noise term that
accounts for omitted factors such as unobserved heterogeneity of firms and their
operating environments, random errors of measurement and data processing,
specification errors, and other sources of noise. We stress that DEA and SFA
methods should not be viewed as direct competitors, but rather complements: in the
trade-off between DEA and SFA something must be sacrificed for something to be
gained. DEA does not model noise, but is able to impose axiomatic properties and
estimate the frontier nonparametrically, whereas SFA cannot impose axiomatic
properties, but has the benefit of modeling inefficiency and noise.

For a long time, bridging the gap between axiomatic DEA and stochastic SFA
was one of the most vexing problems in the field of efficiency analysis. The recent
works on convex nonparametric least squares (CNLS) by Kuosmanen (2008),
Kuosmanen and Johnson (2010), and Kuosmanen and Kortelainen (2012) have led
to the full integration of DEA and SFA into a unified framework of productivity
analysis, which we refer to as Stochastic Nonparametric Envelopment of Data
(StoNED). The development of StoNED is not only a technical innovation; it is a
paradigm shift for efficiency analysis. With StoNED, we no longer need to consider
whether modeling noise is more important than imposing axioms of production
theory: StoNED enables us to do both. The unified framework of StoNED offers
deeper insights into the economic intuition and foundations of DEA and SFA, but it
also provides a more general and flexible platform for efficiency analysis and
related themes such as frontier estimation and production analysis. Further, a
number of extensions to the original DEA and SFA methods have been developed
over the past decades. The unified StoNED framework allows us to combine the
existing tools of efficiency analysis in novel ways across the DEA-SFA spectrum,
facilitating new opportunities for further methodological development.

The purpose of this chapter is to provide an introduction to the CNLS and
StoNED estimators and review the basic economic foundations of CNLS and
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StoNED in order to introduce the related mathematical programming formulations
and the computational codes. For a more detailed discussion about the theoretical
properties and extensions of CNLS and StoNED, we refer the reader to Kuosmanen
et al. (2014).

We provide detailed examples of computational codes for two popular high-level
mathematical computing languages: The General Algebraic Modeling System
(GAMS: see http://www.gams.com) and matrix laboratory (MATLAB: see http://
www.mathworks.com/products/matlab/). While other computing languages or
environments such as R, Python, or AIMMS can be equally well be used, com-
puting the CNLS estimator even for a relatively small sample of observations
necessitates the use of mathematical modeling environment and high-performance
mathematical programming solvers for quadratic programming (QP) or nonlinear
programming (NLP), depending on the model formulation. A stable of integrated
solvers are available for both GAMS and MATLAB, which makes these two
mathematical computing languages convenient environments for computing the
CNLS or StoNED estimators.1 While we restrict the example formulations provided
in this chapter to these two computing languages, we would like to encourage
computationally savvy practitioners to develop their own codes for other compu-
tational languages such as R or Python.

Benchmark regulation of local monopoly is one of the most significant appli-
cations of frontier estimation techniques. Several government regulators across the
world apply either DEA or SFA to estimate efficiency improvement targets (see
e.g., Bogetoft and Otto 2011, Chap. 10, for a review). The Finnish Energy Market
Authority became the first to adopt the semi-nonparametric StoNED method
(Kuosmanen and Kortelainen 2012; Kuosmanen 2012) as an integral part of the
regulation of electricity distribution firms in 2012. In Sect. 3.2, we briefly introduce
the Finnish data as an illustrative application, and in Sects. 3.3.2 and 3.7.2.1, we
present estimation results.

This chapter is organized as follows. Section 3.2 describes the underlying pro-
duction model for StoNED. Section 3.3 describes the first step of the StoNEDmodel,
the conditional mean estimation of a production function using the CNLS estimator,
and introduces GAMS and MATLAB code. Section 3.4 explains how to improve
the computation of the CNLS estimator and presents the related GAMS and
MATLAB code. Section 3.5 describes some of the standard extensions which we
find useful in a variety of applications. Code for these extensions is included.
Section 3.6 describes the relationship between CNLS and deterministic estimators to
further motivate the nested and unifying nature of the underlying production model
for StoNED, with code for specific estimators. Section 3.7 describes the four steps to
implement the StoNED estimator and related code, and Sect. 3.8 concludes.

1 We have found CVX, an additional toolbox that must be downloaded separately, for MATLAB
performs well. Also our experience is, CPlex, Minos, XA are solvers for GAMS that perform well.
However, because the computational optimization algorithms differ between software, often slight
differences in the results exist for both QP and NLP problems.
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3.2 Unifying Framework of StoNED

To maintain direct contact with SFA, we introduce the unified model of frontier
production function in the multiple-input, single-output case.2 Production tech-
nology is represented by a frontier production function f(x) where x is a m-
dimensional input vector. Frontier f(x) indicates the maximum output that can be
produced with inputs x. In other words, function f(x) represents the boundary of the
production possibility set T, such that T ¼ x; yð Þ : y� f ðxÞf g. We assume that
function f is continuous, monotonic increasing, and concave. This is equivalent to
stating that the production possibility set satisfies the classic DEA assumptions of
free disposability and convexity.3 In contrast to SFA, no specific functional form
for f is assumed. Further, function f does not have to be smooth or differentiable.

The observed output yi of firm i (i ¼ 1; . . .; n) can differ from f(xi) due to inef-
ficiency and noise. We present a composite error term ei ¼ vi � ui, which consists
of the inefficiency term ui [ 0 and the stochastic noise term vi, formally,

yi ¼ f ðxiÞ þ ei
¼ f ðxiÞ � ui þ vi; i ¼ 1; . . .; n

ð3:1Þ

Inefficiency ui and noise vi are random variables that are assumed to be statis-
tically independent of each other as well as of inputs xi. The inefficiency term has a
positive mean denoted by EðuiÞ ¼ l[ 0, and a constant finite variance denoted by
VarðuiÞ ¼ r2u\1. The noise has zero mean, that is E við Þ ¼ 0, and a constant finite
variance: VarðviÞ ¼ r2v\1.4 The model described is nonparametric; in Sect. 3.7,
we will introduce additional distributional assumptions as those become necessary.

Kuosmanen and Kortelainen (2012) present model (3.1) that melds the key
characteristics of DEA and SFA into a unified model: the deterministic part (i.e.,
frontier f) is defined similar to DEA, while the stochastic part (i.e., composite error
term ei) is analogous to SFA. As a result, model (3.1) encompasses the classic DEA
and SFA models as its special cases. Note that we use the term “model” in the
econometric sense to refer to the data generating process (DGP). In this terminol-
ogy, DEA and SFA are called estimators: DEA and SFA are methods for estimating
the production function f, the expected inefficiency l, and the firm-specific real-
izations of the random inefficiency term ui.

5

2 For extensions to the general multi-input multi-output setting, see Kuosmanen et al. (2014).
3 See Sect. 2.3.2 of the Chapter by Ray and Chen in this book for a more detailed description of
the assumptions regarding the production possibility set.
4 Modeling heteroskedastic inefficiency and noise is discussed in Kuosmanen et al. (2014),
Sect. 8.
5 Our discussion centers on estimators based on ordinary least squares. The attempts of Banker
and Maindiratta (1992) to combine axiomatic estimation with standard models of noise in a
maximum likelihood framework should also be recognized. However, to the best of our knowl-
edge no applications of this maximum likelihood approach exist do to computational challenges.
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Conventional approaches to efficiency analysis have mainly focused on either
fully parametric or fully nonparametric versions of model (3.1). Parametric models
assume a specific functional form for f (e.g., Cobb-douglas or translog) and subse-
quently estimate the unknown parameters. In contrast, axiomatic nonparametric
models assume that f satisfies certain axioms of the production theory (e.g., mono-
tonicity and concavity), but no particular functional form is assumed. In addition to
the pure parametric and nonparametric alternatives, the intermediate cases of semi-
parametric and semi-nonparametric models have become increasingly popular dur-
ing the past decade.6 We will review some recent developments in the axiomatic
nonparametric and semi-nonparametric approach in the following sections.

To place the different model specifications and estimation approaches in the
proper context, Table 3.1 combines the criteria of parametric versus nonparametric
and considered neoclassical, deterministic frontier, and stochastic frontier to iden-
tifying six categories of models. For each category, an estimator together with some
key references is included. On the parametric side, OLS refers to ordinary least
squares, PP means parametric programming, COLS is corrected ordinary least

Table 3.1 Classification of methods

Parametric Nonparametric

Neoclassical (central tendency) OLS CNLS (Sect. 3.3)

Cobb and Douglas (1928) Hildreth (1954)

Hanson and Pledger
(1976)

Deterministic
frontier

Sign
constraints

PP DEA (Sect. 3.6)

Aigner and Chu (1968) Farrell (1957)

Timmer (1971) Charnes et al. (1978)

Ray and Chen (in this
book)

2-step
estimation

COLS C2NLS (Sect. 3.6)

Winsten (1957); Greene
(1980)

Kuosmanen and Johnson
(2010)

Stochastic frontier SFA StoNED (Sect. 3.7)

Aigner et al. (1977) Kuosmanen and
Kortelainen (2012)Meeusen and

Vandenbroeck (1977)

Kumbhakar and Wang (in
this book)

6 We follow the terminology of Chen (2007), who provides the following intuitive definition: “An
econometric model is termed ‘parametric’ if all of its parameters are in finite dimensional
parameter spaces; a model is ‘nonparametric’ if all of its parameters are in infinite-dimensional
parameter spaces; a model is ‘semiparametric’ if its parameters of interests are in finite-dimen-
sional spaces but its nuisance parameters are in infinite-dimensional spaces; a model is ‘semi-
nonparametric’ if it contains both finite-dimensional and infinite-dimensional unknown parame-
ters of interests” Chen (2007, p 5552, footnote 1).
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squares, and SFA. The focus of this chapter is on the axiomatic nonparametric and
semi-nonparametric variants of model (3.1): CNLS refers to (Sect. 3.3), DEA
(Sect. 3.6), C2NLS (Sect. 3.6), and StoNED (Sect. 3.7).

Note there is an alternative literature using kernel regression methods pioneered
by Fan et al. (1996), see also Kneip and Simar (1996) and Kumbhakar et al. (2007).
Because kernel methods are based on local averaging in the neighborhood of a
particular observation ðxi; yiÞ, imposing axiomatic properties globally on kernel
methods is challenging. However, the work of Du et al. (2013) has made significant
progress to develop a kernel-based estimator with global shape restrictions. Du
et al.’s estimator faces similar computational challenges as CNLS because they also
rely on imposing the Afriat inequalities; however, their computational challenges
are perhaps more severe because they need to calculate the first derivative a large
number of times whereas in CNLS the first derivative at a particular point is just the
slope of the hyperplane. Further development of the relationship between kernel
regression methods and CNLS is a promising direction for future research.

3.2.1 Illustrative Application: Introduction

Consider an example data set of electricity distribution companies in Finland. In
“Appendix 2”, we include the full data set for 89 firms and data on seven variables:
operating expenses (OPEX), capital expenses (CAPEX), total expenses (TOTEX),
energy distribution (Energy), length of cabling (Length), number of customers
(Customers), and percentage of underground cabling (PerUndGr). For more details
about the data see Kuosmanen (2012). The primary model specification we use is a
production function where energy distributed is the output which is generated from
two inputs, labor and capital, proxied by OPEX and CAPEX7; however, we include
several other variables to allow the reader flexibility to experiment with other model
specifications. We include some numerical results estimating the most basic CNLS
estimator to the electricity distribution data in Sects. 3.3.2 and 3.7.2.1.

