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In this article we estimate a state-contingent production frontier for a group of farms while
endogenously estimating the number of states of nature induced by unobserved environmental
variables. This estimation is conducted by using a birth-death Markov chain Monte Carlo method.
State-contingent output is estimated conditioned on an observed input vector and an a priori
unknown number of unobserved states, each of which is modeled as a component of a mixture
of Gaussian distributions. In a panel data application, state-independent dummy variables are
used to control for time effects. The model is applied to 44 rice farms in the Philippines operating
between 1990 and 1997. The endogenous estimation procedure indicates a unimodal posterior
probability distribution on the number of states, with a median of three states. The estimated
posterior coefficient values and their economic implications are compared to those of previous
research that had assumed a fixed number of states determined exogenously. Goodness-of-fit
testing is performed for the first time for a state-contingent production model. The results indi-
cate satisfactory fit and also provide insights regarding the degree of estimation error reduction
achieved by utilizing a distribution for the number of states instead of a point estimate. All of our
models show significant improvement in terms of mean squared error of in-sample predictions
against previous work. This application also demonstrates that using a state-independent dummy
time trend instead of a state-contingent linear time trend leads to slightly smaller differences in
state mean output levels, although input elasticities remain state-contingent.
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State-contingent production provides a flex-
ible framework for estimating production
functions (Quiggin and Chambers 2006),
particularly in industries with subsets of firms
that operate in environments lacking data at
the producer level. Using rice farming as an
example, data on each farm’s rainfall,
temperature, pests, diseases, and other envi-
ronmental factors are potentially observable,
but rarely collected at the farm level. It is
possible, however, to employ state-contingent
production frontiers to separate the impacts
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of inefficiency and state-dependent pro-
duction conditions by allowing different
parameters for each state of nature. The
simultaneous estimation of production
frontiers using stochastic frontier analy-
sis (SFA), for example, and the creation
of unobserved variable clusters that are
needed to define the states of nature can
be addressed by using latent class stochas-
tic frontier models (LCSFM), either from a
sampling framework—an example of which
appears in Orea and Kumbhakar (2004)—
or from a Bayesian framework via Markov
chain Monte Carlo (MCMC) methods. We
select the Bayesian framework because it
allows us to obtain the complete posterior
distribution of the number of states and to
calculate weights for our output predictions.
Moreover, MCMC methods make it rela-
tively easy to add common constraints, such
as monotonicity in inputs, to the production
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frontier estimation algorithm, and to model
the observed outputs as the outcome of a
finite mixture of Gaussian distributions.

Several uses of the state-contingent
approach have been described in the pro-
duction economics literature. For example,
Chavas (2008) develops an input cost-
minimizing methodology under a state-
contingent technology. Further, Nauges,
O’Donnell, and Quiggin (2011) use the
state-contingent approach and MCMC meth-
ods to model production with Constant
Elasticity of Substitution (CES) flexible
production functions. Other studies include
O’Donnell and Shankar (2010) and Serra
and Lansink (2010). O’Donnell and Griffiths
(2006) estimate a state-contingent frontier
model using MCMC methods, specifically
a Gibbs sampler, for the same data set we
analyze. O’Donnell and Griffiths deter-
mine the number of states of nature by
minimizing the Bayesian Information cri-
terion (BIC) for a model in which only the
intercepts of the production function and
the precision parameters (the inverses of
the variances of the noise distribution) are
state-contingent. These authors then impose
the BIC-minimizing number of states to a
model for which the input slopes are also
state-contingent and monotonicity of the
production function is imposed. We caution,
however, that the BIC-minimizing number
of states can differ across models since the
number of parameters increases for models
in which the state-contingent input slopes
are estimated. In other words, the number of
states imposed may be inappropriate even
though imposing the number of states calcu-
lated for a simpler model is computationally
easier.

Further, in the frontier-estimation mod-
els discussed above, the number of states
is either fixed or obtained by using BIC as
model selection criterion. Biernacki, Celeux,
and Govaert (1998) observe that the assump-
tions needed to use BIC as a model selection
criterion do not hold for mixture models.
For example, the assumption that all model
parameters are well inside of the parameter
space is violated when evaluating models
for which the number of states is larger than
the true one, as state probabilities for some
states will approach zero, which is a boundary
value for a probability parameter, making
BIC inappropriate. Biernacki, Celeux, and
Govaert (2000) and Biernacki and Govaert
(1997) show that other criteria such as the

Integrated Classification Likelihood (ICL)
and the Classification Likelihood Criterion
(CLC) are often better-suited for this type
of application. Banfield and Raftery (1993)
show that approximate weight of evidence
(AWE), derived as a Bayes Factor approxi-
mation, can be used to compute the posterior
probabilities for each number of states given
the data. It is also possible to use these poste-
rior probabilities to weight the chosen model
instead of simply choosing one with the best
score. Regardless of the model selection
criterion chosen, a two-stage procedure is
required, that is, the first stage estimates all
plausible models, and the second stage scores
and obtains the posterior probabilities to
weight the models.

In contrast, endogenous estimation of the
number of states involves solving the model
selection and estimation problems simulta-
neously. Specifically, the selection infers the
number of states in the model and estimation
calculates the coefficients for the regression
models given a certain number of states.
Both endogenous estimation and the model
selection criteria mentioned above allow us
to identify the best model; however, endoge-
nous estimation also calculates weighted
output across all plausible models in a single
run of the estimation algorithm. Moreover,
though in both the endogenous estimation
and the two-stage procedure described above
the range of possible values for the number
of states has to be specified a priori, in the
endogenous estimation algorithm presented
in this article, only the plausible values of this
range are visited by the estimation algorithm,
thus significantly reducing computational
complexity.

Our survey of the literature indicates that
efforts to endogenously estimate the num-
ber of components in a Gaussian mixture in
an econometric context have been limited.
For example, in a macroeconomic setting
Chopin and Pelgrin (2004) developed a gen-
eral hidden Markov chain and estimated all
transition probabilities where the number of
transition probabilities grows quadratically
in the number of states. Other methods can
be used to estimate a mixture model where
the number of components is unknown,
such as the reversible jump Markov chain
Monte Carlo (RJMCMC) introduced by
Green (1995) and first applied to mixture
modeling by Richardson and Green (1997).
Nevertheless, Richardson and Greene’s RJM-
CMC algorithm is not directly applicable in
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a regression context, because the equations
for the parameter means become datapoint-
specific and cause estimation difficulties
(Kottas and Gelfland 2001). Some efforts to
tailor RJMCMC algorithms within a regres-
sion context have been successful, such as
Denison, Mallick, and Smith (1998) and
Biller (2000).

However, we select the birth-death Markov
chain Monte Carlo (BDMCMC) method
(Stephens 2000), which was first used in
a regression context by Hurn, Justel, and
Robert (2003). The BDMCMC computes
the rates of a simpler hidden Markov Chain,
which these authors characterize as a birth
and death process. By reducing the number
of parameter estimates, the use of BDM-
CMC is better-suited for applications with
limited data. We also note that the compu-
tational process becomes simpler compared
to RJMCMC because the use of BDMCMC
reduces the types of jumps across states while
still achieving consistent estimation results.

