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a b s t r a c t

In the Team Orienteering Problem (TOP), a team of vehicles attempts to collect rewards at a given number
of stops within a specified time frame. Once a vehicle visits a stop and collects its reward, no other vehi-
cles can collect the reward again. Typically, a team cannot visit all stops and therefore has to identify the
‘‘best’’ set of stops to visit in order to maximize total rewards. We propose a large neighborhood search
method with three improvement algorithms: a local search improvement, a shift and insertion improve-
ment, and replacement improvement. Our proposed approach can find the best known solutions for 386
of the 387 benchmark instances, for the one instance which our solution is not the current best it is only
varies by one from the best. Our approach outperforms all the previous approaches in terms of solution
quality and computation time.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The team orienteering problem (TOP) consists of a given num-
ber of stops, each with a given reward, and a team of Vmax vehicles
attempts to maximize the total reward collected within a specified
timeframe Tmax. The travel time between stops is known and each
vehicle starts and finishes at specified points. Once a vehicle visits
a stop and collects the reward, no other vehicles visiting the same
stop can collect the reward. In general, not all stops can be visited
by the team of vehicles within the time limit. Thus, the team needs
to select the ‘‘best’’ stops that can be visited by the set of vehicles.
Fig. 1 shows an example TOP problem and a solution. Note that
some stops are not visited in the figure. Most vehicle routing
problems mandate visits to all stops (Toth & Vigo, 2002), but the
TOP does not have this requirement.

The TOP was named by Chao, Golden, and Wasil (1996a), but
various applications of TOP appear in the early literature including
the home fuel delivery problem of Golden, Levy, and Vohra (1987)
and the high school athlete recruitment problem of Butt and
Cavalier (1994). Other applications include the sport of orienteer-
ing (Chao, Golden, & Wasil, 1996b), the routing problem of
technicians to service customers (Tang & Miller-Hooks, 2005),
and the personalized mobile tourist guide problem (Vansteenwe-
gen, Souffriau, Berghe, & Van Oudheusdem, 2009).
ll rights reserved.

: +82 54 279 2870.
A special case of TOP, in which there is only one team, be-
comes the orienteering problem (OP). The OP appears in the liter-
ature as the Traveling Salesman Problem (TSP) with profits
(Feillet et al., 2005), Selective TSP (Laporte & Martello, 1990),
and the maximum collection problem (Butt & Cavalier, 1994).
Golden et al. (1987) prove that the OP is NP-hard. TOP is also
NP-hard (Chao et al., 1996a), thus research efforts tend to focus
on heuristics and metaheuristics; our paper focuses on the latter
approach.

We adapt the large neighborhood search (LNS) approach of
Shaw (1997) and Ropke and Pisinger (2006) to solve the TOP. In
the LNS approach, a current solution is perturbed significantly
and large neighborhoods are searched in a single iteration. Within
the LNS framework, we apply three improvement algorithms: the
local search improvement algorithm, shift and insertion algo-
rithm, and replacement algorithm. Our proposed approach can
identify the best known solutions for 386 of 387 benchmark prob-
lems. For the remaining problem instance, our approach finds a
solution whose reward is 1 less the current best solution. The
solution quality equals that of a recently proposed approach by
Dang, Guibadj, and Moukrim (2012), which outperforms all the
previous approaches, but the computation time of our approach
is less.

The remainder of this paper is organized as follows. A brief lit-
erature review is presented in Section 2. Our proposed approach
and embedded improvement algorithms are explained in Section 3.
Experimental results and concluding remarks follow in Sections 4
and 5, respectively.

http://dx.doi.org/10.1016/j.eswa.2012.12.022
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Fig. 1. A TOP problem (instance p4.2.q and a solution with total reward of 1268).
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2. Literature review

This section provides a brief review of the TOP literature
focusing on heuristic approaches, and the LNS algorithm. Butt
and Cavalier (1994) address a high school athlete recruiting prob-
lem and call it the Multiple Tour Maximum Collection Problem.
This problem was later renamed the TOP. They present a mixed
integer programming (MIP) model and a simple heuristic algo-
rithm, in which a node is assigned one at a time to a route based
on the ratio of its reward value over the distance increment
needed. Butt and Ryan (1999) propose a set partitioning based
MIP model. They solve the problem using a column generation
method and claim that their solution approach works well for
problems in which the number of nodes visited in a tour is rela-
tively small.

Chao et al. (1996a) develop a heuristic approach for the TOP and
benchmark data sets. In their approach, the stops farthest from the
start and finish points are selected as seeds for the team members
and all possible remaining points are inserted into the routes using
the cheapest insertion rule. If unassigned points remain, new team
routes are constructed. The initial solution is then improved using
1-point movement, 2-point exchange, and 2-opt operator with the
record-to-record framework, which is a deterministic version of
the simulated annealing algorithm. Removal and reinsertion of
points are also applied for improvement.

Tang and Miller-Hooks (2005) present a MIP model and a tabu
search with an adaptive memory procedure that alternates be-
tween small and large neighborhood exploration. For the neighbor-
hood search, they use random and greedy procedures. Their work
generates better solutions abet using more computation time than
Chao et al. (1996a) for many problem instances. Archetti, Hertz,
and Speranza (2007) propose a tabu search algorithm allowing fea-
sible move, a tabu search algorithm allowing infeasible move with
penalty, and a variable neighborhood search algorithm allowing
feasible move for the TOP. The last approach outperforms Chao
et al. (1996a) and Tang and Miller-Hooks (2005).