3.2.2 GAMS Code

Figure 3.1 shows an example of GAMS code to define sets, parameters,8 aliases,
and assign data. Lines 1–6 define the set i of firms, the set j of observed data
vectors, the set of inputs which is a subset of j, inp(j), and the set of outputs

7 The Finnish Energy Market Authority measures CAPEX as the replacement value of the capital
stock owned by the distributor depreciated by a constant depreciation rate. Thus, CAPEX is
directly proportional to the total capital stock.
8 The only distinction between parameters and variables in GAMS is variables are determined as
the results of an optimization problem, whereas parameters are assigned values via calculations or
assign statements.
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which is also a subset of j, outp(j). A convenient feature of GAMS is that one
can index the firms and inputs and refer to the indices. This feature proves par-
ticularly convenient for CNLS as we need to multiply input quantities of firm i with
the shadow prices of another firm, say firm h. To this end, we can define another
index h = 1,…,n that allows us to make comparisons across arbitrary pairs of firms
i and h by using the command alias as in Line 7. Line 10 defines a table called
data with i rows and j columns. Line 11 inserts a text file, Energy.txt, that is
located in the C: drive.9,10 The include statement pastes the text file into the GAMS
code, so it can be complied with the rest of the code. Lines 14–15 define the
parameter y and the dimensions of the parameters in terms of the subsets defined
previously. Lines 17–18 assign the values from the table data to the parameter y.

3.2.3 MATLAB Code

Within MATLAB, the definition of parameters is also necessary; however, the
variables are defined within the code for the quadratic program. We develop a
function in MATLAB called ComputeConcaveFn, shown in Fig. 3.2 below,
which reads in two parameters x and y, which are the n by m dimensional input
matrix and the n by 1 output vector, respectively. The function outputs three values,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Fig. 3.1 GAMS code for defining sets, parameters, and assigning data

9 When entering data, be sure to use good practices regarding significant figures. If you include
data with many significant figures, this will increase computational time significantly.
10 Note the path should be adjusted to point to the location where the data file is saved.
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eps (an n by 1 vector of residuals), phi (an n by 1 vector of functional estimates),
and beta1 (an n by m dimensional matrix of slope parameters), all to be discussed
further in the coming sections below.

3.3 Convex Nonparametric Least Squares (CNLS)

The first method in the rightmost column of Table 3.1 is CNLS. Since CNLS forms
the first step of both C2NLS and StoNED estimation procedures and as DEA can be
obtained as a restricted special case, it is natural to begin our review with CNLS.

The literature of nonparametric regression of concave curves dates back to
Hildreth (1954) who considered the maximum-likelihood (ML) estimation of a
monotonic increasing and concave yield curve of cotton in the case of a single-input
factor (fertilizer) and experimental data.11 Statistical properties of concave/convex
regression12 estimators have been examined by Hanson and Pledger (1976) and
Groeneboom et al. (2001a, b). Until recently, convex regression was restricted to the
univariate single-input single-output setting. Kuosmanen (2008) established CNLS
estimator that applies to the general multivariate case. Kuosmanen and Johnson
(2010) applied CNLS to efficiency analysis, proving DEA as a restricted special case
of CNLS. Kuosmanen and Kortelainen (2012) introduced the StoNED method that
combines CNLS with the composite error term adopted from the SFA literature.

To gain insight, we first consider the CNLS estimator in the single-input case.
The more general multiple-input case will be considered in Sect. 3.3.2 below.

3.3.1 CNLS in the Single-Input Case

To illustrate the concept, suppose the production function f is twice continuously
differentiable and denote the first derivative of the production function by f 0 and the
second derivative by f 00. In theory, we could try to fit a function f to the observed
data points (xi, yi), minimizing the sum of squares of deviations as in OLS, subject

Fig. 3.2 MATLAB code for defining parameters and reading in data

11 The parallel literature of isotonic regression (Ayer et al. 1955; Brunk 1955; Barlow et al. 1972)
considers estimation of monotonic increasing or decreasing curves without imposing concavity or
convexity. Keshvari and Kuosmanen (2013) introduced isotonic regression to efficiency analysis.
12 From this point forward, we will refer to convex regression, recognizing that concave
regression can be achieved through reversing an inequality, discussed in Sect. 3.3.2.
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to the constraints for the first and second derivative of function f. Such a non-
parametric least squares estimator can be formally stated as

min
f

Xn
i¼1

ðyi � f ðxiÞÞ2

subject to

f 0ðxiÞ� 0 8 i; . . .; n
f 00ðxiÞ� 0 8 i; . . .; n

ð3:2Þ

However, there are potentially an infinite number of functions that satisfy the
constraints for the first and second derivative in the observed data points, and hence,
the least squares problem cannot be solved by numerical methods or by brute force
trial and error. Indeed, we first need to parametrize the infinite-dimensional problem
in such a way that it can be submitted to an optimization algorithm or solver for
numerical optimization.

Hildreth (1954) recognized that we can order the observations from smallest to
largest in terms of the input values, xi. For a given set of observed data points
ðxi; yiÞ; i ¼ 1; . . .; n, define the estimated value of f xið Þ for firm i by /i. Then for
any pair of adjacent observations, xi and xiþ1, the estimates should satisfy /i �/iþ1
since the true f is monotonic increasing function of input x. Further, we can cal-

culate the slope connecting the predicted observations, /iþ1�/i
xiþ1�xi

. For the estimated

function to be concave, the slope of the lines connecting the predicted output levels
between two neighboring pairs of observations must be decreasing,
/iþ1�/i
xiþ1�xi

� /iþ2�/iþ1
xiþ2�xiþ1

. Thus, we solve the following QP problem

min
/

Xn
i¼1

ðyi � /iÞ2

subject to

/i �/iþ1 8 i; . . .; n� 1

/iþ1 � /i

xiþ1 � xi
� /iþ2 � /iþ1

xiþ2 � xiþ1
8 i; . . .; n� 2

ð3:3Þ

Hildreth (1954) and Hansen and Pledger (1976) only consider the single
regressor case, which in the production setting, means there is only one input or that
all inputs can be aggregated to a single aggregate input prior to estimating a
production function. While this case may seem too restrictive, to be of much use,
we include it because (1) shape restrictions may only be valid for a particular input;
(2) it can be solved quickly; and (3) the method to aggregate inputs could be
obvious.

We can illustrate the first reason by describing wind turbine electricity pro-
duction where power is the output and wind speed is the only input for which the
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shape constraints apply. In this case, the production function, which we call the
power curve, has a distinct S-shape. Once we estimate the inflection point,13 we can
estimate the power curve by a convex function for low wind speeds and a concave
function for high wind speeds. Note that other factors influencing power output,
e.g., wind direction, wind density, and humidity, do not have a monotonic or
convex relationship with power output and thus could enter the model parametri-
cally or via another estimation method. Second, when there is only a single
regressor, a complete ordering of observations is possible. This ordering, as shown
below, will significantly improve computational performance. Third, in some
applications additional restrictions may allow aggregation of multiple inputs to an
aggregate input. For example, we can aggregate multiple inputs to a single input
when we assume homothetic input sets, Olesen and Ruggiero (2014).

Next we consider the estimation of a concave function in two dimensions. Fig-
ure 3.3 shows a CNLS estimate for this example. We randomly generate 50 obser-
vations as x ¼ uniform 1; 10½ � and y ¼ 3þ 3:8 ln xþ v where v ¼ normð0; 0:6Þ.
Even though there can potentially be one hyperplane for each observation, CNLS
requires only four hyperplanes to minimize the sum of squared errors. Often, CNLS
estimation results in significantly fewer hyperplanes than observations, a fact that can
be used to improve the computational algorithm (see details in Sect. 3.4).

3.3.1.1 GAMS Code

This section describes the variables and equation definitions necessary to estimate
CNLS in the single-input case. The code in Fig. 3.4 should be appended to the
bottom of the code from Fig. 3.1. Lines 1–3 define the necessary variables for the
CNLS QP problem. Variable phi corresponds to / defined in (3.3). GAMS
optimizes a single variable, and in this case, it minimizes sse. In GAMS, it is not
necessary to include nonnegativity constraints, we simply define phi as a positive
variable (Lines 5–6). Two additional sets are needed to define the monotonicity
constraints and concavity constraints in (3.3), a set that contains i − 1 firms and set
that contains i − 2 firms which are subsets of i and defined as im1(i) and im2
(i) in Lines 9 and 10, respectively. Three equations are needed to define the
CNLS formulation and we name them obj, mono, and conv1. The equality
constraint obj is necessary to define the value of sse. The equation mono(im1)
indicates there are n − 1 constraints of type mono defined by indexing over
i. Similarly, there are n − 2 constraints of the type conv1(imb). Line 28 defines
the model which includes all three types of constraints.

13 In a power curve or s-shape single-input production function, the inflection point in the input
value at which the second derivative changes sign or in other words where the production function
changes from being a convex function to a concave function.
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3.3.1.2 MATLAB Code

MATLAB uses CVX,14 a modeling system that automatically generates the con-
straints of CNLS, thus avoiding the need to explicitly enumerate them in matrix

0
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12

14

0 2 4 6 8 10 12

O
u
tp
u
t

Input

Fig. 3.3 CNLS estimation for a 2-dimensional example with 50 randomly generated observations

Fig. 3.4 GAMS code for CNLS in the single-input case

14 www.cvxr.com.
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form. Figure 3.5 presents stand-alone code for CNLS with a single input. Line 1
defines a function that reads in two parameters x and y, which are the n by 1-
dimensional input matrix and the n by 1 output vector, respectively. The function
outputs two values, eps(an n by 1 vector of residuals) and phi(an n by 1 vector of
functional estimates). Line 2 defines n the number of observations from the
parameter y. Line 4 indicates where the code to be read by CVX begins. Line 5
defines the variable for the CNLS problem and its dimensions. Variable phi
corresponds to / defined in (3.3). Line 4 specifies the objective function as the 2-
norm between the observed value y and the predicted value /. Note that the default
value of norm is the 2-norm, so norm(y-phi) and norm(y-phi,2) are
equivalent. Line 7 can be omitted, but we include it to make clear where the
constraint section begins. The loop in Lines 9–11 imposes the (n − 1) monotonicity
constraints. The loops in Lines 13–16 construct (n − 2) concavity constraints. Line
19 calculates the residuals called eps.

3.3.2 Convex Nonparametric Least Squares with Multiple
Regressor

Kuosmanen (2008) extended Hildreth’s approach to the multivariate setting with a
vector-valued x and named the method CNLS. CNLS estimates an unknown pro-
duction function f belonging to the set of continuous, monotonic increasing and
globally concave functions, F2. We obtain the CNLS estimator of function f as the
optimal solution to the infinite-dimensional least squares problem

Fig. 3.5 MATLAB code for the CNLS in the single-input case
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min
f

Xn
i¼1

ðyi � f ðxiÞÞ2

subject to

f 2 F2

ð3:4Þ

Note that set F2 includes an infinite number of functions, which makes (3.4)
impossible to solve through brute force trial and error. In general, (3.4) does not
have a unique solution for any arbitrary input vector x, but the estimated values, f
(x), for the observed data points ðxi; yiÞ; i ¼ 1; . . .; n are unique.

We solve (3.4) for the observed data points ðxi; yiÞ; i ¼ 1; . . .; n, by solving the
following finite-dimensional QP problem

min
a;b;e

Xn
i¼1

ðeCNLSi Þ2

subject to

yi ¼ ai þ b0ixi þ eCNLSi 8i
ai þ b0ixi � ah þ b0hxi 8h; i
bi � 08i

ð3:5Þ

where ai and bi define the intercept and slope parameters of the tangent hyperplanes
that characterize the underlying true function15 and symbol eCNLSi denotes the
CNLS residual. Kuosmanen (2008) shows that the optimal solution to (3.5) is
always equal to the optimal solution of (3.4) in the sense that the objective function
values are equal.

The CNLS formulation includes a quadratic objective function and constraints
are linear equalities and inequalities; thus, it is a QP problem. The first set of
equality constraints in (3.5) appears as a regression type constraint with additional
i subscripts on the parameters. These n constraints define the potentially n different
hyperplanes which we use to approximate the unknown underlying production
function. Typically, n hyperplanes are not needed (see example in Sect. 3.3.1).
Because the production function estimated by the optimal solution to (3.5) is unique
only for the input levels associated with observed data, Sect. 3.3.3 describes a
second step linear program which allows the estimation of a unique lower bound
function.