To the best of our knowledge, this is the
first study to endogenously estimate the num-
ber of states in a state-contingent stochastic
production frontier, as well as the first to
perform a goodness-of-fit analysis on a state-
contingent production frontier model. We
apply the proposed BDMCMC method to a
case study of 44 rice farms in the Philippines
operating between 1990 and 1997, which
were investigated in Villano, O’Donnell, and
Battese (2004) and later in O’Donnell and
Griffiths (2006). In addition, we relax the
linear time trend assumption of the models
in O’Donnell and Griffiths for changes in
production over time to consider a model
with a state-independent dummy time trend,
which more accurately separates the frontier
shifts over time from state-contingent yield
variability, inefficiency, and noise. We discuss
the implications of using both the linear time
trend and dummy time trend models on the
estimated posterior parameters, the relevant
economic interpretations, and the existence
of state-specific production. We describe the
use of mean squared error (MSE) and visual
tools, such as quantile-quantile (QQ) plots, to
compare the performance of a model using
the full distribution of the number of states
versus a model using only the mode of this
distribution.

The remainder of this article is organized
as follows. The model section presents the
functional form and our assumptions about
the production frontier, the dependence and

distributional assumptions about the frontier
parameters to be estimated, and the steps
followed to conduct inference. The empirical
application section describes the rice farm
case study, including the application-specific
prior parameter values, the estimation
results, our economic interpretations, and
our incorporation of some common eco-
nomic constraints. We then test the fit and
robustness of our results and discuss our
sensitivity analyses. We also assess the degree
of label-switching present in our results.
The conclusions section, which summarizes
our findings, mentions some possible future
research pursuits.

Model

We estimate a production frontier and
the number of states using a BDMCMC
algorithm with a “nested” Gibbs sampler.
This Gibbs sampler draws from the condi-
tional posterior distributions of the para-
meters to be estimated and infers the frontier
coefficients, precisions, state probabilities,
state allocations, and inefficiency terms of
the observations in the dataset for a fixed
number of states. To obtain expressions that
are proportional to the conditional posterior
distributions of each parameter, we must
multiply the joint prior distribution against
the likelihood function—the joint density of
all output levels in our dataset conditioned
on all other parameters—to obtain an unnor-
malized joint posterior distribution. The joint
prior distribution is defined by the assumed
prior distributions on all parameters and
by the Bayesian Hierarchical model that
specifies the dependence structure between
them.

The BDMCMC algorithm selects the num-
ber of states by computing the birth and
death rates for states through likelihood com-
parisons (see step 1 of the algorithm in the
Bayesian Inference via BDMCMC subsec-
tion below) between the current model and
models where an individual state is removed.
Once these rates are obtained at each pass
of the BDMCMC algorithm, a birth or death
happens within a Markov chain describ-
ing the number of states. Stephens (2000)
proves that the stationary distribution of this
Markov chain, obtained after a large enough
number of births and deaths, converges to the
correct posterior distribution for the number
of states. Moreover, Stephens (2000) proves
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that using the Gibbs sampler to obtain draws
from all frontier parameters each time a state
is born or dies results in a valid joint distribu-
tion of all of the parameters estimated within
the BDMCMC algorithm, which simultane-
ously solves both the estimation and model
selection problems.

Production Frontier Regression Model

We first define a state-contingent production
frontier regression model (the production
frontier) that will be estimated by our
BDMCMC algorithm

(1) ln Y = fj(X1, . . . , Xk) + ε

where fj is the production function associ-
ated with state j, and ε = v − u is a composite
error term obtained by subtracting a non-
negative variable u representing the technical
inefficiency of a farm relative to the effi-
cient frontier from a random effect, v, which
follows a finite normal scale mixture dis-
tribution centered at 0. We assume that all
fj’s have the same functional form; how-
ever, the production frontier coefficients are
state-dependent following O’Donnell and
Griffiths’ most general random effects model.
We scale all input variables to their mean val-
ues and adapt the model for a panel context,
resulting in

(2) ln Yit = d itβ0 + (xit ⊗ d it)
′β−0 + vit − ui.

Note that we assume a fully separable
intercept term β0 from the chosen functional
form. To have state-varying coefficients,
we define J to be the number of states, and
d it as a vector containing J state-specific
binary dummy variables. Moreover, β0 =
[β01, . . . , β0J]′ is a vector of state-varying
intercepts, ⊗ is the Kronecker product, β−0 =
[β−01, . . . , β−0J ]′ is a vector of state-varying
slope coefficients, and β = [β0, β−0]′ is a
vector containing the coefficients of all J
frontiers. The d it vector is used to spec-
ify the distributions of the random effects,
vit ∼ N(0, [d ith]−1), where h is the vector of
state-specific precisions. Finally, the output
vector Y it is the rice yield of farm i at time t.

Next, we consider two distinct time trend
assumptions and fit separate models for
each: in the first model, the linear time
trend model, βTRj (included in β−0j) is a
scalar and in the second model (the dummy

time trend model) it is a vector of state-
independent dummy coefficients for each
year, that is, βTRj = [βTR2j, . . . , βTRTj], with
βTRtj = βTRtk∀j, k ∈ {1, . . . , J}, for each year
t ∈ {2, . . . , T} in the time span. The dummy
time trend model is important because the
results produced by models with less flexible
time trends, that is, the linear trend model
and the models estimated by O’Donnell and
Griffiths, could lead us to attribute output
variations over time to the state-specific
effects on mean output, to noise, and/or to
inefficiency.

Bayesian Hierarchical Model

To estimate the parameters of the production
frontier with a Gibbs sampler, as done in our
application of BDMCMC, we define a depen-
dence structure using a Bayesian Hierarchical
model. Figure 1 illustrates this hierarchical
structure; the circles indicate parameters to
be inferred during the BDMCMC algorithm,
the squares indicate known or assumed
quantities, and the arrows indicate that the
value of the parameter located at the end
of an arrow depends on the value of the
parameter at its beginning (see the prior and
conditional posterior distributions subsec-
tions for details of the explicit mathematical
prior and posterior dependence among the
parameters).

Similar to Richardson and Green (1997),
our hierarchical model extends the models
in O’Donnell and Griffiths by including g
and m as hyperparameters of �, which allows
for smooth precision estimates among the
states. Similar to O’Donnell and Griffiths and

Figure 1. Directed acyclic graph for the
Bayesian hierarchical model used for param-
eter estimation, with parameters to be
inferred in circles
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Hurn, Justel, and Robert (2003), the output
is dependent on the input matrix X , lead-
ing to a standard regression structure. For
clarity, we include J, the number of states in
the model, and the hyperparameter for its
prior mean, λ. Further, we define π, a vector
of state probabilities (or the probability that
any given observation is assigned to a par-
ticular component of the mixture), and ρ to
be a hyperparameter of u related to median
efficiency. Finally, note that the dependence
structure detailed in figure 1 can also be
described as the joint prior distribution, given
by

p(β, h, d , u, π, ρ, �, J)(3)

= p(β|J, ξ, κ) · p(h|J, v, �) · p(π|J, δ)

· p(d |π) · p(u|ρ, ζ)

· p(�|g, m) · p(ρ|τ∗) · p(J|λ)

and the likelihood function p(y|X , β, h, d , u,
π, ρ, �, J) Note that output, y, appears in the
likelihood function, which is further discussed
in the likelihood function section below, but
not in the joint prior distribution.