Ke, Archetti, and Feng (2008), who present an MIP model and an
ant colony optimization (ACO) approach, propose the sequential,
deterministic-concurrent, random-concurrent, and simultaneous
methods as the construction algorithms. The performance of the
ACO approach with the sequential method is comparable to Arch-
etti et al. (2007). Ke et al. identify the best-so-far solutions for 347
instances and new best solutions for 12 instances out of 387
benchmark instances.

Vansteenwegen et al. (2009) present an MIP model and propose
an algorithm that combines a guided local search method and a
diversifying mechanism called disturb. Although the computation
time of their approach is shorter, the solution quality is no better
than the existing approaches.

Bouly, Dang, and Moukrim (2010) and Dang, Guibadj, and
Moukrim (2011) present a particle swarm optimization-based
memetic algorithm (PSOMA) in which tour-splitting techniques
and genetic crossover improvement are developed. They attained
a gap of 31 rewards for the total benchmark problems. In other
words, the sum of benchmark solutions rewards that collected by
PSOMA is 31 less than the sum of the known current best solutions
that attained by various approaches in the literature. Dang et al.
(2012) extend their previous research and propose a PSO-inspired
algorithm (PSOiA). They updated a best known solution for one in-
stance and found the best known solutions for all the benchmark
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instance but one. Our proposed approach achieves the same set of
results as PSOiA, which is currently the state-of-the-art algorithm,
but requires less computation time.

Local search heuristics attempt to improve solutions via incre-
mental adjustments to current solutions. In the LNS algorithm
(Shaw, 1997), the current solution is perturbed significantly and
large neighborhoods are explored in a single iteration. Although
the computation time is generally longer than local search heuris-
tics, it performs well for various vehicle routing problems (Jun &
Kim, 2012; Pisinger & Ropke, 2007; Ropke & Pisinger, 2006).
Schrimpf, Schneider, Stamm-Wilbrandt, and Dueck (2000) propose
a similar approach called the ruin and recreate heuristic. Pisinger
and Ropke (2007) present a detailed history of the LNS and its sim-
ilarity to the very large scale neighborhood search (VLSN) of Ahuja,
Ergun, Orlin, and Punnen (2002) and variable neighborhood search
(VNS) of Hansen and Mladenovic (1997).

3. Proposed approach

This paper proposes an augmented LNS (ALNS) with various
improvement algorithms. The pseudo-code of the proposed ALNS
is shown in Algorithm 1. The number of iterations (Imax) and the
maximum number of solutions (N) in the solution pool S are
user-given parameters. In line 2 an initial solution is generated
by a construction method, which will be described later, and in line
3 the solution is improved by local search methods. In line 5 the
improved solution is added to the solution pool. In line 8 a solution
is selected randomly from the solution pool and in line 9 a random
number (k) between 1 and 3 quarters of the number of routed stops
in the selected solution is generated. The number of routed stops
defines the scope of the search.

In line 10, k stops are removed from the selected solution
according to the remove criterion. Three remove criterions are de-
signed for solution diversification: random remove, biggest remove
and smallest remove. In the random remove, k stops will be ran-
domly selected and removed from the current solution. The biggest
remove will remove the k stops which have the biggest rewards
and the k smallest rewards stops will be removed under the small-
est remove criterion similarly. The three remove criterions are ran-
domly selected in each iteration.

In lines 12 through 15 the solution with stops removed is re-
paired via two improvement methods until there are no more
improvements (the improvement algorithms are explained below).
In line 16 some of the unrouted stops are inserted via an insertion
method. In the insertion method, each unrouted stop is tested to be
inserted into a route and the unrouted feasible stop that has the
smallest distance increase due to the stop insertion is iteratively
selected and inserted. The insertion procedure is repeated until
no additional stops can be inserted to any of the routes.

In lines 17 through 22 the updated solution is further improved
not only by the previous two improvement methods, but also with
two replacement methods explained below. In lines 23 and 24 the
algorithm terminates if the improved solution is the upper bound,
where the upper bound terminate condition is applied for those in-
stances in which the exact optimal solutions are reported by Bous-
sier, Feillet, and Gendreau (2007). For those instances in which the
exact optimal solutions are not known, lines 23 and 24 are skipped.
Note that Dang et al. (2011) also used the same upper bound ter-
minate condition. In lines 25 and 26 the best solution is updated
if the improved solution is better than the current best solution
(Sbest). In lines 27 and 28 the new solution replaces the worst solu-
tion if: (1) the solution pool is full, (2) the current solution is not
present in the pool and (3) the pool’s worst solution is worse than
the current solution. In lines 29 and 30 the new solution is inserted
into the solution pool if the solution pool is not yet full and does
not contain the same solution. Lines 7 through 30 are repeated
until the number of iterations is reached at which point the best
solution is returned.
Algorithm 1. ALNS basic framework
1
 Input: Imax = number of iterations, N = number of
maximum solutions in the solution pool
2
 Generate an initial solution s0 by the construction
heuristic of Algorithm 2
3
 Improve s0 by local search methods