15 Note in our notation, b0ixi ¼ bi1xi1 þ bi2xi2 þ � � � þ bimxim: Further, this formulation is
intended to show the relationship to other mathematical models, i.e., classic OLS regression and
the Afriat inequalities. For computational purposes, the problem may be reformulated to reduce
the number of variables and/or constraints as discussed in Sect. 3.4.1.
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The second set of constraints are the Afriat inequalities, see for example Afriat
(1967, 1972) and Varian (1984). Kuosmanen (2008) notes the Afriat inequalities
are the key to modeling concavity in the general multiple regression setting.16

Figure 3.6, an enlargement of Fig. 3.3, illustrates the effect of the Afriat inequalities.
We note that the Afriat inequalities require that for a specific observation, xi, the
estimated functional value using the parameters associated with hyperplane i will be
less than or equal to xi evaluated using any other observation’s hyperplane. Thus,
all hyperplanes not associated with i must be above i’s hyperplane. In other words,
the a and b for all red observations must correspond to the bold hyperplane’s
parameters.

3.3.2.1 GAMS Code

This section describes the variables and equation definitions and constructs the
programming model. The code in Fig. 3.7 should be appended to the bottom of the
Fig. 3.1 code. Lines 1–4 defines the parameter x and assigns data. Lines 6–10 define
the necessary variables for the CNLS QP problem. alpha and beta correspond to
the a and b defined in (3.5) in the text above, e corresponds to eCNLS in (3.5), and
sse is the objective function value, i.e., the sum of squared errors. beta is defined
as a positive variable (Lines 12–13). Three equations are needed to define the CNLS
formulation and we name them obj, err, and conv. Equation err(i) indicates
there are n constraints of type err defined by indexing over i. Similarly, there are n2

constraints of the type conv(i,h). These are the Afriat constraints we defined
above for all pairs of i and h. GAMS optimizes a single variable, and in this case, it
minimizes sse; thus, the equality constraint obj is necessary to define the value of

Fig. 3.6 A specific hyperplane (shown in black and bold); for all observations (shown in red*)
between the thin bluevertical lines, the Afriat inequalities ensure that their estimated hyperplane
parameters correspond to the lowest hyperplane on that input interval

16 For those familiar with DEA, the parameters ai and bi are analogous to u0 and u in the
multiplier formulation of DEA.
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sse. Lines 27–28 define the model which includes all three types of constraints;
thus, we use/all/(in the case that we prefer to include only a subset of constraints,
we would use/obj, err, conv/). Line 30 commands GAMS to solve CNLS using
quadratically constraint program with the objective of minimizing the variable sse.

Section 3.4.1 will present an alternative formulation that facilitates the use of
disciplined convex programming required by the MATLAB-based modeling sys-
tem CVX.

3.3.2.2 Illustrative Application: Estimation Results

For illustrative purposes, we calculate the standard CNLS estimator using
GAMS for the Finnish electricity distribution data provided in “Appendix 2”. This
section describes the estimates of the production function. For more details
regarding the estimates of the inefficiency and noise distributions, see Sect. 3.7.2.1.

Table 3.2 reports some descriptive statistics of the marginal products and elas-
ticities of substitution. The estimated production function is a piece-wise linear
function consisting of facets characterized by the variables a and b. Recall we allow
a and b to be firm-specific, but in practice, the estimated variables are clustered to
a smaller number of facets. Figure 3.8 illustrates the production possibility set.

Fig. 3.7 GAMS code for the basic CNLS formulation
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The hyperplanes are enumerated using the Fourier-Motzkin method described in
Keshvari (2014).

We can interpret the values reported in Table 3.2 as follows. A one euro increase
in labor increases the electricity transmitted by 0.13 GWh for the median distrib-
utor. Alternatively, a one euro increase in capital has a smaller increase of just
0.008 GWh for the median distributor. Between the 25th percentile and the 75th
percentile, the effects of labor and capital vary only slightly, indicating there is not
much difference in the effectiveness of labor and capital across the majority of firms.
Note the minimum and the maximum of the marginal products of both labor and
capital approach zero and infinite, respectively. This characteristic is standard for
variable return-to-scale estimators. The elasticity of substitution between labor and
capital is 16.52 for the median distributor. This elasticity for the 75th percentile
distributor is similar to the median, while the 25th percentile distributor’s elasticity
is 12.18. These elasticity values indicate there is not much difference in the rate of
substitution of labor for capital across distributors. Again, the minimum and the
maximum of the elasticity of substitution approach zero and infinite, respectively.

Table 3.2 Estimated characteristics of the production function

Marginal product Elasticity of substitution

Labor Capital Labor/capital

Min 0.00 0.00 3.62E−07

25th percentile 0.13 0.008 12.18

Median 0.13 0.008 16.52

75th percentile 0.14 0.011 16.62

Max 90,644 75,788 5,007,995
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Fig. 3.8 The 3-D production function estimated using CNLS
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This is typical of piece-wise linear approximations, some part of the frontier is only
weakly efficient, but this assures the input isoquant remains in the positive orthant.

3.3.3 Estimating the Production Function for Unobserved
Input Levels

CNLS estimates uniquely the output level associated with the observed inputs levels.
However, there are multiple optimal solutions to (3.5) because infinitely many

different functions go through the set of points xi; /̂ðxiÞ
� �

that minimizes the sum of

squared errors. These different solutions imply different frontiers for these regions
without observations. To specify unique /ðxiÞ for x not observed in the data sample,
we define a linear program to identify the lower bound of the set of functions that
minimize the least squares criteria. Formally, there exists a set of functions /� 2 F�

2
that solve the optimization problem (3.5). We denote the set of alternate optima

F�
2 ¼ /� /� ¼ argmin

f2F2

Xn
i¼1

ðyi � /ðxiÞÞ2
�����

( )
:

Kuosmanen (2008) characterizes the lower and upper bounds for the functions
/� 2 F�

2 . To select among the functions /�, Kuosmanen and Kortelainen (2012)
suggest using the minimum extrapolation principle from Banker et al. (1984); thus,
use the lower bound

/̂k
minðxÞ ¼ min

a;b
aþ b0xk aþ b0xkj � /̂ðxiÞ 8 i ¼ 1; . . .; n
n o

ð3:6Þ

Note that the lower bound function maintains the axioms of monotonicity and
concavity.17

3.3.3.1 GAMS Code

This section describes the variables and equation definitions to estimate the lower
bound function. The code in Fig. 3.9 should be appended to the bottom of the
following collection of code: the code in Fig. 3.1 and followed by the code in Fig. 3.7.
Equation (3.6) reestimates a and b using the observed input data, xi, and the predicted
output /̂ðxiÞ. Lines 1–4 define the variables. The variables alphale and betalb
are used to represent the reestimates of a and b. The variable objvlb is just an

17 The linear program used to calculate the lower bound function f̂ CNLSmin is equivalent to the DEA
estimator under the assumption of variables returns to scale and replacing the observed output
levels with the estimated output level f̂ CNLSðxiÞ coming from (3.5).
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aggregation variable that allows us to minimize the single variable objvlb. Line 7
imposes monotonicity in the reestimation by restricting b to be nonnegative, this is
technically not need because the observed input and predicted output pairs already
satisfy monotonicity. Line 10 defines the variable phihat(i) that will be assigned
the value /̂ðxiÞ. Because /̂ðxiÞ was not previously defined, Line 14 calculates the
value of /̂ðxiÞ. Line 11 defines xk(m), the input vector of the interpolation point of
interest, and Lines 15–16 assign values to the vector. Lines 18–20 define the equation
names for the linear programming problem that will be used to estimate the lower
bound function. Lines 22–25 assign the explicit equations. Note that one linear
program needs to be solved for each interpolation point of interest. Lines 27–28
define the model lowerbound which consists of two constraints objle and
errle. Line 30 commands GAMS to solve model lowerbound using linear
programming methods with the objective of minimizing the variable objvlb.

3.3.3.2 MATLAB Code

Figure 3.10 presents the MATLAB code for estimating the lower bound function.
Lines 2–4 from Fig. 3.2 and the code from Fig. 3.11 should be inserted into
Fig. 3.10 at Line 2. Line 1 defines a function that reads in three parameters x, y, and
xk, which are the input matrix and the output vector and input vector of the

Fig. 3.9 GAMS code for the estimation of the lower envelop

134 A.L. Johnson and T. Kuosmanen



interpolation point of interest, xk, respectively. The function outputs a vector of
residuals eps, vector of functional estimates phi, the slope coefficients from the
original CNLS estimation beta1, and the parameters of the reestimated lower
bound function hyperplane, alphalb and betalb. Line 3 constructs a vector of
length m of zeros which will be used in the monotonicity constraint. Lines 5–6
define the variables. The variables alphalb and betalb are used to represent the
reestimates of a and b. Line 7 specifies the objective function and is the minimi-
zation of aþ b0xk . Line 10 imposes monotonicity in the reestimation by restricting
b to be nonnegative. Lines 12–14 define the n equations which assure the estimated
hyperplane is above all the estimated function values, /̂ðxiÞ. This linear program
needs to be solved once for every interpolated point of interest.

3.4 Computational Improvement Algorithm

Direct implementation of (3.5) in GAMS or in MATLAB works well for problems
with 50–250 observations, whereas computational improvements, such as those
described in this section, are needed for larger problems.18 Although for small
instances the optimization problems solves quickly, the number of Afriat inequalities
in (3.5)19 grows quadratically in the number of observations. Specifically, adding a
new firm to the sample increases the number of unknown parameters by m + 2, and
the number of Afriat inequality constraints increases by 2n. The effects of adding
additional input variables are less severe. Specifically, an additional input variable

Fig. 3.10 MATLAB code for the estimation of the lower envelop

18 Our experiments with GAMS were performed on a personal computer with an Intel Core i7
CPU 1.60 GHz and 8-GB RAM. The optimization problems were solved in GAMS 23.3 using the
CPLEX 12.0 Quadratically Constrained Program (QCP) solver. Our experiments with MATLAB
were performed on a laptop computer with an Intel Core i5 CPU 2.50 GHz and 4-GB RAM.
19 From this point forward, we refer to only Eq. (3.5), but issues regarding (3.5) apply equally to
(3.7) below.

3 An Introduction to CNLS and StoNED Methods for Efficiency Analysis 135



increases the number of unknown parameters by n, with no impact on the number of
constraints. In this section, we describe an alternative formulation which is more
concise and a computational improvement algorithm proposed by Lee et al. (2013).20

3.4.1 Alternative Formulation

Alternative formulations of CNLS are possible. The following formulation facili-
tates the use of disciplined convex programming required by the MATLAB-based
modeling system CVX. All other variables and parameters remain as defined pre-
viously. Thus,

min
/;b

y� /k k2
subject to

/i � /h � b0i xi � xhð Þ 8 i; h i 6¼ h

bi � 0 8 i

ð3:7Þ

The objective minimizes the L2 norm between y the observed data and /, which
is equivalent to minimizing the sum of squared errors. Formulation (3.7) can be
derived from (3.5) by eliminate the equality through substitution for eCNLSi in the
objective. We replace n decision variables ai with / using the relationship
ai ¼ /i � b0ixi. Then, we construct the Afriat inequalities by substituting / for the
left-hand side, substituting out ah using ah ¼ /h � b0hxh, and rearranging the terms.
This formulation has n n� 1ð Þ inequality constraints, n� m nonnegative constraints
(one for each observation and dimension of the input vector), and n 1þ mð Þ deci-
sion variables.

3.4.1.1 MATLAB Code

Figure 3.11 shows the code for estimating the concise formulation of CNLS in
MATLAB. This code should be appended to the bottom of the code presented in
Fig. 3.2. Line 1 indicates where the code to be read by CVX begins. Lines 3–4
define the variables for the CNLS problem and their dimensions. Variable phi
corresponds to / defined in (3.7). The variable beta1 is used for b defined in (3.7).
Line 5 specifies the objective function as the 2-norm between the value y the
observed data and /. Line 8 imposes the monotonicity constraint. In Fig. 3.2, l is
defined as a matrix of size n by m of zeros; thus, Line 8 imposes that all components
of the b matrix must be nonnegative. The loops in Lines 10–15 construct n(n − 1)

20 Approximation algorithms are also possible strategies, but we focus on calculating the exact
solution to the CNLS formulation.
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constraints equivalent to the Afriat inequalities; see (3.7). The comparison of i and
h when i is equal to h is trivially equality, so this formulation avoids generating
these constraints.

3.4.2 Constraint Reduction Technique

Lee et al. (2013)’s algorithm uses a constraint reduction technique to identify an
initial set of constraints and iteratively add violated constraints until all necessary
constraints are included. Specifically, we focus on the sweet spot approach for
identifying initial constraints and group addition for adding violated constraints,
because this combination allows problems with up to 1,000 firms to be solved.21

We also note that Hannah and Dunson (2013) have reported promising results
implementing an alternative fitting algorithm.