Prior Probability Distributions

To obtain conditional posterior distribu-
tions from which the Gibbs sampler will
draw, we define the prior probability distri-
butions for the parameters to be estimated.
The prior distributions are dependent on
the known prior hyperparameter values.
Our production frontier includes a large
number of parameters to be estimated, and
thus requires us to define proper prior dis-
tributions on all parameters. A commonly
used prior distribution for the regression
coefficients and precisions of a production
frontier in a Bayesian framework is the
normal-inverse gamma (NIG). We also use
the prior distributions to impose structure to
the states being estimated. Although a loss
function has been used to address the state
identifiability problem (Hurn, Justel, and
Robert 2003), we use a labeling restriction
that ranks the states of nature from “least
favorable” to “most favorable” in order to
gain knowledge about the relative desirability
of each state. We define our labeling restric-
tion to constrain the expected log-output
from a lower-indexed state to be, on average,

less than that of a higher-indexed state with
the NIG assumption to obtain β ∼ N(ξ, κ) ·
I(E(ln Yit|xit = 0, j = 1) ≤ · · · ≤ E(ln Yit|xit = 0,
j = J)), where ξ, κ are fixed and the indicator
function describes the labeling restriction.

Consistent with the NIG prior, we assign
a gamma prior for each state-specific pre-
cision, hj, such that hj ∼ �(v, �) for all
j ∈ {1, . . . , J}, where its hyperparameter
� has a prior �(g, m) distribution, and v
is fixed. We choose a uniform prior for π
over J states, a Multinomial(π) distribu-
tion for d , and following Stephens (2000),
we choose the number of states to follow
a prior Poisson distribution, P0(λ). Also,
we assume a (properly normalized) trun-
cated exponential prior distribution for the
inefficiency term of the ith farm, ui. Thus,
ui ∼ c · expo(ρ) · I(ui ≤ − log(ζ)), where c is
a normalization constant and − log(ζ) is an
upper bound on the inefficiency term. Note
that this upper bound translates into a lower
bound ζ on the technical efficiency of each
farm (TEi) due to TEi = exp(−ui)

1. Finally,
we assume that ρ, the prior hyperparameter
of the ui terms, follows an expo (−1/ ln(τ∗))
distribution, where we assume that τ∗ is
a prior estimate of the median technical
efficiency.

Likelihood Function

Having specified the prior distributions and
dependence structure for our parameters, we
now need to specify a likelihood function to
multiply with them in order to obtain expres-
sions that are proportional to the conditional
posterior parameter distributions that our
Gibbs sampler will draw from. We construct
the standard likelihood for a mixture of
Gaussians with unobserved state allocations
by weighting the Gaussian likelihoods with
different coefficients and precisions, each of
which corresponds to a particular component
in the mixture, times the component’s relative
frequency within the mixture. In equation (3)
below, the total number of farms is denoted
by N , and the index of the last time period
is denoted by T . Below, y denotes the vector
of all observations ln(Yit). Note that we use
“. . .” to denote conditioning an all parameter
models except for the one of interest:

1 While justifications exist for this in some industries, in this
paper this assumption is needed for estimation proposes.
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y| . . . ∼ (2π)−
NT

2

N∏
i=1

T∏
t=1

(4)

⎧⎨
⎩

J∑
j=1

πj

√
hj exp

[ − 0.5hj(ln(Yit) − β0j − x′
itβ−0j + ui)

2]
⎫⎬
⎭.

Conditional Posterior Distributions

We multiply the likelihood against the
joint prior distribution assumed for our
parameters to obtain an expression that is
proportional to their joint posterior distri-
bution, which we then condition. To obtain
valid parameter estimates, given a fixed J,
for the production frontier coefficients β,
precisions h, state probabilities π, the dummy
variables to assign observations to states
d , the inefficiency terms ui, and hyperpa-
rameters � and ρ, we need to draw from
their conditional posterior distributions
using the Gibbs sampler until the param-
eter estimates reach stationarity. For our
production frontier model, and given our
choices of dependence structure, prior dis-
tributions and likelihood, the conditional
posteriors for β, h, π, and d correspond to
the results of a NIG finite Gaussian mixture
model for fixed J, while the ones correspond-
ing to ui, �, and ρ are straightforward to
derive. Note that the conditional posterior
distribution for ui is not conjugate, it is a
2-sided truncated normal, but has a truncated
exponential prior distribution. For simplicity,
we define zit = (d ′

it , (xit ⊗ dit)
′)′. Noting that

parameters nj refer to the number of obser-
vations allocated to state j, the conditional
posterior distributions for our parameters are
given by the following:2

π . . . ∼D(δ + n1, . . . , δ + nk)(5)

β| . . . ∼N(ξ̄, κ̄) · I(E(ln Yiy|xit = 0, j = 1)(6)

≤ · · · ≤ E(ln Yit |xit = 0, j = J))

hj| . . . ∼�

⎧⎨
⎩v + 1

2
nj , �(7)

+ 1
2

∑
it:zit=j

[yi + ui − (β0j + xitβ−0j)]2

⎫⎬
⎭

d | . . . =
N∏

i=1

T∏
t=1

fM(dit |1, d̄ it)(8)

2 See the online supplementary appendix for the posterior
hyperparameter expressions and the data.

�| . . . ∼�

⎛
⎝g + Jν, m +

∑
j

hj

⎞
⎠(9)

ui| . . . ∼N(μuiσ
2
ui) · I(0 ≤ ui ≤ − log(TEl))(10)

and

(11) ρ−1| . . . ∼�

(
N + 1

u′jN − ln(τ∗)
, 2(N + 1)

)
.

Bayesian Inference via BDMCMC

Having specified the conditional posterior
distributions from which we will sample, the
last step is to simultaneously estimate the
parameters of our state-contingent produc-
tion frontier model and its number of states.
Prior to explaining this, we will discuss some
technicalities of the random variable simula-
tion process conducted in our Gibbs sampler,
as standard random variable generators do
not suffice simulating our model’s parame-
ters. Efficient sampling from the restricted
normal distribution of β becomes critically
important as the dimensionality of the model
increases for larger values of J, therefore we
incorporate an efficient sampling method
(Geweke 1991) when the standard accept-
reject criterion fails to produce a satisfactory
draw from β’s posterior distribution after
30 trials. We select this number to ensure a
reasonable running time, due to frequent
sampling from the simple accept-reject
sampler, and because Geweke’s sampler
produces draws whose variance depends
on the number of iterations of its internal
algorithm, which we want to avoid where
possible. Unlike O’Donnell and Griffiths, we
use the 2-sided truncated normal sampler
(Robert 1995) to simulate from the poste-
rior distribution. Finally, we nest our Gibbs
sampler within the BDMCMC algorithm and
solve the model estimation and model selec-
tion problems simultaneously by adapting
the algorithm outlined in Stephens (2000).
Letting η(s) = (β(s), h(s)

)′, the steps in our
BDMCMC algorithm are as follows:

1. Run the birth and death process, start-
ing at time s for a fixed time s0, fixing
d , ρ−1, u, �, π, and η. Keep J(s+s0) as a
draw from the conditional posterior of J.

a) Fix a birth rate λb = λ.
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b) Compute death rate for each com-
ponent δj(π, η) = L((π,η)/(πj ,ηj))

L(π,η)
∀j.

c) Compute total death rate δ(π, η) =∑
j δj(π, η).

d) Compute next time snew until
a birth or death occurs from an
expo(λb + δ(π, η)) distribution, and
let s∗ = s + snew.

e) Decide type of jump: birth with
probability λb

λb+δ(π,η)
or death with

probability δ(π,η)

λb+δ(π,η)
.

f) Adjust sizes of d , π, and η according
to the type of jump.
For birth jumps, generate π according
to a Beta(1, k) distribution and gen-
erate a new component for η from its
prior. Assign the new component an
index j∗ such that it does not violate
the labeling restriction. For death
jumps, select a component to die with
a probability of δj(π, η)/δ(π, η).

g) Repeat until s∗ ≥ s + s0.