4
 Sbest = s0
5
 Insert s0 into solution pool S

6
 Repeat until the number of iterations reaches Imax
7
 Set all the stops unrouted

8
 s1 = random selection of a solution from S

9
 k = random number between 1 and 0.75�number of

routed stops in s1
10
 Remove k stops from s1 and set them unrouted

11
 Set remained stops in s1 routed

12
 Repeat while there is improvement

13
 Improve s1 by the local search method of Algorithm 3

14
 Improve s1 by the shifting method of Algorithm 4

15
 End repeat

16
 Reinsert as many as possible unrouted stops to s1 by the

insertion method

17
 Repeat while there is improvement

18
 Improve s1 by the local search method of Algorithm 3

19
 Improve s1 by the replacement method (random) of

Algorithm 5-1

20
 Improve s1 by the shifting method of Algorithm 4

21
 Improve s1 by the replacement method (all) of

Algorithm 5-2

22
 End repeat

23
 If (f(s1) = Upper Bound) then

24
 Terminate algorithm and return s1 (line 32)

25
 If (f(s1) > f(Sbest)) then

26
 Sbest = s1
27
 If (s1 R S and n(S) = N and f(s1) > f(Sworst)) then

28
 Replace Sworst of S with s1
29
 If (s1 R S and n(S) < N) then

30
 Insert s1 into solution pool S

31
 End repeat

32
 Return Sbest
Our construction algorithm is a greedy heuristic, the pseudo-
code for which appears in Algorithm 2. From the current stop, cL,
the feasible stop that has the smallest distance divided by re-
ward is selected as the next stop. The procedure repeats until
no more stops can be added to the route. In line 11 the route
is improved by the intra-route improvement algorithm (ex-
plained in Algorithm 3). When there is improvement, i.e., the to-
tal route travel distance is reduced, additional stops are inserted.
In line 12 the algorithm attempts to add as many unrouted stops
as possible to the route; which is similar to line 16 of Algorithm
1, but with a route.

Algorithm 2. Construction algorithm
1
 Input: Vmax = number of teams, Tmax = maximum
allowable time
2
 Set all the stops unrouted

3
 For each team in Vmax,

4
 cL = the team start stop

5
 Repeat while there is feasible cN stop
(continued on next page)
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6
 cN = the unrouted stop that can be serviced within
Tmax and have the least value of distance from cL/the
reward of the stop
7
 If there is feasible cN,

8
 Insert cN to the route of the team and set cN routed

9
 cL = cN
10
 End repeat

11
 Improve the route with the intra-route improvement of

Algorithm 3

12
 Insert as many as possible unrouted stops into the route

by the insertion method

13
 Insert the generated team route into solution s0
14
 End For

15
 Return s0
The pseudo-code for our local search improvement algorithm ap-
pears in Algorithm 3. It consists of popular inter-route and intra-
route improvement methods. In the 1-1 improvement method, a
stop from a route is exchanged with a stop from another route.
The exchange is accepted if it is feasible for both routes and the total
travel distance of the two routes is reduced. In the 1-0 improvement
method, a stop from a route is moved into another route and
improvement is tested. Similarly, the 2-1 improvement method ex-
changes two stops from a route with one stop from another route.
The intra-route improvement algorithm consists of well-known 2-
opt edge exchange method and Or-opt improvement method (Or,
1976). The improvement methods repeat until no further improve-
ment is possible.
Algorithm 3. Local search improvement algorithm
1
 Input: s1 = current solution

2
 Repeat while there is improvement in any inter-route or

intra-route

3
 Repeat while there is any improvement (inter-route

algorithm)

4
 For all the combinations of the routes in s1
5
 Do 1-1 improvement

6
 Do 1-0 improvement

7
 Do 2-1 improvement

8
 End For

9
 End repeat

10
 Repeat while there is any improvement (intra-route

algorithm)

11
 For each route in the solution s1
12
 Do 2-opt edge exchange improvement

13
 Do Or-opt improvement

14
 End For

15
 End repeat

16
 End repeat

17
 Return improved s1
The pseudo-code for our shifting and insertion algorithm appears in
Algorithm 4. In lines 3 and 4 attempts are made to move stops from
a route into other routes to make room for unrouted stops. In lines 6
and 7 all possible unrouted stops are inserted into a route; observe
that line 7 is the same as line 12 of Algorithm 2.

Regarding Algorithm 4, we note that although stops can be ex-
changed among the routes using Algorithm 3, adding Algorithm 4
improves the solution far more rapidly. Moreover, Algorithm 3
does not allow the movement of stops that results in a worse solu-
tion, however, Algorithm 4 does not have such a restriction thus
additional unrouted stops can be inserted.
Algorithm 4. Shifting and insertion algorithm
1
 Input: s1 = current solution

2
 For each route r in s1
3
 For each stop in route r

4
 If feasible, move the stop into the least distance

incremental route

5
 End repeat

6
 If any stops are moved from route r to other routes

7
 Insert as many as possible unrouted stops into route r

by the insertion method

8
 End For

9
 Return improved s1
The pseudo-code for our random replacement algorithm appears in
Algorithm 5-1. The algorithm exchanges routed stops with unrouted
stops to improve the solution’s total reward value. In line 5 a ran-
dom number is generated for each iteration and this number deter-
mines the number of stops that will be removed from the route. In
line 6 the stops to be deleted are selected randomly and their total
rewards are compared with the total rewards of all unrouted stops.
In lines 7 and 8 if the value of the unrouted stops is less than the va-
lue of the deleted stops, that iteration will be skipped because there
is no potential benefit to the exchange. Otherwise in line 11 the se-
lected stops are deleted from the route and unrouted stops are ran-
domly inserted. In this step, each unrouted stop is tested to
determine if the insertion is feasible. In lines 12 through 14 if the
total rewards of the newly inserted stops are larger than the total
rewards of the deleted stops, the replacement for the route will
be accepted and the next route will be tested. The above procedures
repeat for Rmax iterations for each route.
Algorithm 5-1. Replacement algorithm (random)
1
 Input: s1 = current solution