Lee et al. constraint reduction technique that iterates between two operations:
(A) solving a version of (3.5) including only a subset of the Afriat inequalities, and
(B) verifying whether the obtained solution satisfies all of the Afriat inequalities; if
it does, then the algorithm terminates; otherwise, the initial subset is augmented
with some of the violated constraints and the process restarts.

Fig. 3.11 MATLAB code for the basic CNLS formulation

21 Lee et al. found that if there were more than 100 observations, the group strategy for adding
constraints was always preferred to other methods tested and that the sweet spot strategy’s
threshold value could be adjusted based on the number of observations and the dimensionality of
the data. In the experiments of Lee et al., they generate input data uniformly and do not correlate
the inputs. However, when input variables are correlated CNLS becomes easier to solve. Thus, in
observed data where the inputs are typically highly correlated, the computational improvement will
allow problems even larger than 1,000 observations to be solved.
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We define the following formulation, which Lee et al. refer to as the relaxed
CNLS problem (RCNLS)

min
a;b;e

Xn
i¼1

e2i

Subject to

yi ¼ ai þ b0ixi þ ei for i ¼ 1; . . .; n

ð3:8aÞ

ai þ b0ixi � ah þ b0hxi8 i; hð Þ 2 V ð3:8bÞ

bi � 0 for i ¼ 1; . . .; n; ð3:8cÞ

where V is a subset of all the observation pairs, and thus, the concavity constraints
(3.8b) are a subset of all the Afriat inequalities defined in (3.5). Specifically,

1. Let t ¼ 0 and let V be a subset of the observation pairs.

2. Solve RCNLS to find an initial solution, ðað0Þi ; bð0Þi Þ:
3. Do until ðaðtÞi ; bðtÞi Þ satisfies all concavity constraints Eq. (3.8b):

3:1 Select a subset of the concavity constraints that ðaðtÞi ; bðtÞi Þ violates and
let V ðtÞ be the corresponding observation pairs.

3:2 Set V ¼ V [ V ðtÞ:
3:3 Solve RCNLS to obtain solution ðaðtþ1Þ

i ; bðtþ1Þ
i Þ:

3:4 Set t ¼ t þ 1:

This algorithm requires methods to specify V (the initial constraints) and V ðtÞ

(the violated constraints). The next section gives the details.

3.4.2.1 Selecting Initial Constraints—The Sweet Spot Method

We begin by recognizing that the number of unique hyperplanes to construct a
CNLS production function is generally much lower than n as shown in Sect. 3.3.1.
In the optimal solution of CNLS (3.5), the concavity constraints that are satisfied at
equality correspond to pairs of observations that share a hyperplane in the CNLS
function. Because any particular hyperplane is only used to construct part of the
lower bound function in a particular region, it is perhaps obvious that observations
that share the same hyperplane should be close together under some distance metric.
To validate this intuition, we follow Lee et al. (2013) and generate 300 observations
of a two-input single-output equation, y ¼ x041 x042 þ v. We randomly sample
observations, x1; x2, from a uniform [1, 10] distribution and draw v from a normal

138 A.L. Johnson and T. Kuosmanen



distribution with a standard deviation of 0.7. Then, we solve both the CNLS
problem (3.5) and the additional linear program problem (3.6) to identify the
constraints that hold with equality in (3.6), the necessary constraints. The two
histograms in Fig. 3.12 show the Euclidean distances between a selected obser-
vation’s input vector and all other observations’ input vectors (in black) and the
distances between a selected observation’s input vector and all other observations’
input vectors corresponding to the necessary concavity constraints (in white).

The results of the simulation motivate the development of the sweet spot
approach defined as calculating the Euclidean distance between all pairs of
observations, i and h, and including the concavity constraints corresponding to the
observations whose distance is less than a pre-specified threshold value di (distance
percentile parameter). Thus, the “sweet spot” is the range between the 0th percentile
and the dti percentile. Empirically, Lee et al. find that an effective value for di is the
3rd percentile of the distances. However, adjusting di based on the number of
observations and the dimensionality of the problem improves the algorithm’s
performance, i.e., as the number of inputs increases, di should decrease. Lee et al.
also note that the relationship between the most effective value of di and the number
of observations is not monotonic. In their Monte Carlo simulations, Lee et al. find
that setting di to zero is effective when the number of observations is 200–400 and

Histogram of the distances between all pairs related to one particular observation that correspond to relevant
        concavity constraints

Histogram of the distances between all pairs related to one particular observation
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Fig. 3.12 The concavity constraints corresponding to nearby observations are significantly more
likely to be necessary than those corresponding to distant observations. (Reproduced with
permission from Fig. 3.2 in Lee et al. 2013) (The terms necessary concavity constraints and
relevant concavity constraints can be used interchangeable.)
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the number of inputs is 5–8.22 They conclude that a higher dimensionality (number
of inputs) is needed to justify setting di to zero as the number of observations
deviates further from 300.

3.4.2.2 Selecting Violated Constraints

While Lee et al. (2013) suggest three strategies for adding violated constraints, we
focus on the most effective strategy: adding a group of violated constraints,
CNLS + G. This strategy selects for each observation i, the most violated constraint
among the n − 1 concavity constraints related to observation i. We note that it can
add as many as n constraints in each iteration.

max
h

ati þ b0ti xi� ath þ b0thxi
� �� �

[ 0 8 i ¼ 1; . . .; n ð3:9Þ

Adding a group of violated constraints balances the number of iterations of the
algorithm against the size of the RCNLS problem solved in each iteration.

3.4.2.3 GAMS Code

The use of GAMS to implement the CNLS + G method is complicated, since the
code requires addition formulations of the CNLS quadratic optimization program
(see “Appendix 1” for the full code). Figure 3.13 describes the implementation of
the sweet spot method. Lines 2–5 define the equation names. Lines 8–13 define the
specific equation structure of the QP problem that is solved as the initial solution to
RCNLS. Line 15 defines the model CNLS1 which is the initial solution of RCNLS;
the subset of the Afriat constraints included in the sweet spot is included when
solving RCNLS. Line 17 flags the constraints that are close in terms of distance. We
calculate the data distance and distcut offline and read them into GAMS.
Line 19 triggers GAMS to solve model CNLS1 using quadratic constrained pro-
gramming (QCP) methods; typically, we use either CPLEX or MINOS.23 For the
iterative strategy of adding a group of violated constraints, the GAMS code in
“Appendix 1” shows an implementation.

3.4.2.4 MATLAB Code

The full implementation of Lee et al.’s constraint reduction technique in MATLAB
is provided in “Appendix 1”. Below Figs. 3.14 and 3.15 show excerpts from this

22 Setting di to zero implies that the set V is empty and (3.8a, b, c) is solved with only the (3.8a)
and (3.8c) constraints. V still grows via the addition of violated constraints in the algorithm.
23 Some preliminary test indicates that XA is very effective for solving CNLS problems.
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code and explain the implementation of the sweet spot initiation and iterative
addition a set of group constraints. Unlike the GAMS code, the distance between all
observations is calculated within the MATLAB code (Fig. 3.14, Line 2). The var-
iable prec is an input parameter to the MATLAB function and specifies the
threshold value as a percentage. Line 3 calculates a vector of length n of threshold
values, one for each observation i. Thus, it calculates the precth percentile for each
i the distance to all h observations. The (i, h) pairs within the precth percentile are
included in this initial set of constraints, e.g., if there are 100 observations, there are
10,000 distances. The diagonal elements of the distance matrix are zero, because
when i = j, there is no distance between the same observation; thus, these constraints

Fig. 3.13 GAMS code for sweet spot initial estimate

Fig. 3.14 MATLAB code for sweet spot algorithm
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are not included in the initial constraints. The two loops in Lines 6–18 build the
indicator matrix, indic, where, if the constraint associated with the (i, h) pair is to
be included in the initial set of constraints, then the (i, h) pair appears in the matrix.
indic has a width of two and is long enough to contain the precth percentile of
pairs. The two loops compare the distance value from the distance matrix to the
threshold. Line 8, the first if statement, evaluates whether the pair belongs in the
indic list. count keeps track of the number of pairs in the list and the temporary
variable, temp0, initiates the list. Line 11, the second if statement, separates the
initiation of the list from the step of adding a new value to the list.

The following MATLAB code, Fig. 3.15, iteratively adds a set of group con-
straints. For illustrative purposes, we include relevant portions of the code. Line 1
shows that a while-loop is needed for the iterative process of adding constraints.

Fig. 3.15 MATLAB code for iteratively adding a set of group constraints
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The temporary variable, temp3, has a zero value if all Afriat constraints are
satisfied by a solution to RCNLS. If all constraints are not satisfied, temp3 indi-
cates the number of constraints to be added in that iteration. Lines 4–8 construct the
constraints associated with the set V, (3.8b). count is the number of constraints in
the set V. Thus, Lines 5–9 include only the Afriat inequalities that have been
included in the indic list either through the initiation process or through the
iterative adding process. Lines 11–18 iterate through all n2 Afriat inequalities to test
if any of them are violated by the current solution from RCNLS, yhat(i) and
beta1(:,i). The variable, vio, is calculated for each Afriat inequality. If this
value is less than zero then it indicates the Afriat inequality is violated (more
negative values indicate more severe violations). Line 20 calculates the minimum
value of vio for each observation i, the variable, C, records the value, and I records
the index. Lines 24–30 iterate through all observations. Line 25 checks for any
observations with violated constraints. The variable, temp2, keeps track of the
number of observations with at least one violated constraint. The variable, temp4,
records the (i, h) pair of the most violated constraint. Line 28 adds this pair to the
indic list, so that set V now includes this most violated constraint. Line 32
calculates the variable, temp3, Line 33 updates count, and iter tracks the
number of times the while-loop cycles.

3.5 Extensions

A variety of extensions have been proposed for the CNLS and StoNED estima-
tors.24 Here, we focus on those that are most useful. Section 3.5.1 reviews the
multiplicative error term model and varying returns-to-scale assumptions, and
Sect. 3.5.2 discusses modeling the contextual variables.

3.5.1 Multiplicative Error Term and Returns to Scale

In some situations when modeling production, we find it useful to allow the error
term to enter multiplicatively. For example, a large firm is more likely to have larger
random or systematic deviations than a small firm, i.e., the variance of the error
term will increase with firm size. Therefore, modeling the error term with a constant
variance but allowing the error term to enter the model multiplicatively imposes a
specific heteroscedasticity model in which the variance of the error term increases
in firm size. In fact, the error term enters multiplicatively in standard functional
forms, e.g., Cobb-Douglas and translog production functions. Moreover, when
considering a constant returns-to-scale model with systematic inefficiency, we

24 For a more extensive summary, see Kuosmanen et al. (2014).
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might want to adjust the average function to be a frontier. However, if we allow the
intercept to move up from the origin, the frontier will violate the weak essential-
ity axiom.25 The multiplicative model shifts the average function multiplicatively
allowing the frontier function to still go through the origin.

To begin, we rephrase the standard production model in (3.1) with a multipli-
cative composite error structure as

yi ¼ f ðxiÞ � expðeiÞ ¼ f ðxiÞ � expðvi � uiÞ ð3:10Þ

Applying the log-transformation to Eq. (3.10), we obtain

ln yi ¼ ln f ðxiÞ þ ei: ð3:11Þ

Note that the log-transformation cannot be applied directly to inputs x and that it
must be applied to the production function f.

In the multiplicative case, we rephrase the CNLS formulation (3.5) as

min
a;b;/;e

Xn
i¼1

ðeCNLSi Þ2

subject to

ln yi ¼ ln/i þ eCNLSi 8 i
/i ¼ ai þ b0ixi 8 i
ai þ b0ixi � ah þ b0hxi 8 h; i
bi � 08 i

ð3:12Þ

where /i is the output corresponding to the ith hyperplane. Here, we can interpret
the first equality as the log-transformed regression equation. The second constraint
defines /i, the third constraint is the set of Afriat inequalities, and the fourth
constraint imposes monotonicity. A convenient feature of the multiplicative model
is that exp(ui) can be interpreted as the Farrell output efficiency measure.