2. Draw d (s+1) from p(d |J(s+1), π(s+s0),
η(s+s0), �(s), ρ−1(s), u(s)).

3. Draw �(s+1) from p(�|J(s+1), π(s+s0)),
η(s+s0), d (s+1), ρ−1(s), u(s)).

4. Draw π(s+1) from p(π|J(s+1), η(s+s0),
d (s+1), �(s+1), ρ−1(s), u(s)).

5. Draw η(s+1) from p(η|J(s+1), π(s+1), d (s+1),
�(s+1), ρ−1(s), u(s)).

6. Draw ρ(s+1) from p(ρ|J(s+1), π(s+1), η(s+1),
d (s+1), �(s+1), u(s)).

7. Draw u(s+1) from p(u|J(s+1), π(s+1), η(s+1),
d (s+1), �(s+1), ρ−1(s+1)).

Note that the choice of λb is inconsequential
for the algorithm to converge because λb
can take any finite positive value (Stephens
2000). Since the birth or death jumps of the
algorithm must consider the labeling restric-
tion, we add another instruction to step 1(f),
which assigns the newly-generated index
component j∗ such that its intercept is larger

than that of the (j∗ − 1)th component and
smaller than that of the (j∗ + 1)th component.
Finally, note that drawing from our Gibbs
sampler takes place during steps 2-5.

Empirical Application

Our dataset contains observations for 44 rice
farms operating in the Tarlac region of the
Philippines between 1990 and 1997. Each
observation, which refers to a farm i at year
t, comprises the value for the yield (in tons),
the output variable Y , and the values for
area planted (hectares planted), labor used
(person-days), and fertilizer used (kilograms
of nitrogen, phosphorus, and potassium or
NPK fertilizer), the input variables, X1, X2,
and X3, respectively. Summary statistics for
our database, identical to the ones shown in
O’Donnell and Griffiths, are shown in table 1.
We use a translog production function, for
which the input vector is

xit = [TRit, ln(X1it), ln(X2it), ln(X3it),(12)

0.5 ln(X1it)
2, ln(X1it) ln(X2it)

ln(X1it) ln(X3it), 0.5 ln(X1it)
2,

ln(X2it) ln(X3it), 0.5 ln(X3it)
2]′

where TR is either a scalar or a vector of
the binary dummy variables, depending on
which model we consider. We scale all input
variables at their means and define all of
the dummy variables of the dummy time
trend model as the difference in the yearly
shift of the production year against the base
year of 1990 following Baltagi and Griffin
(1988); this base year has no associated time
dummy variable. Since the variables are
scaled at their input means, ordering states by
their intercept values ensures that the mean
log-output of a higher-indexed state will be
greater than that of a lower-indexed state,
that is, I(β01 ≤ β02 ≤ · · · ≤ β0J) is equivalent to
I(E(ln Yiy|xit = 0, j = 1) ≤ · · · ≤ E(ln Yiy|xit =
0, j = J)).

Table 1. Summary Statistics

Variables Mean SD Minimum Maximum

Y = Rice output (tons) 6.47 5.08 0.09 31.10
X1 =Area 2.12 1.45 0.20 7.00
X2 = Labor 107.20 76.65 8.00 436.00
X3 = Fertilizer 187.05 168.59 3.40 1,030.90
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The current section is organized as follows:
the application-specific prior parameter val-
ues are detailed, followed by the estimation
results and the economic interpretations.
Some common economic constraints incor-
porated in our models are also discussed. We
then proceed to test the fit and robustness of
our results.

Prior Parameter Values

We begin by selecting a value of 1J hyperpa-
rameter δ, which is a J-dimensional vector
of ones, to reflect the least-possible prior
knowledge about the probability occur-
rence of each state of nature. We select prior
values for the slopes and intercepts, ξ and
covariance matrix κ, so that the intercept
terms of ξ comply with our labeling restric-
tion and the slopes of the main variables

have a relatively small value with a large
variability, and thus are not significant
a priori. We assign no prior significance
and large variability to the coefficients
corresponding to the interaction terms.
We select precision-related hyperparam-
eters, v, g, and m, based on the range of
the errors resulting from a frequentist
regression using a translog functional form
and considering a linear time trend. We
use the result for the number of states in
O’Donnell and Griffiths, 3, as the prior
value for λ, the mean of the distribution
describing the number of states. Finally,
we consider a prior median technical effi-
ciency (TE) τ∗ of 0.875 with a prior lower
bound of 0.7 (see corresponding subsec-
tions for the sensitivity analysis performed
on λ, τ∗ and the prior lower bound of TE).
Table 2 summarizes the prior values for the
hyperparameters.

Table 2. Summary of Prior Values for Model Hyperparameters

Hyperparameter Prior Value Justification

Intercepts on ζ, κ (2j-1)/2Jth percentile of
output vector, where j is
the state number, 2.25

Comply with labeling restriction. Assign
large prior variance.

Time trend on ζ, κ
(for linear time
trend model)

0.02, 0.15 Annual output growth rate from database.
Assign large prior variance.

Time dummies on
ζ, κ (for dummy
trend model)

0.02*(year-1990), 0.15 Annual output growth rate from database.
Assign large prior variance.

Slopes on ζ, κ 0.5, 6.5 Small value, not significant due to its large
variance.

Interaction terms on
ζ, κ

0, 26 Consider no impact of input interactions a
priori. Also, assign large prior variance.

δ 1J Consider all states to be equiprobable a
priori; assign smallest possible weight to
prior distribution.

v 2 Same as Richardson and Green (1997) to
g 0.2 ensure data-dependent vague precision
m 100 ∗ g/(v ∗ (maxit eit −

minit eit)
2)

prior; {eit} are the errors of a least squares
regression with the translog function.

λ 3 Best estimation obtained by O’Donnell and
Griffiths.

Max. of number of
allowed states

100 Needed for BDMCMC; choose very large
value so as not to affect estimation.

τ∗ 0.875 Assumed prior median technical efficiency.