Dmax = maximum stop numbers that can be deleted
from a route

Rmax = number of max iterations
2
 For each route r in s1
3
 nr = number of stops in route r

4
 Repeat Rmax iterations

5
 dr = random number between 1 and min(Dmax, nr)

6
 Randomly select dr stops from route r

7
 If the total rewards of the unrouted stops are not

larger than the total rewards of the selected stops

8
 Go to next iteration (line 4)

9
 Remove the selected stops from route r

10
 Generate a random sequence of the unrouted stops

11
 Insert as many as possible unrouted stops into route r

according to the random sequence

12
 If the total rewards of the newly inserted stops are

larger than the total rewards of the deleted stops

13
 Accept the change

14
 Go to next route (line 2)

15
 End repeat

16
 End For

17
 Return improved s1
The Algorithm 5-2 is a full-enumeration replacement algorithm. In-
stead of randomly selecting dr routed stops and randomly replacing
current stops, the full-enumeration replacement algorithm tests all
routed stops for a 1-1 replacement and then a 1-2 replacement. The
1-1 replacement exchanges a routed stop with an unrouted stop and
repeats until there is no improvement. Then 1-2 replacement is
tested checking the replacement of a routed stop with two unrouted



Table 1
Benchmark data set.

Problem set Number of stops Number of sub-problems Tmax

p1.2 32 18 2.5–42.5
p1.3 32 18 1.7–28.3
p1.4 32 18 1.2–21.2
p2.2 21 11 7.5–22.5
p2.3 21 11 5.0–15.0
p2.4 21 11 3.8–11.2
p3.2 33 20 7.5–55.0
p3.3 33 20 5.0–36.7
p3.4 33 20 3.8–27.5
p4.2 100 20 25.0–120.0
p4.3 100 20 16.7–80.0
p4.4 100 20 12.5–60.0
p5.2 66 26 2.5–65.0
p5.3 66 26 1.7–43.3
p5.4 66 26 1.2–32.5
p6.2 64 14 7.5–40.0
p6.3 64 14 5.0–26.7
p6.4 64 14 3.8–20.0
p7.2 102 20 10.0–200.0
p7.3 102 20 6.7–133.3
p7.4 102 20 5.0–100.0

Table 2
Best rewards obtained by the algorithms.

Set TMH GTP GTF FVF SVF SEQ DET RA

p.1.2 148.8 149.1 149.1 149.1 149.1 149.1 149.1 14
p.1.3 124.7 125.0 125.0 125.0 125.0 125.0 125.0 12
p.1.4 101.0 101.0 101.0 101.0 101.0 101.0 101.0 10
p.2.2 190.0 190.5 190.5 190.5 190.5 190.5 190.5 19
p.2.3 135.9 136.4 136.4 136.4 136.4 136.4 136.4 13
p.2.4 94.5 94.5 94.5 94.5 94.5 94.5 94.5 9
p.3.2 492.0 494.5 496.0 496.0 496.0 496.0 496.0 49
p.3.3 408.0 411.5 411.5 411.5 411.5 411.5 411.5 41
p.3.4 335.0 336.5 336.5 336.5 336.5 336.5 336.5 33
p.4.2 895.1 904.9 908.5 914.0 915.9 915.6 908.4 90
p.4.3 844.3 845.5 852.5 853.0 855.6 853.8 847.7 84
p.4.4 784.6 800.1 802.3 801.7 801.9 798.1 795.9 79
p.5.2 886.8 892.6 897.4 895.8 896.8 897.6 896.4 89
p.5.3 775.8 781.4 783.6 783.6 783.6 782.8 780.4 78
p.5.4 699.0 707.5 708.8 708.8 708.8 708.8 707.7 70
p.6.2 818.2 813.8 818.7 819.3 819.3 819.3 818.7 81
p.6.3 783.0 792.8 792.8 792.8 792.8 792.8 790.5 79
p.6.4 712.8 714.0 714.0 714.0 714.0 714.0 714.0 71
p.7.2 633.5 639.6 641.4 640.6 642.6 642.7 641.5 64
p.7.3 592.5 596.7 597.7 597.1 599.2 599.9 599.4 59
p.7.4 514.6 517.2 516.9 516.9 518.9 519.1 518.2 51

Best results are in boldface.

Table 3
Average computation time (s).