Note that the multiplicative error terms cause the formulation of the CNLS
optimization problem to be a NLP, and significantly increasing the complexity of
the optimization problem. Whereas QP is in the class of polynomial-time solvable
problems, NLP is in the class of nondeterministic polynomial-time problems, often
referred to as NP. For the additive error term model, Lee et al. (2013) have reported
some computational improvements that make it possible to solve problems with up
to 1,000 observations,26 but it is unlikely that similar-sized limits could be achieved
for the multiplicative model, because of the difference in computational complexity
between QP and NLP. NLP solvers are available in GAMS, AIMMS, Lindo, and

25 Also called “the no free lunch” axiom, it states that the production of positive output is
impossible without the use of at least one input.
26 They limit their computational time to 5 h and use a GAMS/CPlex implementation.
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among others. However, the CVX toolbox in MATLAB does not handle nonlinear
programming, and thus, we confine the following discussion to GAMS.

3.5.1.1 GAMS Code

This section describes the variables and equation definitions and the construction of
the multiplicative error term CNLS programming model. The code Fig. 3.16 should
be appended to the bottom of the following collection of code: the code in Fig. 3.1
followed by Lines 1–18 from Fig. 3.7. Lines 1–2 define the additional constraint
that will be needed, hyp(i). In Lines 4–5, we introduce an additional variable,
phi(i). Note in the code everywhere /i appeared in the formulation we use (phi
(i) + 1). Adding one to /i is an effective way to keep the MINOS solver from
trying to take the logarithm of zero in a GAMS implementation. Lines 7–8 define
the data parameter LNY(i), and Line 10 assigns the parameter the value log(y(i)).
The definitions of the obj and conv equations remain the same as defined in
Fig. 3.7, so we focus on err and hyp. Using the convenient mathematical mod-
eling feature of GAMS to index the constraints, there are n constraints of both err
and hyp. The err constraints are equality constraints defining the e(i)values as
the difference between the log of output, LNY(i), and the log of the hyperplane
value, log (phi(i) + 1). The hyp constraints define the value of phi(i) to
equal the value of the hyperplane evaluation at xi minus one.

So far, we have focused on a concave production function with no particular
scaling properties imposed. However, scaling properties often are introduced to

Fig. 3.16 GAMS code for the multiplicative model

3 An Introduction to CNLS and StoNED Methods for Efficiency Analysis 145



productivity and efficiency analysis to reflect a firm’s behavior or to establish a
benchmark that encourages optimal scale properties. The most common scaling
property is constant returns to scale, i.e., if a particular production process is feasible,
we assume the output will scale similarly if all inputs are scaled proportionally
upwards or downwards. Specifically, a production function f ðxÞ has the constant
returns-to-scale property if f ðaxÞ ¼ af ðxÞ for a 2 <þ. We impose this property of a
production function estimate via CNLS through the additional restriction

ai ¼ 0 8 i

We can use the constraint in the additive formulation (3.5) or in the multipli-
cative formulation (3.12).

The CNLS formulations (3.5) and (3.12) are similar to the variable returns-to-
scale formulations from DEA in that they are convex estimators of the production
function that make no assumptions about the scaling properties.27 In some text-
books, Hackman (2008), the marginal concept of output elasticity is related to
returns to scale, defining increasing returns to scale in terms of a small proportional
change in all input levels, leads to an increase in output greater than the propor-
tional change of inputs. DEA assumes a concave production function and thus
increasing marginal productivity of input is not possible, but as Ray (2004) explains
if returns to scale is defined in terms of average productivity, then the region below
the most productive scale size is referred to as the increasing returns-to-scale
portion of the frontier.28

3.5.1.2 GAMS Code

The following code calculates the constant returns-to-scale (CRS) CNLS estimator.
The code Fig. 3.17 should be appended to the bottom of the following collection of
code: the code in Fig. 3.1 followed by Lines 1–18 from Fig. 3.7. We still include
the code for the original variable returns to scale (VRS) to facilitate comparison. We
note that the obj equation is identical to our previous GAMS code. Line 4 is the
non executed VRS code and Line 5 is the CRS code, the difference being that the
CRS code excludes the alpha(i) variables in both the err or conv equations.
By excluding the alpha(i) variables, the formulation is equivalent to setting

27 Of course, CNLS (3.5) and (3.12) differ from DEA in that these methods account for noise;
Sect. 3.6.2 describes the equivalence of CNLS and DEA under the deterministic assumption.
28 The DEA literature defines nonincreasing returns to scale and nondecreasing returns to scale
production functions. Within CNLS, similar production functions can be estimated by imposing
restrictions on the coefficients ai

Nonincreasing returns to scale (NIRS): impose ai � 0 8 i
Nondecreasing returns to scale (NDRS): impose ai � 0 8 i

.
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alpha(i) equal to zero for all i and imposing that all hyperplanes need to go
through the origin, the CRS property. We actually remove the alpha variables rather
than require that they are equal to zero, because reducing the number of variables
improves computational performance.

3.5.1.3 MATLAB Code

While the multiplicative formulation is not possible with MATLAB—CVX, a CRS
estimator is. Here, we present code, (Fig. 3.18), for an additive error term model
with the CRS scaling property. We start with the alternative formulation in
Sect. 3.4.1, the alpha(i) variable has been removed; thus, we must add addi-
tional constraints to impose the CRS property. Specifically, the n additional con-
straints constructed using Lines 4–6 that require the sum over m of the inputs, xi,
multiplied with the associated bi values must equal the function evaluated at the
input levels associated with i, phi(i).

3.5.2 Contextual Variables

A firm’s ability to operate efficiently often depends on operational conditions and
practices, such as technology selection or managerial practices. Efficiency estimates

Fig. 3.17 GAMS code for the constant returns-to-scale estimator

Fig. 3.18 MATLAB code for the constant returns-to-scale estimator
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help to identify longer term goals regarding performance, but often, the specific
operational or managerial practices that positively correlate with output will be
adopted immediately if possible.

We call the variables that characterize operational conditions and practices
contextual variables. Building on the multiplicative model described in Sect. 3.5.1,
we introduce a set of contextual variables represented by r-dimensional vectors zi,
i.e., the measured values of a firm’s operational conditions and practices. The
production function we estimate is the semi-nonparametric, partial log-linear
function described in Robinson (1988)

ln yi ¼ ln f ðxiÞ þ d0zi þ vi � ui: ð3:13Þ

where parameter vector d ¼ ðd1. . .drÞ0 represent the marginal effects of the con-
textual variables on output and all other variables remain the same. Estimating this
model identifies the direct effect of the contextual variables on the output level. We
keep our model general and do not specify if the contextual variables affect the
production frontier or the inefficiency term, or both. However, input variables, xi,
can also appear in zi.

3.5.2.1 Joint Estimation of the Effect of Contextual Variables

One of the first papers to investigate contextual variables is Timmer (1971), who
uses a two-stage method, first estimating a production frontier using an Aigner and
Chu (1968) PP method and then running a second-stage regression with the
deviations from the frontier as the dependent variable explained by a variety of
contextual variables. Ray (1988, 1991) using this same two-stage estimator, but
replace PP with DEA. Alternatively, Stevenson (1980), Pitt and Lee (1981), Re-
ifschneider and Stevenson (1991), Kumbkahar et al. (1991), Battese and Coelli
(1995), and Kumbhakar and Lovell (2000) suggest a joint estimation of the pro-
duction function and the effects of the contextual variables. Wang and Schmidt
(2002) formalize the argument against two-stage methods concluding that there is
an omitted variable bias in the first stage by not including the contextual variables
and there is a shrinkage effect on the estimates of the influence of the contextual
variables in the second stage. These effects are exacerbated if the inputs and the
contextual variables are highly correlated. In the parametric literature, the joint
estimation of the production frontier and the effect of contextual variables is
standard practice.

3.5.2.2 StoNED with Z-variables (StoNEZD)

The unified framework of StoNED allows us to use the insights from the SFA
estimators that incorporate contextual variables to jointly estimate an axiomatic
nonparametric production function and the effects of the contextual variables.
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Following Johnson and Kuosmanen (2011), who propose the StoNED with z-
variables (StoNEZD) method, we reformulate the multiplicative CNLS problem as

min
a;b;d;/;e

Xn
i¼1

ðeCNLSi Þ2

subject to

ln yi ¼ lnð/iÞ þ d0zi þ eCNLSi 8 i
/i ¼ ai þ b0ixi 8 i
ai þ b0ixi � ah þ b0hxi 8 h; i
bi � 0 8 i

ð3:14Þ

Note that (3.14) is identical to (3.12), except that d0zi is now included in the first
set of constraints, the log-transformed regression.

Denote by d̂
CNLS

, the coefficients of the contextual variables obtained as the
optimal solution to (3.14). Johnson and Kuosmanen (2011), who examine the
statistical properties of this estimator, show that it is unbiased, is consistent and
asymptotic efficient. Most important, the authors show that the conventional
methods of statistical inference from linear regression analysis, e.g., t tests and
confidence intervals, can be applied for asymptotic inferences regarding coefficients
d.

How to performing statistical inference on d̂
CNLS

may not appear obvious due to
the complexity of the NLP formulation (3.14). Kuosmanen et al. (2014) propose to
run an OLS regression, ln yi � lnð/̂iÞ ¼ d0zi þ ei,

29 in order to yield the same

coefficients d̂
CNLS

that were obtained as the optimal solution to problem (3.14) and
that also return the standard errors and other standard diagnostic statistics, such as t-
ratios, p values, and confidence intervals.

3.5.2.3 GAMS Code

The code Fig. 3.19 should be appended to the bottom of the following collection of
code: the code in Fig. 3.1 followed by Lines 1–18 from Fig. 3.7, followed by Lines
1–10 from Fig. 3.16. This code is very similar to multiplicative estimator introduced
in Sect. 3.5.1 and shown in Fig. 3.16. In fact after Line 8, the code is identical
except for the err constraints (Line 11). The contextual variables that influence the
output level are accounted for in the calculation of the residual, Line 11. Specifi-
cally, it is the sum–product of the marginal effects of the contextual variables and
the contextual variables. This term is added to the right-hand side of the constraint.

29 Here, we construct a vector call it r, such that ri ¼ ln yi � lnð/̂iÞ, then r is regressed on
z without an intercept term.
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Alternative, we can formulate the StoNEZD in levels as

min
a;b;d;e

Xn
i¼1

ðeCNLSi Þ2

subject to

yi ¼ ai þ b0ixi þ d0zi þ eCNLSi 8 i
ai þ b0ixi � ah þ b0hxi 8 h; i
bi � 0 8 i

ð3:15Þ

Note that (3.15) and (3.5) are identical, except that the first set of constraints now
includes d0zi. The interpretation of parameter vector d ¼ ðd1. . .drÞ0 changes
slightly. Specifically, d now indicates the increase in output when zr is increased by
one unit. Next, we present an alternative formulation for the StoNEZD estimator
that is used by the CVX toolbox in MATLAB

min
/;b

y� /k k2
subject to

/i � /h � b0i xi � xhð Þþd0 zi � zhð Þ 8 i; h i 6¼ h

bi � 0 8 i

ð3:16Þ

Note that the contextual variables are handled in the same manner as inputs
except that the parameter vector d is common to all observations. The contextual
variable extension can be seen as a restricted special case of the models presented in

Fig. 3.19 GAMS code for the contextual variables estimator
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Kuosmanen and Johnson (2010) and Kuosmanen and Kortelainen (2012) where the
contextual variables are a subset of inputs for which the b are equal across all
observations and allowed to be positive or negative. If the d parameter vector is
restricted to be positive and allowed to vary across observations, then this is
equivalent to Banker and Morey (1986) model in which z is referred to as a
nondiscretionary input. While this relaxes the assumption of separability between
x and z, it imposes that z is substitutable for x and that z has a strictly positive effect
on output. Both of which can be overly restrictive in many applications. Note
further that it is not possible to relax separability between x and z while maintaining
a globally convex production possibility set.