ζ 0.7 Assumed prior lower bound for technical
efficiency.
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Preciado Arreola and Johnson A BDMCMC Method for State-contingent Frontiers 9

Posterior Parameter Estimates
and Interpretation

We run both the linear and dummy time
trend models, as well as their monotonicity-
constrained versions. Here, we discuss the
results of the monotonicity-constrained linear
and dummy time trend models and compare
them against those of the monotonicity-
constrained fully state-contingent model
in O’Donnell and Griffiths. We run 5,500
iterations for all our models, discarding
the first 500 as burn-in. From the observed
mixing on the trace plots for the number
of states, precisions, state probabilities,
and frontier coefficients (available in the
online supplementary appendix for both the
monotonicity-constrained dummy time trend
model and the monotonicity-constrained
linear time trend model), this period appears
to be sufficient. After estimating the frontier,
we find that the posterior distribution of the
number of states of nature, J, is unimodal
with a mode 3 for both monotonicity-
constrained models. Moreover, the highest
probability region of the posterior distribu-
tion of J allows us to create a 90% credible
set including the values 2, 3, or 4 (figure 2).
This distribution, which provides evidence
of at least two major groups of farms based
on differences in environmental conditions,
supports our state-contingent hypothesis.
Moreover, if hyperparameter � is held fixed,

Figure 2. Posterior distribution for the num-
ber of components in the mixture for dummy
time trend model

our linear time trend model is equivalent to
the fully state-contingent model in O’Donnell
and Griffiths, but with � held fixed, our
estimation procedure results in a posterior
distribution for the number of states with a
mode of 2 versus the 3 states estimated in
O’Donnell and Griffiths. This latter finding
suggests that O’Donnell and Griffiths over-
estimate the number of states by relying on
BIC as the model-selection criterion. Table 3
shows the results for our models for J = 3
and for the fully state-contingent models in
O’Donnell and Griffiths.

The expected efficient log-output for the
first state (the intercept term) in our two
models is not as low as the estimates in
O’Donnell and Griffiths. Hence, we infer that
factors other than land area, labor, and fer-
tilizer have fewer detrimental effects relative
to the results of O’Donnell and Griffiths. For
instance, if we exponentiate the intercepts to
obtain expected efficient yields for the first
year of the timespan, 1990, we find that for
state 2 of our dummy time trend model this
figure is only 6% higher than that of the most
unfavorable state (state 1), whereas this same
comparison results in a 200% difference for
O’Donnell and Griffiths.

We define four confidence levels (99%—
highly; 95%—moderately; 90%—mildly; and
85%—barely significant)3 to compare our
two models with O’Donnell and Griffiths.
For our two models and O’Donnell and Grif-
fiths, the area, labor, and the state-contingent
intercepts are significant at approximately
the same levels for all states. The primary
difference is in the estimated effect of fertil-
izer, which is highly significant for all states
in our dummy model, moderately significant
for two states in our linear model, and highly
significant only for state 1 in O’Donnell and
Griffiths; recall that state 1 has unfavorable
(low expected yield) weather conditions.
Unlike O’Donnell and Griffiths, however, our
two models do not estimate negative fertil-
izer elasticities for state 1. O’Donnell and
Griffiths posit excessive fertilizer application
as detrimental to rice yield in bad weather
conditions. We suggest that the disagreement

3 For the sake of computational simplicity, we use classical
hypothesis testing because we only want to evaluate the inter-
cepts, time trends, and elasticities, which have a posterior normal
distribution. Thus, the normality of classical hypothesis testing
holds.
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Table 3. Estimated Production Frontier Coefficient Means for BDMCMC Linear, Dummy
Time Trend, and O’Donnell and Griffiths Models at the Posterior Mode J = 3

Means

O’Donnell and
Linear Trend Dummy Trend Griffiths SC-all

Coefficient State Free Mono Free Mono Free Mono

Intercept 1 1.886∗∗∗∗ 1.886∗∗∗∗ 1.917∗∗∗∗ 1.918∗∗∗∗ 1.118∗∗∗∗ 1.112∗∗∗∗
2 2.002∗∗∗∗ 2.002∗∗∗∗ 1.983∗∗∗∗ 1.976∗∗∗∗ 1.814∗∗∗∗ 1.803∗∗∗∗
3 2.098∗∗∗∗ 2.101∗∗∗∗ 2.061∗∗∗∗ 2.049∗∗∗∗ 2.082∗∗∗∗ 2.079∗∗∗∗

Time Trend 1 0.024∗ 0.023∗ Multiple Multiple 0.028∗∗ 0.029∗∗
2 0.011 0.012 Multiple Multiple −0.014 −0.013
3 0.013 0.014 Multiple Multiple 0.009 0.010

ln(Area) 1 0.708∗∗∗∗ 0.696∗∗∗∗ 0.735∗∗∗∗ 0.623∗∗∗∗ 0.615∗∗∗ 0.434∗∗∗
2 0.645∗∗∗∗ 0.637∗∗∗∗ 0.66∗∗∗∗ 0.584∗∗∗∗ 0.133 0.143∗∗
3 0.556∗∗∗∗ 0.546∗∗∗∗ 0.586∗∗∗∗ 0.577∗∗∗∗ 0.561∗ 0.369∗∗∗

ln(Labor) 1 0.016 0.036 −0.033 0.127 −0.333 0.107
2 0.071 0.079 0.044 0.138 0.024 0.119∗∗
3 0.231∗∗ 0.241∗∗ 0.201 0.204∗∗ −0.106 0.184∗∗

ln(Fertilizer) 1 0.197 0.193 0.212 0.187∗∗∗ −0.199 −0.368∗∗∗
2 0.151∗∗ 0.151∗∗ 0.183 0.18∗∗∗ 0.112 0.049
3 0.15∗∗ 0.152∗∗ 0.159 0.169∗∗∗ 0.313∗∗ 0.231

ln(Area)ˆ2/2 1 −0.259 −0.297 −0.256∗∗∗ −0.297 0.011 0.006
2 −0.558 −0.545 −0.40∗∗∗∗ −0.398 −0.408 −0.395
3 −0.637 −0.619 −0.59∗∗∗∗ −0.567 −0.690 −0.158

ln(Area)∗ 1 0.420 0.481 0.413 0.454 0.176 0.213
ln(Labor) 2 0.611 0.592 0.494 0.504 0.336 0.391

3 0.740 0.731 0.732 0.700 0.700 0.379

ln(Area)∗ 1 0.157 0.141 0.165 0.093 0.171 0.048
ln(Fert.) 2 0.159 0.169 0.156 0.106 −0.005 −0.048

3 0.039 0.033 0.047 0.047 −0.529 −0.492

ln(Labor)ˆ2/2 1 −0.441 −0.537 −0.442∗∗ −0.399 −0.580 −0.366
2 −0.493 −0.481 −0.496∗∗ −0.501 −0.145 −0.066
3 −0.772 −0.746 −0.827∗∗∗ −0.779 −0.221 −0.408

ln(Labor)∗ 1 −0.307 −0.278 −0.287 −0.262 −0.288∗∗ −0.223
ln(Fert.) 2 −0.349 −0.346 −0.269 −0.228 −0.181 −0.204

3 −0.145 −0.153 −0.106 −0.111 0.555 0.637∗∗

ln(Fert.)ˆ2/2 1 0.151 0.133 0.119 0.136 −0.172 −0.228∗
2 0.129 0.117 0.085 0.091 0.152∗∗ 0.145∗∗
3 0.035 0.046 0.005 0.016 −0.395∗ −0.385∗

Precision 1 11.540 11.433 14.616 14.342 5.81 5.648
2 12.809 12.985 14.752 14.701 8.513 8.528
3 15.138 15.248 16.807 16.582 8.303 8.346

State Prob. 1 0.296 0.293 0.347 0.330 0.312 0.306
2 0.345 0.344 0.325 0.335 0.363 0.364
3 0.358 0.361 0.327 0.333 0.325 0.330