Set TMH GTP GTF FVF SVF SEQ DET

p1 – 4.7 1.6 0.1 7.8 5.8 5.2
p2 – 0.0 0.0 0.0 0.0 3.2 3.0
p3 – 6.0 1.6 0.2 10.2 6.5 6.0
p4 184.5 105.3 282.9 22.5 457.9 36.8 31.8
p5 16.8 69.5 26.6 34.2 158.9 17.4 15.1
p6 14.1 66.3 20.2 8.7 147.9 16.1 14.1
p7 84.3 159.0 256.8 10.3 309.9 30.4 24.6

TMH: DEC Alpha XP1000 Computer.
GTP, GTF, FVF, SVF: Intel Pentium 4 with 2.80 GHz and 1 GB RAM.
SEQ, DET, RAN, SIM: Intel PC with 3.0 GHz.
GLS: Intel Pentium 4 with 2.80 GHz and 1 GB RAM.
PSOMA, PSOiA: AMD Opteron 2.60 GHz, Linux.
ALNS: Intel Core i7-2600 CPU with 3.40 GHz, 16 GB RAM, Windows 7.

a PSOMA with parameter x = 0.07.
b ALNS with parameter Imax = 5000.
c ALNS with parameter Imax = 10,000.
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stops. The replacement is executed when the solution rewards are
increased or the route travel time is decreased without rewards
loses.
N

9.1
5.0
1.0
0.5
6.4
4.5
6.0
1.5
6.5
9.5
8.4
1.4
6.2
1.2
6.3
8.7
0.5
4.0
1.0
8.6
8.4
Algorithm 5-2. Replacement algorithm (all)
1

SIM

149.1
125.0
101.0
190.5
136.4

94.5
496.0
411.5
336.5
911.8
848.2
795.2
896.2
781.0
705.6
819.3
791.3
714.0
641.2
599.2
518.4

RAN SIM

4.9 5
2.8 3
5.7 6

30.7 32
14.3 15
13.5 14
23.3 24
Input: s1 = current solution

2
 For each route r in s1
3
 Do 1-1 replacement while there is improvement

4
 Do 1-2 replacement while there is improvement

5
 End For

6
 Return improved s1
4. Experimental results

We programed our approach in C++ and conducted the experi-
ments on an Intel Core i7-2600 CPU with 3.40 GHz, 16 GB RAM
running Windows 7. The computational experiments are demon-
strated on a set of 387 benchmark instances from Chao et al.
(1996a, http://www-c.eco.unibs.it/~archetti/TOP.zip). Table 1 sum-
marizes the characteristics of the seven benchmark problem sets.
GLS PSOMA (x = 0.07) PSOiA ALNS (Imax = 5000)

– 149.1 149.1 149.1
– 125.0 125.0 125.0
– 101.0 101.0 101.0
– 190.5 190.5 190.5
– 136.4 136.4 136.4
– 94.5 94.5 94.5
– 496.0 496.0 496.0
– 411.5 411.5 411.5
– 336.5 336.5 336.5
887.5 916.9 917.1 917.1
830.0 856.1 856.2 856.2
770.9 803.6 804.1 804.1
882.4 897.6 897.8 897.8
769.8 783.6 783.6 783.6
696.3 708.5 708.8 708.8
804.5 819.3 819.3 819.3
783.0 792.8 792.8 792.8
710.4 714.0 714.0 714.0
631.2 642.8 642.8 642.8
585.6 599.8 600.0 600.0
503.0 518.9 519.1 519.1

GLS PSOMAa PSOiA ALNSb ALNSc

.2 2.2 0.2 2.2 0.8 1.4

.0 2.3 0.0 0.4 0.0 0.0

.0 1.0 0.5 3.2 1.4 2.6

.0 12.7 78.5 218.6 34.7 77.3

.1 5.0 12.9 49.5 10.4 22.1

.2 5.8 4.0 47.1 6.1 12.3

.7 16.7 54.5 97.5 31.7 66.8

http://www-c.eco.unibs.it/~archetti/TOP.zip
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The first number in the problem set name is the set number, e.g.,
p1.2, p1.3, and p1.4 belong to problem set 1. The coordinates and
rewards of each stop are identical in all instances of the same prob-
lem set. Each problem set has three sub problem sets with differing
numbers of available teams. The second number in the problem set
name indicates the number of teams, e.g., p1.3 implies there are
three teams available. Column 2 in the table shows the number
of stops in the particular instance. Each sub problem set has a cer-
tain number of problem instances, each with a different value of
Tmax. Column 3 shows the number of problem instances and col-
umn 4 shows the overall range of Tmax over all instances. Data sets
1 and 3 originate from Tsiligirides (1984).
Table 4
Current best solutions.