3.5.2.4 MATLAB Code

Recall that the CVX toolbox in MATLAB does not handle nonlinear programming.
Therefore, the code below shows the implementation of the StoNEZD estimator in
levels as described in formula (3.16). The code in Fig. 3.20 builds directly from the
code in Fig. 3.11. Specifically, the objective function and nonnegative restrictions
on the input coefficients are the same. Line 1, names the function and specifies the
input and output parameters, we now also read in z, the matrix of contextual
variables, and output delta the vector of variables characterizing the effect on output
given a change in the context. Note the constraint defined by Lines 14–19 is
updated and now includes the contextual variables.

Fig. 3.20 MATLAB code for the contextual variables estimator
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3.6 Relationship to Deterministic Estimators

Here, we review the relationship between CNLS and two common deterministic
estimators of a production frontier. Revisiting the production function (3.1), if the
composite error term ε consists exclusively of inefficiency u, and there is no noise
(i.e., v = 0), we refer to this as the deterministic model. The estimators associated
with the deterministic model have become common and widely used when data are
limited and additional structure is needed,30 or a data set motivates the necessary
assumptions.

In model (3.1) including a noise term, uncertainty tends to enter in two ways.
The first is econometric noise including measurement errors in the data, modeling
simplifications, differences between measured variables and modeling variables,
etc. The second is sample selection, i.e., when data are generated multiple times,
different samples will be generated. In a deterministic model, uncertainty can only
enter through sample selection, because the deterministic assumptions eliminate
econometric noise. However, because there is still uncertainty in the sample,
probability inference is possible in the deterministic models. We note that the
interpretation of this inference differs from the inferences drawn from a model that
includes econometric noise.

The statistical properties of the deterministic DEA estimator have been the
source of considerable research. Referring to DEA, Schmidt (1985) states, “I am
very skeptical of nonstatistical measurement exercises, certainly as they are now
carried out and perhaps in any way in which they could be carried out…. I see no
virtue whatsoever in a nonstatistical approach to data.” Banker (1993) responds to
this criticism by showing that DEA is a consistent estimator for a deterministic
frontier and that it can be interpreted as a maximum-likelihood estimator, thus
creating the statistical foundations for the DEA estimator. One statistical property of
the DEA estimator is that the estimator is downwardly biased in small samples,
because of the minimum extrapolation principle, but this bias disappears asymp-
totically in the deterministic setting. Building on this line of research, Simar and
Wilson (1998, 2000) show that it is possible to use bootstrapping methods to
construct confidence intervals and correct for the bias in DEA estimators. However,
we note that the confidence intervals constructed by using DEA and bootstrapping
methods are typically much smaller than the confidence intervals constructed by
using standard SFA techniques. This insight is not a difference in the estimators per
se rather is caused by the deterministic assumption, the source of uncertainty is only
the random sampling of observations, whereas in the SFA model the confidence
intervals also consider the uncertainty coming from econometric noise. Clearly, the
underlying modeling assumptions differ and the confidence intervals calculated for
the two techniques do not represent the same thing. If noise is present due to
modeling decisions or measurement issues, then DEA is no longer a consistent

30 We do not advocate this solution to limited data. We see deterministic estimators as useful
when the deterministic assumption is likely to hold.
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estimator and all of the other statistical properties of DEA are invalid. In fact, the
bias correction available via bootstrapping methods will actually make the pro-
duction function estimates of DEA worse.

Having proposed that StoNED is a unifying framework for production function
analysis, we now present the connection between StoNED and two deterministic
estimators, corrected C2NLS and DEA.

3.6.1 Corrected Convex Nonparametric Least Squares

One of the first deterministic frontier methods was proposed by Winsten (1957) in
response to Farrell (1957); Winsten suggested estimating a frontier production
function by first using OLS to estimate an average function which we will refer to
as the conditional mean and denote as Eðyi xij Þ. The conditional mean estimate is
then shifted up by the size of the largest residual in order to construct a frontier that
enveloped all of the data. While Winsten’s method depends heavily on the
observation with the largest residual to place the level of the production frontier, his
method uses information from all of the data to estimate the frontier’s curvature.
The method has been formally investigated and named COLS by Gabrielsen (1975)
and Greene (1980).

Kuosmanen and Johnson (2010), who suggest replacing OLS for the conditional
mean estimation with CNLS so that the production function satisfies monotonicity
and concavity by construction, name the estimator corrected CNLS, or C2NLS.
They show that the C2NLS estimator is consistent, asymptotically unbiased, and
always has better discriminating power than DEA.

The essential steps of the C2NLS routine are as follows:

Step 1: Apply the CNLS estimator (3.5) to estimate the conditional mean output
Eðyi xij Þ.

Step 2: Identify the most efficient unit in the sample (i.e.,
ûC2NLSbenchmark ¼ max

h2 1;...;nf g
êCNLSh ) as the benchmark. Adjust the CNLS resid-

uals according to ûC2NLSi ¼ ð max
h2 1;...;nf g

êCNLSh Þ � êCNLSi .

Step 3: Apply Eq. (3.6) to estimate the minimum function /̂CNLS
min ðxÞ. Adjust the

minimum function by adding the residual of the benchmark firm to
estimate the frontier using

/̂C2NLSðxÞ ¼ /̂CNLS
min ðxÞ þ ûC2NLSbenchmark
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The resulting ûC2NLSi estimates can be interpreted as measures of inefficiency in
the deterministic setting. The inefficiency estimates ûC2NLSi are nonnegative by
construction, with the value of zero indicating full efficiency. The inefficiency
measures can be converted to Farrell (1957) output efficiency scores
(ĥC2NLSi 2 ½0; 1�) by using

ĥC2NLSi ¼ yi
/̂CNLSðxiÞ

¼ yi
yi þ ûC2NLSi

:

3.6.1.1 GAMS Code

The code in Fig. 3.21 takes the output of the additive CNLS model (a, b, and eCNLS)
described in Sect. 3.3, and the code in Fig. 3.7. Lines 1–5 define the parameters
/̂CNLS
min ðxÞ, ûC2NLSbenchmark, û

C2NLS
i , and /̂C2NLSðxÞ, respectively. Line 8 calculates the

conditional mean functional value for each observation i. Line 10 calculates the
maximum residual and labels this value ubenchmark. Line 12 adjusts all resid-
uals so that the new variable uCNLS(i) is measured relative to the newly shifted
frontier, note the sign has changed so efficient firms have a residual of zero and the
larger the value, the more inefficient the firm is. Line 14 calculates the output levels
on the C2NLS frontier associated with each observation i.

3.6.1.2 MATLAB Code

This code, (Fig. 3.22), takes the output of the additive CNLS, Fig. 3.11, to calculate
the C2NLS residuals and frontier values. Specifically, Line 2 calculates the largest
residual. Line 4 adjusts all residuals so that zero indicates efficient performance and
larger values indicate poor performance. Line 6 calculates the output levels on the
C2NLS frontier associated with each observation i.

Fig. 3.21 GAMS code for Steps 2 and 3 in C2NLS
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3.6.2 DEA as Sign-Constrained CNLS

Here, we describe the relationship between CNLS and DEA. Kuosmanen and
Johnson (2010) were the first to identify the connection between DEA and an
augmented version of CNLS. This connection is important because it shows that
DEA is a special case of CNLS where all observations are enveloped. This char-
acteristic, along with the recognition that SFA is a specific case of StoNED in
which a parametric functional form is assumed for the production function,
establishes StoNED as a unifying framework that incorporates the two most
common methods for productivity and efficiency analysis as special cases.

Starting from the single-output formulation, we state the VRS DEA estimator of
production function f as

f̂ DEAðxÞ ¼ min
a;b

aþ b0x aþ b0xij � yi 8 i ¼ 1; . . .; nf g

¼ max
k

Xn
h¼1

khyh x�
Xn
h¼1

khxh

����� ;
Xn
h¼1

kh ¼ 1

( ) ð3:17Þ

We refer to the minimization formulation in (3.17) as the DEA multiplier for-
mulation and the maximization formulation as the DEA envelopment formulation.
The duality theory of linear programming implies that the two formulations are
equivalent.

Next, we consider a version of the CNLS estimator with an additional sign
constraint on the residuals

min
a;b;e

Xn
i¼1

ðeCNLS�i Þ2

subject to

yi ¼ ai þ b0ixi þ eCNLS�i 8 i
ai þ b0ixi � ah þ b0hxi 8 h; i
bi � 0 8 i
eCNLS�i � 0 8 i

ð3:18Þ

Fig. 3.22 MATLAB code for Steps 2 and 3 in C2NLS
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We note that the sign constraint on the residuals is the only distinguishing factor
from (3.5). Thus, we interpret (3.18) as a nonparametric alternative to the PP
approach of Aigner and Chu (1968).31 However, Theorem 3.1 in Kuosmanen and
Johnson (2010) shows the equivalence between (3.18) and the additive output
oriented VRS DEA formulation (3.17), and this result is not restricted to the output
orientation or the VRS assumption regarding returns to scale. Code is not presented
for this estimator because QP generally takes longer than linear programming.
Thus, if a researcher would like to estimate a deterministic DEA frontier, from a
computational efficiency point of view, the standard linear programming version of
DEA is preferred.

3.7 Stochastic Semi-nonparametric Envelopment of Data
(StoNED)

Using CNLS, we are now able to estimate an axiomatic least squares formulation
and incorporate standard production axioms, such as monotonicity and convex.
Considering the standard SFA methods, we replace the first-stage parametric
regression methods with CNLS and estimate the average inefficiency, deconvoluted
the noise and inefficiency terms, and estimate the firm-specific inefficiencies. Earlier
research, such as Diewert and Wales (1987), discuss impose production axioms on
parametric production functions, but the result is a considerable reductions in the
flexibility of the functional form. Further, other attempts to incorporate noise into
DEA requires changing the standard treatment of noise, E við Þ ¼ 0 and
VarðviÞ ¼ r2v\1. It is in this sense the framework described in Sect. 3.2 and the
StoNED estimator is the first unifying framework between DEA and SFA.

The StoNED estimator has four steps (it is not necessary to execute all steps):

Step 1: Apply the CNLS estimator (3.5) to estimate the conditional mean output
Eðyi xij Þ.

Step 2: Apply parametric methods (e.g., the method of moments or quasi-like-
lihood estimation) to the CNLS residuals eCNLSi to estimate the expected
value of inefficiency l.

Step 3: Calculate /̂StoNEDðxÞ ¼ ĝCNLSmin ðxÞ þ l̂, and apply Eq. (3.6) to estimate

the minimum function /̂StoNED
min ðxÞ.

Step 4: Apply parametric methods (see, e.g., Jondrow et al. (1982), hereafter,
JLMS) to estimate firm-specific inefficiency using the conditional mean
Eðui eCNLSi

�� Þ.

31 In (3.18), since all of the eCNLS�i are nonpositive, squaring the objective is simply a monotonic
transformation, and thus, it is not necessary.
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Depending on the estimates of interest, estimating the CNLS parameters in Step
1 may be sufficient. Steps 2–4 do not influence the estimates of marginal products
of the input factors, the coefficients b̂i from (3.5), or the relative efficiency ranking
of units, but Step 2 is necessary if the average inefficiency level, l, for the sample is
needed, Step 3 is necessary to impose minimum extrapolation, and Step 4 is nec-
essary if the cardinal firm-specific inefficiency estimates are needed.

3.7.1 Step 1: CNLS Regression

The CNLS estimator described in Sect. 3.3 estimates model (3.1) under the addi-
tional assumption Var uið Þ ¼ 0, or in other words, deviations from the production
are random and there is no systematic inefficiency. If the observed output is subject
to inefficiency, as in the frontier model (3.1), without the additional assumption,
then the zero-mean assumption EðeiÞ ¼ 0 of regression analysis is violated and
EðeiÞ ¼ Eðvi � uiÞ ¼ �EðuiÞ\0. In this case, the CNLS estimator is no longer a
consistent estimator of the frontier production function f.32

Applying the CNLS regression to data generated from model (3.1) estimates a
conditional mean function g as

gðxiÞ ¼ Eðyi xij Þ ¼ f ðxiÞ � EðuiÞ: ð3:19Þ

In order for CNLS estimate function g unbiasedly and consistently, the random
inefficiency term u must be independent of inputs x. If the inefficiency term u has a
constant variance or is homoskedastic, then the expected value of the inefficiency
term u is a constant, and we denote it as l.33 The second step estimates the constant
l. Alternatively, if the variance of inefficiency differs across observations, i.e.,
E uið Þ is no longer a constant, we call this case heteroskedastic inefficiency (see
Kuosmanen et al. (2014) for a discussion of the heteroskedastic case).