Note: Asterisks ∗ , ∗∗ , ∗∗∗ , and ∗∗∗∗ denote significance at the 15%, 10%, 5%, and 1% levels, respectively.
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Table 3. (Continued). Estimated Production Frontier Coefficient Standard Deviations for
BDMCMC Linear, Dummy Time Trend, and O’Donnell and Griffiths Models at the Posterior
Mode J = 3

Standard Deviations

O’Donnell and
Linear Trend Dummy Trend Griffiths SC-all

Coefficient State Free Mono Free Mono Free Mono

Intercept 1 0.102 0.098 0.075 0.071 0.200 0.196
2 0.079 0.077 0.070 0.066 0.087 0.087
3 0.085 0.085 0.080 0.074 0.108 0.103

Time Trend 1 0.020 0.020 Multiple Multiple 0.018 0.018
2 0.015 0.015 Multiple Multiple 0.016 0.016
3 0.014 0.014 Multiple Multiple 0.014 0.014

ln(Area) 1 0.270 0.268 0.060 0.158 0.296 0.239
2 0.209 0.206 0.204 0.157 0.195 0.103
3 0.192 0.192 0.230 0.161 0.471 0.241

ln(Labor) 1 0.268 0.265 0.215 0.109 0.242 0.094
2 0.206 0.203 0.199 0.115 0.184 0.090
3 0.173 0.171 0.188 0.131 0.347 0.144

ln(Fertilizer) 1 0.174 0.177 0.218 0.105 0.239 0.227
2 0.122 0.119 0.197 0.096 0.124 0.110
3 0.102 0.108 0.170 0.090 0.201 0.190

ln(Area)ˆ2/2 1 0.742 0.744 0.128 0.641 0.339 0.344
2 0.738 0.688 0.113 0.674 0.933 0.927
3 0.921 0.867 0.100 0.837 1.795 1.416

ln(Area)∗ ln(Labor) 1 0.659 0.647 0.602 0.567 0.341 0.334
2 0.656 0.636 0.709 0.607 0.647 0.641
3 0.780 0.764 0.905 0.770 1.237 1.154

ln(Area)∗ ln(Fert) 1 0.414 0.407 0.517 0.330 0.241 0.229
2 0.380 0.360 0.633 0.341 0.456 0.415
3 0.430 0.407 0.815 0.401 0.581 0.578

ln(Labor)ˆ2/2 1 0.882 0.896 0.327 0.786 0.510 0.489
2 0.861 0.864 0.361 0.811 0.733 0.729
3 0.993 0.981 0.417 0.975 1.332 1.296

ln(Labor)∗ ln(Fertilizer) 1 0.374 0.399 0.735 0.301 0.223 0.218
2 0.365 0.354 0.837 0.327 0.459 0.437
3 0.404 0.391 0.993 0.372 0.495 0.484

ln(Fertilizer)ˆ2/2 1 0.281 0.288 0.297 0.205 0.189 0.186
2 0.241 0.232 0.351 0.235 0.109 0.106
3 0.297 0.280 0.390 0.267 0.358 0.357

Precision 1 3.075 3.014 3.555 3.870 1.082 1.084
2 3.221 3.254 3.866 4.415 1.298 1.286
3 3.639 3.706 4.494 0.094 1.466 1.513

State Prob. 1 0.091 0.091 0.087 0.097 0.060 0.063
2 0.107 0.109 0.092 0.087 0.050 0.051
3 0.093 0.091 0.081 0.060 0.058 0.062

Note: Asterisks ∗ , ∗∗ , ∗∗∗ , and ∗∗∗∗ denote significance at the 15%, 10%, 5%, and 1% levels, respectively.

in our parameter estimates and O’Donnell
and Griffiths’ are likely driven by the differ-
ences between our worst state’s expected
yield results. O’Donnell and Griffiths’
worst state is associated with a significantly
lower yield compared to ours (see table 3).
O’Donnell and Griffiths’ significantly lower
estimates of the yield in state 1 are likely to

have effects on the parameter estimates of
the production function associated with that
state. Our positive elasticity results for fertil-
izer are supported by SriRamaratnam et al.
(1987). These authors show that for yield per-
unit area levels similar to the ones obtained
in our state 1, fertilizer ranging from very low
to very high concentrations per unit of area
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has a positive effect on field yield. Griffin
et al. (1985) show similar results in the con-
text of ratoon crops. Thus, we conclude that
for all states estimated in our application,
fertilizer has a non-decreasing relationship
to yield. Furthermore, this result does not
contradict the notion of fertilizer being a
risky input in a profit-maximization context,
as the increase in yield may not outweigh its
acquisition and application costs. Moreover,
O’Donnell and Griffiths show moderately or
barely significant elasticities for the squared
fertilizer term for all states. Combining these
with their fertilizer elasticities, O’Donnell
and Griffiths’ results and ours are roughly
consistent for states 2 and 3, suggesting a
moderately to barely significant positive
elasticity of fertilizer on rice yields.

The planted area elasticities of our two
models seem to be slightly higher for states
1 and 3 and significantly higher for state 2,
suggesting a higher per hectare yield rel-
ative to O’Donnell and Griffiths’ results.
For labor, our estimated elasticities and
O’Donnell and Griffiths are similar. Finally,
and unlike O’Donnell and Griffiths, our two
models show no significant second-order or
interaction terms, and first-order input coeffi-
cients have a sum close to unity. From these
results, we conclude that approximately con-
stant returns-to-scale characterize the Tarlac
region’s rice production.

The time trend effects are only significant
for state 1 in O’Donnell and Griffiths’ results,
indicating either technological progress
regarding the methods to handle bad weather
conditions, or increasingly more benign “bad”
weather conditions throughout the time span.
Our state-contingent linear trend model,
which shows that the time trend coefficients
are barely significant for state 1, partially sup-
ports this insight. Our time trend coefficient
for state 3, which is the largest in magni-
tude, aligns with O’Donnell and Griffiths.
Furthermore, our dummy time trend model
provides additional insight into changes in
the production environment of the Tarlac
region over time. Thus far, the only indicator
of the overall change in production condi-
tions over time is O’Donnell and Griffiths’
model with J=1 (equivalent to the RE model
in the O’Donnell and Griffiths paper), which
indicates a significant linear trend coefficient
of 0.014. Figure 3 shows a more complicated
pattern of output fluctuation over time, as the
dummy time trend model’s coefficient values
relative to the base year are at least barely

Figure 3. Dummy time trend and
state-contingent linear time trend comparison

significant for every year except for 1991 and
1994, and they show that both “good” (1997)
and “bad” (1996) years occur.

The state-contingent intercepts for the
dummy time trend model are slightly more
similar to one another than for the linear
time trend model, while the estimated preci-
sions are larger for the dummy trend model.
Both of these results indicate that the dummy
trends capture a larger percentage of out-
put variability. This finding translates into a
smaller percentage of the expected output
being assigned to the unobserved variables
modeling the different states (for details, see
the label-switching subsection). In general,
the precisions of the noise terms are larger
in our two models than in O’Donnell and
Griffiths, which is consistent with the smaller
MSE obtained using our models (for details,
see the goodness-of-fit subsection).