Instance Best Instance Best Instance Best Instance

p1.2.a 0 p2.2.c 140 p3.3.f 230 p4.3.b
p1.2.b 15 p2.2.d 160 p3.3.g 270 p4.3.c
p1.2.c 20 p2.2.e 190 p3.3.h 300 p4.3.d
p1.2.d 30 p2.2.f 200 p3.3.i 330 p4.3.e
p1.2.e 45 p2.2.g 200 p3.3.j 380 p4.3.f
p1.2.f 80 p2.2.h 230 p3.3.k 440 p4.3.g
p1.2.g 90 p2.2.i 230 p3.3.l 480 p4.3.h
p1.2.h 110 p2.2.j 260 p3.3.m 520 p4.3.i
p1.2.i 135 p2.2.k 275 p3.3.n 570 p4.3.j
p1.2.j 155 p2.3.a 70 p3.3.o 590 p4.3.k
p1.2.k 175 p2.3.b 70 p3.3.p 640 p4.3.l
p1.2.l 195 p2.3.c 105 p3.3.q 680 p4.3.m
p1.2.m 215 p2.3.d 105 p3.3.r 710 p4.3.n
p1.2.n 235 p2.3.e 120 p3.3.s 720 p4.3.o
p1.2.o 240 p2.3.f 120 p3.3.t 760 p4.3.p
p1.2.p 250 p2.3.g 145 p3.4.a 20 p4.3.q
p1.2.q 265 p2.3.h 165 p3.4.b 30 p4.3.r
p1.2.r 280 p2.3.i 200 p3.4.c 90 p4.3.s
p1.3.a 0 p2.3.j 200 p3.4.d 100 p4.3.t
p1.3.b 0 p2.3.k 200 p3.4.e 140 p4.4.a
p1.3.c 15 p2.4.a 10 p3.4.f 190 p4.4.b
p1.3.d 15 p2.4.b 70 p3.4.g 220 p4.4.c
p1.3.e 30 p2.4.c 70 p3.4.h 240 p4.4.d
p1.3.f 40 p2.4.d 70 p3.4.i 270 p4.4.e
p1.3.g 50 p2.4.e 70 p3.4.j 310 p4.4.f
p1.3.h 70a p2.4.f 105 p3.4.k 350 p4.4.g
p1.3.i 105 p2.4.g 105 p3.4.l 380 p4.4.h
p1.3.j 115 p2.4.h 120 p3.4.m 390 p4.4.i
p1.3.k 135 p2.4.i 120 p3.4.n 440 p4.4.j
p1.3.l 155 p2.4.j 120 p3.4.o 500 p4.4.k
p1.3.m 175 p2.4.k 180 p3.4.p 560 p4.4.l
p1.3.n 190 p3.2.a 90 p3.4.q 560 p4.4.m
p1.3.o 205a p3.2.b 150 p3.4.r 600 p4.4.n
p1.3.p 220 p3.2.c 180 p3.4.s 670 p4.4.o
p1.3.q 230 p3.2.d 220 p3.4.t 670 p4.4.p
p1.3.r 250 p3.2.e 260 p4.2.a 206 p4.4.q
p1.4.a 0 p3.2.f 300 p4.2.b 341 p4.4.r
p1.4.b 0 p3.2.g 360 p4.2.c 452 p4.4.s
p1.4.c 0 p3.2.h 410 p4.2.d 531 p4.4.t
p1.4.d 15 p3.2.i 460 p4.2.e 618 p5.2.a
p1.4.e 15 p3.2.j 510 p4.2.f 687 p5.2.b
p1.4.f 25 p3.2.k 550 p4.2.g 757 p5.2.c
p1.4.g 35 p3.2.l 590 p4.2.h 835 p5.2.d
p1.4.h 45 p3.2.m 620 p4.2.i 918 p5.2.e
p1.4.i 60 p3.2.n 660 p4.2.j 965 p5.2.f
p1.4.j 75 p3.2.o 690 p4.2.k 1022 p5.2.g
p1.4.k 100 p3.2.p 720 p4.2.l 1074 p5.2.h
p1.4.l 120 p3.2.q 760 p4.2.m 1132 p5.2.i
p1.4.m 130 p3.2.r 790 p4.2.n 1174 p5.2.j
p1.4.n 155 p3.2.s 800 p4.2.o 1218 p5.2.k
p1.4.o 165 p3.2.t 800 p4.2.p 1242 p5.2.l
p1.4.p 175 p3.3.a 30 p4.2.q 1268 p5.2.m
p1.4.q 190 p3.3.b 90 p4.2.r 1292 p5.2.n
p1.4.r 210 p3.3.c 120 p4.2.s 1304 p5.2.o
p2.2.a 90 p3.3.d 170 p4.2.t 1306 p5.2.p
p2.2.b 120 p3.3.e 200 p4.3.a 0 p5.2.q

⁄Known exact solutions are in boldface.
a Although Chao et al. (1996a) give better solutions, they round the final length of a p

solutions.
We compare our solution approach, denoted in the following ta-
bles as ALNS, with the following 12 algorithms, available in the lit-
erature, on the set of 387 benchmark instances.

TMH: the tabu search algorithm of Tang and Miller-Hooks
(2005)
GTH: the tabu search with penalty strategy of Archetti et al.
(2007)
GTF: the tabu search with feasible strategy of Archetti et al.
(2007)
FVF: the fast variable neighborhood search of Archetti et al.
(2007)
Best Instance Best Instance Best Instance Best