To determine whether to proceed from Step 1 to Step 2, we may want to test the
data for any evidence of inefficiency. The residual êCNLSi consists of a normally
distributed noise term and a left-truncated inefficiency term. Schmidt and Lin
(1984) propose a test of the skewness of the residuals to investigate whether
inefficiency is present. By only looking at the skewness, their method is robust to
the common alternative specifications of the inefficiency term in the stochastic
frontier model. Thus, the null hypothesis, i.e., the residuals are normally distributed,
allows us to calculate the

ffiffiffiffiffi
b1

p
test as

32 However, Stochastic semi-Nonparametric Envelopment of Data (StoNED) can be used.
33 The average value, l, is typically a function of the parameters of the distribution of u. For
example, if u is distributed half-normally, then EðuÞ ¼ ffiffiffiffiffiffiffiffiffiffi

2=2p
p

ru where ru is the pretruncated
standard deviation of u. More discussion related to this point is provided in Sect. 3.7.2.
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ffiffiffiffiffi
b1

p
¼ m3

ðm2Þ3=2

where m2 and m3 are the second and third moments of the residuals, respectively.
We construct a distribution of the skewness test statistic,

ffiffiffiffiffi
b1

p
by a simple Monte

Carlo simulation following D’Agostino and Pearson (1973). Schimidt and Lin’s test
has some limitations, in that it may wrongly reject the null hypothesis of a sym-
metric distribution if the residual distribution has fat tails. Thus, Kuosmanen and
Fosgerau (2009) have proposed a more extensive testing procedure.

We note that the power of the test depends on how specifically we state the null
hypothesis and the alternative hypothesis. For example, the

ffiffiffiffiffi
b1

p
test of normality is

more powerful than the fully nonparametric test of symmetry. If we are willing to
impose some distributional assumptions for the inefficiency term, then more
powerful specification tests are available. For example, Coelli (1995) has proposed
a variant of the Wald test to test the null hypothesis that there is no inefficiency, i.e.,
r2u ¼ 0, against the alternative r2u [ 0. While imposing distributional assumptions
can increase the power of the test, doing so also increases the risk of misspecifi-
cation, which makes the statistical test inconsistent.

Section 3.5 outlined several extensions to the basic CNLS model including a
multiplicative error term, alternative returns-to-scale assumptions, and the modeling
of contextual variables. Each of these can be incorporated into StoNED through the
first step CNLS analysis. The later steps use the residuals from the first step CNLS
estimator.

3.7.1.1 GAMS Code

This code takes the output of the CNLS estimator and uses the residuals, eCNLS, to
test for skewness. If there is skewness in the appropriate direction, then we interpret
this as support for using an estimator that includes a model for inefficiency. To
determine whether the

ffiffiffiffiffi
b1

p
value is significantly different from zero, we run a

simulation where we draw n random numbers from a normal distribution with the
same standard deviation as our observed data. Then, we calculate the

ffiffiffiffiffi
b1

p
test

statistic for this set of random draws. We repeat this process k times and count how
many times we calculate a test statistic more negative than the

ffiffiffiffiffi
b1

p
value calculated

from our original data set. We then calculate the fraction of the k trials for which theffiffiffiffiffi
b1

p
test statistic is more negative than the

ffiffiffiffiffi
b1

p
value calculated from our original

data set and report this as the p value. The null hypothesis for this test is that the
residuals are normally distributed. Small p values will indicate there is statistically
significant evidence that the observed residuals are skewed which we interpret as
evidence of inefficiency.

Figure 3.23 provides GAMS code for implementing the
ffiffiffiffiffi
b1

p
test statistic. The

code is written to be able to test any vector of residuals. Lines 1–3 defines the set i of
firms and the set j which allows us to read in the vector of residuals as a table. Line 2
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needs to be updated with the number of firms for your data set. Lines 4–6 read an
external file called resid.txt, an example of this file is in “Appendix 2”. Lines 7–9
define the parameter e(i) of residuals and assign the vector read from the data file. If
you are testing the results from previous GAMS code in this chapter, for example the
code in Fig. 3.7, then Lines 1–9 can be omitted and the remainder of the code in
Fig. 3.23 can be appended to the end of the code in Fig. 3.7. Lines 10–11 define the set
k the index for the number of simulation trials. Lines 12–27 define the parameters that
will be used in the function with their descriptions to the right. Lines 28–29 assign the

Fig. 3.23 GAMS code for testing skewness
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value of n, the number of observations, andKK, the number of trials in the simulation,
respectively. Lines 30–33 calculate the second and third moment for each observa-
tion. Lines 34–35 calculate the average moment over the data set of n observations.
Line 36 calculates a test statistic that can be compared to the distribution of

ffiffiffiffiffi
b1

p
to

determine whether the skewness is statistically significant. Line 37 defines a flag and
sets the value equal to zero. This variable will count the number of times out of KK
trials that random draws from a normal distribution results in a more negative test
statistic and then the value calculated from our original data set. Lines 39–41 takes
n draws from a normal distribution. Lines 42–46 calculate the intermediate variables
necessary for calculating teststatt(k)for the drawn data set. Lines 47–49 check
if the test statistic for the generated data is more negative than the test statistic
calculated from the original data set and increments the flag by 1 if the statement is
true. Line 42 assigns the flag value to the variable p value.

3.7.1.2 MATLAB Code

This MATLAB code tests for skewness. The function returns teststat, the
ffiffiffiffiffi
b1

p
test statistic for set of n residuals, eCNLS, eps read into the function. Also the
function vector of m test statistics calculated from the simulation, teststatt, is
also returned. The Pvalue is for the null hypothesis of the residuals being nor-
mally distribution. Thus, values less than 0.05 would indicate the residuals are
statistically significantly different from normal at the 5 % level. The Flag that is
returned indicates the wrong skewness, if Flag = 1 then the residuals have the
wrong skewness. The code, (Fig. 3.24), is very similar to the GAMS code, thus see
the description above for more details.

3.7.2 Step 2: Estimation of the Expected Inefficiency

Using the CNLS residuals êCNLSi from Step 1, there are multiple ways to estimate the
expected value of the inefficiency term l ¼ EðuiÞ. Here, we outline two methods
available in the literature. The first is the most commonly used parametric approach
based on the method of moments introduced by Aigner et al. (1977). The second is
the parametric, quasi-likelihood estimation developed by Fan et al. (1996).

3.7.2.1 Method of Moments

The method of moments requires parametric assumptions regarding the distribu-
tions of inefficiency and noise. We assume a half-normal distribution for ineffi-
ciency and normal distribution for noise introduced by Aigner et al. (1977); for
alternative assumptions see Greene (2008). Specifically,
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ui 	Nþð0; r2uÞ

and

vi 	Nð0;r2vÞ

As is typical in most regression models, the CNLS residuals sum to zeroPn
i¼1 ê

CNLS
i ¼ 0. Thus, the second and the third central moments of the residual

distribution are

M̂2 ¼
Xn
i¼1

ðêCNLSi Þ2=ðn� 1Þ ð3:20Þ

M̂3 ¼
Xn
i¼1

ð̂eCNLSi Þ3=ðn� 1Þ: ð3:21Þ

Fig. 3.24 MATLAB code for testing skewness
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Often, the second central moment is referred to as the sample variance and the
third central moment is referred to as skewness. Under our parametric assumptions,
a half-normal distribution for inefficiency and a normal distribution for noise, we
derive the second and the third central moments as

M2 ¼ p� 2
p


 �
r2u þ r2v ð3:22Þ

M3 ¼
ffiffiffi
2
p

r !
1� 4

p


 �
r3u ð3:23Þ

Substituting the empirical estimates of the second and third moments calculated
in (3.20) and (3.21) into (3.22) and (3.23) leaves us with two equations and two
unknowns, ru as rv. Thus, we can solve for sample estimates of r̂u as r̂v.

3.7.2.2 GAMS Code

This code, (Fig. 3.25), takes the output of the CNLS estimator, the GAMS code
shown in Fig. 3.7, and uses the residuals, eCNLS, to calculate sample estimates of r̂u
as r̂v using method of moments. Lines 1–12 define the parameters with descriptions
of the parameters to the right. Lines 14–24 are also presented in the skewness
testing code. Line 26 checks if the skewness is in the correct direction, for pro-
duction functions mM3 should be less than zero and for a cost function mM3 should
be greater than zero. If the skewness is in the wrong direction, then the value of
mM3 is set to zero. Line 29 rearranges (3.23) and solves for ru. Line 30 uses (3.22)
and the calculated value of r̂u to calculate r̂v. These are the primary outputs of the
method of moments; however, other values that might be useful are calculated in
Lines 31, 34, 35, and 36. Specifically, Line 31 calculate sigma, r, the variance of
the residual; Line 34 calculates lamda, k, the signal-to-noise ratio; line 35 cal-
culates mu, l, the average inefficiency; and Line 36 calculates epsilon, the
residual measured from the shifted frontier.

3.7.2.3 Illustrative Application: Estimation Results

We apply the method of moments estimation to the Finnish electricity distribution
data discussed previously and available in the “Appendix 2”. The method results in
the standard deviation of the inefficiency term sigma u, ru ¼ 63:0, the standard
deviation of the noise termsigma v, rv ¼ 163:0, the standard deviation of the
residual sigma, r ¼ 174:7, the signal-to-noise ratio lamda, k ¼ 0:386, and the
average inefficiency mu, l ¼ 50:2. Figure 3.26 graphs the probability density dis-
tribution for both u and v. The deconvolution of the inefficiency and noise term are
possible as described in Sect. 3.7.4; however, because each observation is only
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observed once in cross-sectional data, the JMLS estimator described is inconsistent
and the efficiency rankings that results are identical to the rankings provided by
sorting the residuals, eCNLS. Thus, in many applications, the ranking of firms by
inefficiency and the average inefficiency are often the measures of primary interest.

3.7.2.4 MATLAB Code

This MATLAB code, (Fig. 3.27), takes the output of the CNLS estimator and uses
the residuals, eCNLS, to calculate sample estimates of r̂u as r̂v using method of
moments. The code is very similar to the GAMS code, thus seeing the description
above for more details.

We note that Greene (2008), among others, suggests that if the estimate of M̂3 is
nonnegative, either it indicates no inefficiency in the sample or it can be used as a
diagnostic to indicate model specification issues. However, Carree (2002), Simar
and Wilson (2010), Alminidis et al. (2009), and Alminidis and Sickles (2011) all
offer alternative interpretations. For example, both Carree and Alminidis et al.

Fig. 3.25 GAMS code for the method of moments
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suggest alternative distributional assumptions regarding inefficiency and noise,
whereas Simar and Wilson propose a bootstrapping method.

3.7.2.5 Quasi-Likelihood Estimation

Alternatively, we can estimate the parameters ru and rv by using the quasi-likeli-
hood methods suggested by Fan et al. (1996). This approach takes the shape of the
estimated function as given and applies the standard ML method to estimate ru and
rv. Fan et al. show that the quasi-likelihood function can be stated as a function of a
single parameter, the signal-to-noise ratio k ¼ ru=rv

ln L kð Þ ¼ �n ln r̂þ
Xn
i¼1

ln U
�êik
r̂


 �
� 1
2r̂2

Xn
i¼1

ê2i ; ð3:24Þ

where

êi ¼ êCNLSi �
ffiffiffi
2

p
kr̂

� �.
p 1þ k2
� �� 
1=2

; ð3:25Þ
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Fig. 3.26 Estimated densities of the inefficiency term u (solid line) and the noise term v (dashed line)
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r̂ ¼ 1
n

Xn
j¼1

ðêCNLSi Þ2
,

1� 2k2

p 1þ kð Þ

 �( )1=2

: ð3:26Þ

The symbol U denotes the cumulative distribution function of the standard
normal distribution N(0,1).34 Consider (3.24) after removing êi and r̂ by substi-
tuting (3.25) and (3.26). Using a simple grid search, we maximize the quasi-
likelihood function by enumerating over k values, defining variable k̂ as the k value
that maximizes the quasi-likelihood. We calculate r̂ using k̂ and (3.26) and then
calculate r̂u and r̂v using r̂u ¼ r̂k̂=ð1þ k̂Þ and r̂v ¼ r̂=ð1þ k̂Þ, respectively.