The technical efficiency estimates for our
two models have a Spearman correlation
coefficient of roughly 80% when compared
to O’Donnell and Griffiths, meaning that
the efficiency rankings do not change radi-
cally (see figure 5). For the 44 rice farms as
a group, the mean technical efficiency esti-
mated using either the dummy or the linear
time trend models is lower than O’Donnell
and Griffiths. However, if we set a lower
bound on technical efficiency to 0.8, our
result is less than 1% different from that
of O’Donnell and Griffiths. In any case,
O’Donnell and Griffiths’ TE distribution dif-
fers from the results of our two models, based
on a series of Kolmogorov-Smirnov tests with
p-values lower than 0.1% for the null hypoth-
esis of distributional equality. One exception
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occurs when we compare O’Donnell and
Griffiths’ TE distribution with our linear
model with a lower bound on technical effi-
ciency set to 0.8, where the p-value for the
null hypothesis is equal to 0.105. Hence, the
hypothesis is not rejected at the usual signifi-
cance levels, indicating statistically equivalent
distributions.

When comparing the random effects
model against a fully state-contingent
model, O’Donnell and Griffiths find a 7%
higher mean TE when using the state-contin-
gent model. While we can neither validate
nor refute O’Donnell and Griffiths’ result,
since our mean TE depends on the prior
lower bound, we can assess the degree to
which mean TE increases when using a state-
contingent frontier by estimating a ran-
dom effects model with the same value for
the lower bound on TE. For the dummy
time trend model, a less than 1% increase
in the TE is observed when considering
a state-contingent frontier instead of a
random effects frontier, suggesting that
state-contingency does not account for as
much variability in output as O’Donnell and
Griffiths’ results indicate.

Incorporating Monotonicity and Convexity
Constraints into the Frontier Model

To impose monotonicity of inputs, we use
an accept-reject method to sample from
the truncation region for the multivariate
normal draws of β (area, labor, fertilizer).
We define the truncated region by the
monotonicity and labeling restrictions. Our
BDMCMC algorithm produces satisfactory
monotonicity-constrained draws for both
the linear time trend and the dummy time
trend models. Table 3 shows that there is
not a large difference between the restricted
and unrestricted models, implying that the
unrestricted models nearly satisfy mono-
tonicity. Regarding the imposition of a
convexity constraint, we form the Hes-
sian matrix to test quasi-convexity in the
inputs used as suggested by O’Donnell and
Coelli (2005). Given the selected dataset,
production frontier model, and the distri-
butional assumptions on the parameters,
some observations do not comply with
a convexity assumption. Hence, we con-
clude that by using a simple accept-reject
method, it is not possible to estimate a
convexity-constrained version of our two

models using our BDMCMC algorithm for
this data set.

Goodness-of-fit

To assess the goodness-of-fit of both our
linear time trend and dummy time trend
models, we compare the MSEs and the
quantiles of the posterior distribution of the
observed residuals with those of a Gaus-
sian mixture distribution. First, we generate
predicted output values from our state-
contingent models by simulating from the
posterior distribution of the number of states
and then simulating from the posterior distri-
bution of π, given the simulated value of J.
Drawing the values for these parameters tells
us both the state to which an observation is
assigned and which production function will
predict the output level. Second, we compare
these predicted output levels to the observed
output level to obtain a prediction error and
to calculate MSE. Third, we compare the
prediction error quantiles against those of
a Gaussian mixture error with a mean of
zero and the corresponding state-specific
precisions to validate the distribution of the
observed prediction errors. Fourth, since both
the observed and theoretical standard errors
depend on the generated values of the uni-
form random numbers we use to draw from
the aforementioned posterior distributions,
we run the error-generating algorithm until
both the observed and theoretical standard
error vectors reach stationarity.

We consider two simulation scenarios:
the full posterior scenario, which weights
predictions from all values of J using the
full distribution for the number of states
described previously, and the posterior mode
scenario, which gives full weighting to the
mode of the posterior number of states.
Table 4 lists the MSE values obtained for
the monotonicity constrained linear and
dummy time trend models, and shows that
the RMSE percentage is practically identical
for all of our models and scenarios, and is
below 5%, indicating a good in-sample per-
formance of our estimated state-contingent
production frontier model. Figure 4 and
the online supplementary appendix show the
QQ plots for the stationary vectors for the
dummy time trend model and the linear
time trend model, respectively. The full pos-
terior scenario exhibits a slightly better fit,
and is consistent with our conclusions using
MSE. Moreover, the two models predict
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Table 4. MSE, RMSE, %RMSE Comparison Between Different Models

MSE Linear Dummy ODG RMSE Linear Dummy ODG %RMSE Linear Dummy ODG

J = 3 0.075 0.074 0.290 J = 3 0.27363 0.27161 0.53833 J = 3 4.69% 4.65% 9.21%
Full 0.075 0.072 – Full 0.2733 0.26925 – Full 4.68% 4.61% –

Figure 4. Goodness-of-fit results for dummy model

Note: Results are for the full posterior scenario (top-left panel); 4% outliers removed for full posterior scenario (top-right panel); results for mode
scenario (bottom-left panel); 4% outliers removed for mode scenario (bottom-right panel).

different sets of outliers, each containing 15
observations, or roughly 4% of the total sam-
ple (the right column of figure 4 shows the
outlier-free fit results). Based on the minimal
difference in MSE obtained when using the
mode for J instead of its full distribution,
we conclude: a) for our application, using
the mode of the number of states to predict
efficiency provides a reasonable fit; and b)
re-running the model assuming the mode of
the posterior distribution of J is the correct
number of states gives a parsimonious and
nearly as well-fitting model (bottom panels
of figure 4). Our conclusions suggest that, in

this particular application, using the mode of
the posterior distribution for the number of
states is a reasonable choice due to the small
MSE difference versus using the full poste-
rior distribution, although this may not be
the case in a general setting. Comparing both
scenarios’ goodness-of-fit shows that using a
model based on a point estimate of the num-
ber of states, such as using the mode of the
posterior distribution or the BIC-minimizing
number of states, is in fact a special case of
the full posterior model we develop. Table 4
also compares the MSE figures from our
models and O’Donnell and Griffiths. The
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Table 5. Sensitivity Analysis on Hyperparameter λ, Prior Mean on the Number of States for
the Dummy Time Trend Model

Posterior mode Posterior mean
Prior lambda for J for J P(J = 2|X) P(J = 3|X) 90% HPDa

1 3 3.02 0.3162 0.4076 {2,3,4}
2 3 3.07 0.2938 0.413 {2,3,4}
3 3 3.07 0.306 0.4018 {2,3,4}
4 3 3.1 0.285 0.395 {2,3,4}
5 3 3.1 0.3056 0.386 {2,3,4}

Note: Superscripta indicates the Highest Posterior Density set.

MSE obtained from our models is roughly
1
4 the magnitude of the MSE obtained by
using O’Donnell and Griffiths’ estimated
frontier and could be a result of the addi-
tional smoothing provided in the estimation
of the precision parameters, meaning that our
models provide a better explanation of the
variability in output.

Sensitivity Analysis

Implementing the BDMCMC algorithm
allows us to analyze the estimated posterior
probability distribution for the number of
states of nature. To determine the model’s
robustness, we investigate whether our results
depend on the mean value of the prior dis-
tribution on the number of states of nature,
λ. We assign integer values ranging from 1 to
5 for lambda. In all instances, the posterior
shows evidence of at least 2 states.