38 p5.2.r 1260 p5.4.v 1320 p7.2.j 646
193 p5.2.s 1340 p5.4.w 1390 p7.2.k 705
335 p5.2.t 1400 p5.4.x 1450 p7.2.l 767
468 p5.2.u 1460 p5.4.y 1520 p7.2.m 827
579 p5.2.v 1505 p5.4.z 1620 p7.2.n 888
653 p5.2.w 1565 p6.2.a 0 p7.2.o 945
729 p5.2.x 1610 p6.2.b 0 p7.2.p 1002
809 p5.2.y 1645 p6.2.c 0 p7.2.q 1044
861 p5.2.z 1680 p6.2.d 192 p7.2.r 1094
919 p5.3.a 0 p6.2.e 360 p7.2.s 1136
979 p5.3.b 15 p6.2.f 588 p7.2.t 1179
1063 p5.3.c 20 p6.2.g 660 p7.3.a 0
1121 p5.3.d 60 p6.2.h 780 p7.3.b 46
1172 p5.3.e 95a p6.2.i 888 p7.3.c 79
1222 p5.3.f 110 p6.2.j 948 p7.3.d 117
1253 p5.3.g 185 p6.2.k 1032 p7.3.e 175
1273 p5.3.h 260 p6.2.l 1116 p7.3.f 247
1295 p5.3.i 335 p6.2.m 1188 p7.3.g 344
1305 p5.3.j 470 p6.2.n 1260 p7.3.h 425
0 p5.3.k 495 p6.3.a 0 p7.3.i 487
0 p5.3.l 595 p6.3.b 0 p7.3.j 564
0 p5.3.m 650 p6.3.c 0 p7.3.k 633
38 p5.3.n 755 p6.3.d 0 p7.3.l 684
183 p5.3.o 870 p6.3.e 0 p7.3.m 762
324 p5.3.p 990 p6.3.f 0 p7.3.n 820
461 p5.3.q 1070 p6.3.g 282 p7.3.o 874
571 p5.3.r 1125 p6.3.h 444 p7.3.p 929
657 p5.3.s 1190 p6.3.i 642 p7.3.q 987
732 p5.3.t 1260 p6.3.j 828 p7.3.r 1026
821 p5.3.u 1345 p6.3.k 894 p7.3.s 1081
880 p5.3.v 1425 p6.3.l 1002 p7.3.t 1120
919 p5.3.w 1485 p6.3.m 1080 p7.4.a 0
977 p5.3.x 1555 p6.3.n 1170 p7.4.b 30
1061 p5.3.y 1595 p6.4.a 0 p7.4.c 46
1124 p5.3.z 1635 p6.4.b 0 p7.4.d 79
1161 p5.4.a 0 p6.4.c 0 p7.4.e 123
1216 p5.4.b 0 p6.4.d 0 p7.4.f 164
1260 p5.4.c 20 p6.4.e 0 p7.4.g 217
1285 p5.4.d 20 p6.4.f 0 p7.4.h 285
0 p5.4.e 20 p6.4.g 0 p7.4.i 366
20 p5.4.f 80 p6.4.h 0 p7.4.j 462
50 p5.4.g 140 p6.4.i 0 p7.4.k 520
80 p5.4.h 140 p6.4.j 366 p7.4.l 590
180 p5.4.i 240 p6.4.k 528a p7.4.m 646
240 p5.4.j 340 p6.4.l 696 p7.4.n 730
320 p5.4.k 340 p6.4.m 912 p7.4.o 781
410 p5.4.l 430 p6.4.n 1068 p7.4.p 846
480 p5.4.m 555 p7.2.a 30 p7.4.q 909
580 p5.4.n 620 p7.2.b 64 p7.4.r 970
670 p5.4.o 690 p7.2.c 101 p7.4.s 1022
800 p5.4.p 765 p7.2.d 190 p7.4.t 1077
860 p5.4.q 860 p7.2.e 290
925 p5.4.r 960 p7.2.f 387
1020 p5.4.s 1030 p7.2.g 459
1150 p5.4.t 1160 p7.2.h 521
1195 p5.4.u 1300 p7.2.i 580

ath to one decimal place. Thus we do not count their solution for the current best



Table 5
Effects of the three improvement algorithms.

Set With Algorithms 3,4,5 With Algorithms 4, 5 With Algorithms 3, 5 With Algorithm 3,4

Reward Time (s) Reward Time (s) Reward Time (s) Reward Time (s)

p.1.2 149.1 1.0 149.1 1.2 149.1 0.8 149.1 0.3
p.1.3 125.0 1.3 125.0 2.2 125.0 1.1 125.0 0.3
p.1.4 101.0 0.2 101.0 0.7 101.0 0.2 101.0 0.0
p.2.2 190.5 0.1 190.5 0.1 190.5 0.1 190.5 0.0
p.2.3 136.4 0.0 135.0 0.0 136.4 0.0 136.4 0.0
p.2.4 94.5 0.0 92.7 0.0 94.5 0.0 94.5 0.0
p.3.2 496.0 2.0 496.0 3.0 496.0 1.9 496.0 0.8
p.3.3 411.5 1.7 411.5 4.0 411.5 1.7 411.5 0.6
p.3.4 336.5 0.5 336.5 1.6 336.5 0.6 336.5 0.2
p.4.2 917.1 32.2 915.5 32.1 916.3 27.0 917.1 16.7
p.4.3 856.2 38.9 855.7 38.8 856.2 31.6 856.2 14.7
p.4.4 804.1 41.2 803.5 46.1 804.1 34.5 804.1 12.5
p.5.2 897.8 11.4 897.6 9.3 897.8 9.8 897.8 4.2
p.5.3 783.6 12.2 783.6 10.6 783.6 10.3 783.6 3.5
p.5.4 708.8 9.2 708.8 8.4 708.8 8.1 708.8 1.9
p.6.2 819.3 11.3 819.3 8.0 819.3 9.5 819.3 2.8
p.6.3 792.8 10.7 792.8 9.5 792.8 8.8 792.8 1.8
p.6.4 714.0 9.7 714.0 9.0 714.0 8.5 714.0 1.4
p.7.2 642.8 31.6 642.8 30.2 642.8 27.8 642.8 17.3
p.7.3 600.0 32.2 599.6 33.5 599.7 27.6 599.9 11.1
p.7.4 519.1 34.5 519.1 34.2 519.1 29.9 519.1 7.2
Total 195,929 5176.7 195,833 5204.0 195,909 4406.5 195,927 1854.3
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SVF: the slow variable neighborhood search of Archetti et al.
(2007)
SEQ: the sequential algorithm of Ke et al. (2008)
DET: the deterministic-concurrent algorithm of Ke et al. (2008)
RAN: the random-concurrent algorithm of Ke et al. (2008)
SIM: the simultaneous algorithm of Ke et al. (2008)
GLS: the guided local search algorithm of Vansteenwegen et al.
(2009)
PSOMA: the PSO-based memetic algorithm of Dang et al. (2011)
PSOiA: the effective PSO-inspired algorithm of Dang et al.
(2012)