3.7.2.6 GAMS Code

This code, (Fig. 3.28), takes the output of the CNLS estimator and uses the
residuals, eCNLS or e.l(i), to calculate sample estimates of r̂u as r̂v using quasi-
likelihood estimation. The variable e.l(i) is assumed to be assigned to the
residuals. Lines 1–15 define a variety of parameters and variables. The only new
variable is like which is the likelihood value to be maximized. Other variables
sigma, lamda, epsilon(i), mu, sigmau, and sigmav remain as previously
defined in Sect. 3.7.2.1, the methods of moments. Lines 16–19 define the names of
three equations that will be part of the optimization problem used to calculate the
ML. Lines 21–26 explicitly state these equations. Note errorf, Pi, and log are

Fig. 3.27 MATLAB code for the method of moments

34 Equations 3.24, 3.25, and 3.26 are shown as separate equations for ease of reading.
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the cumulative normal distribution function, the numerical value of π, and the
logarithm function, respectively. Line 27 defines the model LIKELIHOOD as
containing three equations qlike, qeps, and qsigma. Lines 28–29 define lower
bounds on the variables lamda and sigma. Line 28 commands GAMS to solve
the model LIKELIHOOD. Lines 32–34 uses the results from the optimal solution to
calculate r̂u, r̂v, and l.

3.7.3 Step 3: Estimating the Frontier Production Function

Using CNLS to estimate the conditional mean function, gðxiÞ along with one of the
two methods for estimating the average inefficiency, l, allows us find the frontier

Fig. 3.28 GAMS code for estimating the quasi-likelihood function
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production as the sum of f ðxiÞ ¼ gðxiÞ þ l. However, since the CNLS estimator is
only unique for observed input vectors, xi (i = 1,…, n), we use (3.6) and the
associated GAMS or MATLAB code to estimate values of /̂ðxiÞ as

/̂StoNED
min ðxÞ ¼ min

a;b
aþ b0x aþ b0xij � f̂ ðxiÞ 8 i ¼ 1; . . .; n
� �

: ð3:27Þ

3.7.4 Step 4: Estimating Firm-Specific Inefficiencies

Recall our assumption that a firm’s inefficiency is the realization of a random variable
coming from an inefficiency distribution common to all firms that has been convo-
luted with noise. With only one observation of this process, it is impossible to extract
the firm-specific inefficiency level, but by using the set of all estimated residuals, we
can compare a firm’s specific residual to give insights into the firm’s performance.

The most widely used method developed by Jondrow et al. (1982) is referred to
as the JLMS estimator. Under the assumption of a normally distributed error term
and a half-normally distributed inefficiency term, the authors derive a formula for
the conditional distribution of inefficiency ui, given ei, and propose the inefficiency
estimator as the conditional mean Eðui eij Þ. Therefore, given the parameter estimates
r̂u and r̂v, we calculate the conditional expected value of inefficiency as

Eðui êij Þ ¼ r̂ur̂vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2u þ r̂2v

p q êir̂u
r̂v
ffiffiffiffiffiffiffiffiffiffi
r̂2uþr̂2v

p
� �

1� U êir̂u
r̂v
ffiffiffiffiffiffiffiffiffiffi
r̂2uþr̂2v

p
� �� êir̂u

r̂v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2u þ r̂2v

p
2
664

3
775; ð3:28Þ

where q is the density function of the standard normal distribution N(0,1), U is the
corresponding cumulative distribution function, and

êi ¼ êCNLSi � r̂u
ffiffiffiffiffiffiffiffi
2=p

p
is the estimator of the composite error term. We note that the rank correlation of the
CNLS residuals êCNLSi and the JLMS inefficiency estimates is equal to one (see
Ondrich and Ruggiero 2001). For the purposes of relative efficiency rankings, the
CNLS residuals êCNLSi are sufficient.

3.7.4.1 GAMS Code

This code, (Fig. 3.29), takes the sample estimates of r̂u as r̂v using either the method
of moments, described in Sect. 3.7.2.1, or quasi-likelihood, described in
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Sect. 3.7.2.2, and estimates firm-specific efficiency measures assuming a half-normal
distribution for the inefficiency term and a normal distribution for the noise term.

3.7.4.2 MATLAB Code

This MATLAB code, (Fig. 3.30), calculates efficiency estimates based on the
residuals from a CNLS estimation using the method described in Jondrow et al.
(1982). Lines 1–10 calculate three intermediate variables: sigmart, mus, and
norpdf.

3.8 Conclusions

This chapter describes the relationship between the two most common estimators of
a production function (DEA that estimates an axiomatic frontier in the absence of
econometric noise; and SFA that typically estimates a parametric function while

Fig. 3.29 GAMS code Jondrow decomposition

Fig. 3.30 MATLAB code Jondrow decomposition
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accounting for systematic inefficiency and noise) and some advantages of the
unified framework known as StoNED.

We describe the CNLS regression which is the first step of StoNED. When
multiple inputs are used in the production process, a QP problem is needed for this
estimation. The computational challenges resulting from the large number of Afriat
inequalities used to impose concavity are addressed with an alternative method
proposed by Lee et al. (2013) that required iteratively solving smaller versions of
the CNLS formulation until the optimal solution to one of the small problems also
satisfied the set of Afriat inequalities. Lee et al.’s algorithm allows problems with
near 1,000 observations to be solved. Observing that QP is required when esti-
mating the production function in levels and that nonlinear programming is required
when estimating the production function in logs; both estimators are more
demanding than standard OLS, ML, or the linear programming used in alternative
methods to estimate production functions. An “Appendix” provides full codes for
both MATLAB and GAMS for easier estimation of CNLS.
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The authors hope that the chapter and the codes will help new researchers
understand the economic intuition and reap the benefits provided by the unified
framework, StoNED.

Appendix 1–Codes

GAMSCodeStandard Formulation
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GAMSCodeCNLS+G
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Matlab Code–Standard Formulation
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Matlab Code–CNLS+G Formulation
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Appendix 2

Data

OPEX CAPEX TOTEX Energy Length Customers PerUndGr

1 681 729 1612 75 878 4933 0.11

2 559 673 1659 62 964 6149 0.21

3 836 851 1708 78 676 6098 0.75

4 7559 8384 18918 683 12522 55226 0.13

5 424 562 1167 27 697 1670 0.03

6 1483 1587 3395 295 953 22949 0.65

7 658 570 1333 44 917 3599 0.11

8 1433 1311 3518 171 1580 11081 0.16

9 850 564 1415 98 116 377 1.00

10 1155 1108 2469 203 740 10134 0.64

11 14235 11594 28750 2203 7007 167239 0.61

12 44481 50321 117554 6600 67611 420473 0.23

13 1116 766 1925 117 436 7176 0.61

14 1604 946 2747 135 902 8614 0.46

15 27723 19818 48605 3601 6007 334757 0.92

16 2480 2420 5486 409 2773 14953 0.19

17 494 476 1091 43 506 3156 0.32

18 801 466 1297 61 541 4296 0.05

19 875 555 1691 62 1081 6044 0.07

20 2133 1913 4605 256 2540 23361 0.31

21 1139 1635 3102 197 1817 6071 0.05

22 907 1127 2260 200 1106 14936 0.49

23 120 106 341 17 133 772 0.06

24 3454 2428 6100 489 1312 44594 0.87

25 535 479 1440 53 789 3391 0.05

26 974 754 1958 95 971 6806 0.37

27 929 853 1976 75 869 5165 0.24

28 9842 13925 29722 985 25611 95367 0.09

29 548 412 1254 123 51 24 0.44

30 1456 1136 2665 165 875 14646 0.71

31 725 569 1376 73 716 5069 0.39

32 2525 388 3121 540 70 58 0.31

33 2002 1442 3864 300 1301 20325 0.47

34 1846 1112 3221 207 429 16878 0.73

35 982 1094 2561 99 1618 8566 0.20

36 2727 2151 5779 164 3330 12231 0.12

37 1799 2073 4380 171 3736 15217 0.06
(continued)
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(continued)

OPEX CAPEX TOTEX Energy Length Customers PerUndGr

38 604 675 1423 73 989 5711 0.25

39 400 430 907 40 646 2968 0.20

40 4092 3173 7915 482 3294 42952 0.40

41 3362 3078 6639 456 1375 48140 0.66

42 390 438 868 23 589 2227 0.18

43 10852 9366 25556 1233 12512 98650 0.13

44 688 700 1540 85 866 6022 0.36

45 761 701 1564 100 800 7193 0.40

46 453 576 1229 25 1078 3342 0.04

47 4076 4007 9807 494 4696 43911 0.29

48 308 297 669 17 432 1752 0.03

49 2746 2529 6097 315 4042 26265 0.20

50 5614 5509 12154 1042 4296 75870 0.60

51 400 519 1186 39 614 2211 0.01

52 1821 1753 4020 223 2117 12945 0.09

53 794 747 1589 98 418 5146 0.66

54 2269 2795 6414 348 2127 21072 0.37

55 711 556 1515 77 762 4513 0.16

56 4609 5342 10600 993 3205 80702 0.70

57 1766 2338 5431 402 3207 25994 0.13

58 813 666 1872 130 905 5394 0.19

59 884 1104 2206 138 1423 9015 0.26

60 1662 1358 3767 117 2532 9930 0.24

61 81 106 268 22 133 1467 0.22

62 11776 11864 28295 988 20934 84445 0.04

63 4021 3767 9689 749 3225 47572 0.53

64 2597 3224 7226 378 3567 30801 0.21

65 995 848 1871 95 340 7812 0.89

66 548 587 1280 43 977 4272 0.02

67 1573 1780 3539 237 882 19455 0.52

68 4129 4001 9853 440 6330 26798 0.22

69 2151 1450 3758 266 772 21662 0.83

70 2438 2496 5499 316 4117 22313 0.28

71 14064 15175 37368 1601 24485 106336 0.08

72 2058 1521 3735 268 928 19899 0.74

73 8643 6819 16141 1654 3567 124661 0.59

74 483 367 987 37 730 2611 0.08

75 1018 939 2067 158 822 10537 0.56

76 1593 2326 5105 196 3470 13391 0.09

77 7501 4734 12687 1141 2360 67456 0.62
(continued)
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(continued)

OPEX CAPEX TOTEX Energy Length Customers PerUndGr

78 305 411 861 19 520 1207 0.17

79 5426 6446 12831 787 5808 60239 0.41

80 2618 2795 6055 293 3741 23446 0.20

81 1033 951 2156 137 902 11654 0.39

82 6786 6638 13794 1281 3009 93769 0.75

83 2169 2172 5054 210 3693 17129 0.16

84 40787 45434 108310 4825 60659 378089 0.18

85 2741 2475 6162 310 3381 19059 0.16

86 307 225 594 28 351 2078 0.07

87 321 281 672 30 338 2008 0.32

88 300 289 616 15 318 1364 0.01

89 891 693 1776 105 575 9084 0.59

Estimated residuals
Resid

1 −2.93

2 1.30

3 −22.31

4 −350.89

5 −13.46

6 100.99

7 −29.04

8 −14.06

9 −1.00

10 56.88

11 285.52

12 679.39

13 −20.31

14 −70.03

15 10.52

16 74.58

17 −6.73

18 −30.25

19 −40.29

20 −27.80

21 48.75

22 87.00

23 26.07

24 23.93
(continued)
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(continued) Resid

25 −2.33

26 −22.94

27 −37.94

28 −351.05

29 66.65

30 −21.72

31 −9.11

32 215.96

33 37.57

34 −31.84

35 −23.79

36 −201.37

37 −69.31

38 6.13

39 3.56

40 −74.62

41 −1.99

42 −12.15

43 −236.73

44 6.44

45 11.53

46 −19.80

47 −67.22

48 −5.47

49 −55.97

50 265.53

51 2.17

52 −17.68

53 4.54

54 38.84

55 −3.07

56 349.55

57 163.97

58 34.87

59 28.38

60 −99.16

61 33.36

62 −604.02

63 197.10

64 21.41

65 −26.83
(continued)
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