For both the linear and dummy-trend
models, the posterior mean and mode for J
indicate that J = 3 in most cases. The 90%
Highest Posterior Density (HPD) set for
the value of J seems to be invariant over
the distinct choices for λ. Finally, the max-
imum number of possible states J = 100 is
far from being reached during the estima-
tion process, since 8 is the highest number
of components at any point of time for all
choices of λ. Therefore, we conclude that this
parameter is immaterial to the estimation of
the model. Table 5 summarizes the findings
for the dummy time trend model.

To conduct sensitivity analysis on our
assumptions about the inefficiency levels, we
vary the prior lower bound on TE from its
base value of 0.7 on the range [0.5, 0.8] in
0.1 increments. Figure 6 shows that the mean
of the posterior distribution for TE shifts
upward relative to the prior lower bound,
and that the distribution changes to accom-
modate the smaller range of TE. Figure 5, a
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Efficiency ranking of farm in Base model (LB = 0.7)

Base vs LB=0.5

Base vs LB=0.6

Base vs LB=0.8

Base vs ODG

Figure 5. Rankings of the three alternative
prior TE lower bound assumptions against
the base value of 0.7 for the dummy time
trend model

scatterplot of rankings considering all sensi-
tivity scenarios against our base assumption,
shows that there are no significant changes
in the inefficiency rankings of the firms.
Computing Spearman’s correlation coeffi-
cients for the base scenario rankings against
those of the three alternative lower bound
values shows that the lowest coefficient is
96.4% for the dummy time trend model,
which still indicates a strong relationship
between the rankings. Thus, we conclude that
while the relative efficiency rankings do not
change depending on the value of the lower
bound on TE, our inefficiency distribution is
sensitive to this assumption.

Finally, we also perform sensitivity analysis
on the prior median level of TE. We consider
three different values for τ∗: a low value of
0.825, O’Donnell and Griffiths base value
of 0.875, and a high value of 0.925. Figure 6
shows that the inefficiency distribution is
approximately independent on the choice
of τ∗ for our dummy time trend model. The
efficiency rankings are approximately main-
tained for the three scenarios, with the lowest
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Figure 6. Technical efficiency distribution for low (top panel), base (middle panel), and high
(bottom panel) values of for the dummy trend model

Figure 7. Distribution of intercept (expected output at time 0) for three states, the mode of J.
Fitted curves for dummy time trend model (left panel), linear time trend model results (right
panel). Solid line denotes distribution for state 1 intercept, dashed line denotes distribution
for state 2 intercept, and dotted line denotes distribution for state 3 intercept.

Spearman’s correlation coefficient being
greater than 99% overall compared to the
base scenario. The results for our linear time
trend model for all the sensitivity analy-
ses performed are similar and their details
can be found on the online supplementary
appendix.

Label-switching

Our labeling restriction alternative addresses
the mixture component label-switching
problem by setting a labeling restriction to
ensure that the drawn intercept value from
a lower-indexed state has a lower value than
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that of a higher-indexed state on each iter-
ation of the BDMCMC algorithm. Since
the drawn values differ for each iteration,
varying degrees of overlap between the inter-
cept distributions can exist. Figure 7 (left
panel) shows that the state-contingent lin-
ear time trend model gives a large degree
of overlap between these distributions, that
is, the distribution of the first state’s inter-
cept has approximately a 50% overlap with
the second state’s intercept, and the second
state’s intercept distribution has almost a
55% overlap with the third state’s intercept
distribution. Figure 7 (right panel) shows that
the overlap is slightly more significant for
the dummy trend model, that is, if we plot
all of the intercept distributions together,
the compound histogram is slightly closer to
unimodality, making the state-contingency of
the intercepts less clear. In other words, the
level of state-contingency of mean log-output
diminishes only slightly when using a more
flexible model to capture the time shifting
effect, and continues to support the state-
contingent hypothesis about the mean yield
per state. Moreover, some coefficients such as
the labor-related components are noticeably
state-contingent when comparing states 1 and
3 (see the dummy time trend model results in
table 3).

Conclusions

This article describes a new BDMCMC
algorithm that efficiently estimates the num-
ber of states in a state-contingent model. This
approach improves upon the Bayesian esti-
mation of state-contingent models because
the posterior distribution of this parame-
ter can be visualized, thus providing more
insights into the nature of the unobserved
variables generating the states. After only
one run of the model there is enough infor-
mation to weight the outputs obtained for
models with different numbers of states in
a straightforward manner. Computing a
goodness-of-fit analysis for a state-contingent
model of production allows us to determine,
by assessing the difference in MSE of both
scenarios, whether the full posterior distri-
bution of the number of states enhances
the model significantly versus using only
its mode. The experimental results derived
from a case study of 44 rice farms in the
Tarlac region of the Philippines shows an

insignificant difference between using the
mode of the posterior distribution versus
using the complete distribution. Utilizing a
state-independent dummy time trend, we
estimate the differences in mean output lev-
els across states to be slightly smaller than
O’Donnell and Griffiths’ estimates.

Our finding that a state-contingent linear
time trend could not explain the complex
time-shifting effect of the frontier suggests
that changing weather patterns from year to
year have a non-linear effect on output. The
similarity in the mean output levels of states
in our dummy time trend model suggests
that bad/good years affect the rice-producing
region more uniformly than indicated by
O’Donnell and Griffiths. Nevertheless, evi-
dence of state-contingency can still be argued
by the differences in labor elasticities we
find for states 1 and 3, as well as the slight
differences in the state-contingent mean
output. The unimodal posterior distribution
on the number of states indicates that the
interactions between unobserved variables
are complex and probably interdependent.
We suggest that the inability to impose a
convexity constraint could be due to the lim-
ited flexibility of the parametric framework,
distributional assumptions, or the presence
of outliers in the dataset. A complementary
or alternative explanation for the inability
to impose convexity could also relate to
the significant yearly shifts in the observed
log-output. For example, in 1996 there is a
distinct possibility that the group of farms
as a whole was on a non-convex portion of a
classical s-shaped yield curve since the mean
log-output in 1996 was well below the aver-
age of the full time span. Comparing the
results of our two models shows that our effi-
ciency rankings are roughly consistent with
O’Donnell and Griffiths, and that the main
benefit of the O’Donnell and Griffiths model,
the ability to avoid misinterpreting state-
contingency as inefficiency, is maintained. In
terms of input elasticities, our area and labor
elasticities are similar to O’Donnell and Grif-
fiths, although we estimate a positive fertilizer
elasticity for our lowest output state, whereas
O’Donnell and Griffiths find a negative effect
of fertilizer. The difference is driven by the
higher average yield estimates in state 1 that
we obtain compared to O’Donnell and Grif-
fiths. Our positive fertilizer elasticities, given
our estimated yield per unit area in that
state, are consistent with the previous rice
crop literature. Finally, our models provide
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slightly larger yield estimates and exhibit a
significantly lower MSE.

Further work remains to be done regarding
the estimation of state-contingent frontiers.
A key limitation is the challenge of imposing
a convexity constraint. This is likely an issue
related to this data set. However, convexity
could be imposed more easily if we used a
non-parametric regression method such as
MBCR (Hannah and Dunson 2011). Also,
our current model needs a pre-specified
lower bound on technical efficiency to be
estimated. While we have performed a sensi-
tivity analysis on the related parameter, the
approach in Mahendran et al. (2012) could
be used to select this parameter optimally in
terms of a specific criterion such as the MSE.

Supplementary Material

Supplementary online appendix is available
at http://oxfordjournals.org/our_journals/ajae/
online.
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