Since there are random choices in our proposed approach, we
execute 10 runs on each instance in order to select the best value.
The computation time is measured by the average of 10 computa-
tion runs. Note that Archetti et al. (2007), Dang et al. (2011, 2012)
measure the computation time similarly. We set the following
parameters as: Imax (number of iterations) = 5000, N (number of
maximum solutions in the solution pool) = 20 in Algorithm 1,
and Dmax (maximum stop numbers that can be deleted from a
route) = 3, Rmax (number of max iterations) = 100 in Algorithm 5.
These parameters were identified through preliminary experi-
ments considering both solution quality and computation time.
Note that our iteration numbers, 5000 and 10 replications, are
comparable to Ropke and Pisinger (2006) and Pisinger and Ropke
(2007), who use 25,000 LNS iterations and 10 replications for large
size problems and 5 replications for small size problems. Note also
that Ke et al. (2008) uses 2000 for the maximal number of cycles
and 20 for the number of ants.

Table 2 reports the best reward average for each algorithm for
each sub problem set. With the exception of our ALNS, PSOMA
and PSOiA, all values are taken from the original literature. The re-
sults of PSOMA and PSOiA are obtained through email communica-
tion with their developers. Some values are missing in column GLS
because Vansteenwegen et al. (2009) do not report them. Table 2
reveals that problem sets 1–3 are relatively easy since most of
the algorithms find the same best solutions. PSOiA and ALNS are
the best performers, obtaining the best solutions with the largest
reward average for all of the problem sets.

In order to determine if the number of iterations was a factor,
we tested the algorithm with Imax (number of iterations) = 10,000.
Our experimental results show that ALNS with an increased num-
ber of iterations can improve the best solution for problem in-
stance p4.2.q from 1267 to 1268, which is the best known
solution value, recently updated by Dang et al. (2012). The solution
is depicted in Fig. 1. It implies that our ALNS with 10,000 iterations
can identify the best known solutions for 386 problems out of 387
benchmark problems. For the only one remaining problem
(p4.4.m), we attained 976 compared to 977 which is the known
best solution. In short, our ALNS with 10,000 iterations can solve
all the benchmark problems with a total gap of 1.

Table 3 reports the average computation time for the various
algorithms. There are some missing values in the column TMH be-
cause Tang and Miller-Hooks (2005) do not report the values for all
problem instances. Although it is hard to compare the computation
times directly since the speed of computers are different, through
the table we can see the computation times of our ALNS are com-
parable to the other approaches.

Table 4 summarizes the current best solution for each problem
instance. Most of the values are derived from Archetti et al. (2007);
many were found earlier by Chao et al. (1996a) or Tang and Miller-
Hooks (2005). Several best solutions were obtained by Bouly et al.
(2010) and Dang et al. (2012). The solution values in boldface are
exact optimal solutions reported by Boussier et al. (2007) and they
are used as upper bounds terminate condition in Dang et al. (2011)
and our method.

To evaluate the effects of the three improvement algorithms,
Algorithms 3, 4, and 5 (including Algorithm 5-1 and Algorithm 5-
2), we also experiment with different combinations of the algo-
rithm using only 5000 iterations. Table 5 shows the experimental
results. Columns 2 and 3 reiterate the results of the ALNS method
shown in Tables 2 and 3. Columns 4 and 5 show the results of the
ALNS method without Algorithm 3 (the local search improvement
algorithm). Columns 6 and 7 show the results for the ALNS method
without Algorithm 4 (the shifting and insertion algorithm). Finally,
columns 8 and 9 show the results for the ALNS method without
Algorithms 5 (the replacement Algorithm of 5-1 and 5-2). The Re-
ward and Time columns show the average values over the ten trials
for each problem set. The last row gives the summary values, total
reward and total time for all of the problem sets.

Without Algorithm 3, the computation time is not significantly
affected but the total solution gap becomes large (98). Similarly,
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without Algorithm 4, this gap is 22, larger than the case with Algo-
rithm 4. Nevertheless, it still outperforms PSOMA. Without Algo-
rithm 5, the ALNS runs quite rapidly but cannot identify best
known solutions for 3 benchmark problems. In summary, the local
search improvement, the shifting and insertion algorithm and the
replacement algorithm all contribute the solution quality.
5. Conclusions

This paper has proposed an augmented large neighborhood
search (ALNS) method with three improvement algorithms, local
search improvement algorithm, shift and insertion algorithm, and
replacement algorithm, for the team orienteering problem. This
particular combination of algorithms within the LNS framework
can generate the best known solutions for 386 of 387 benchmark
problems and solve the remaining one instance with a gap of 1,
while the computation time of the proposed approach is compara-
ble to the other approaches. From these results, we conclude that
the proposed approach outperforms the existing approaches.
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